
International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.11, July 2016

40

Design of Task Scheduling System for Conference

Management Application

Anish Narkhede
B.E.(Computer)

Department of Computer Engineering
Savitribai Phule Pune University

Pune, MH, India.

ABSTRACT
Task scheduling systems play an important role in managing

processes in an efficient way. They assess the time duration

taken up by a particular process, and accordingly allot the

processes slots so that they can complete their execution.

Managing tasks in this way allows efficient use of the system

resources and allows faster and optimized performance. Using

similar techniques, tasks (other than system processes) can

also be managed efficiently by filtering them using

‘time/duration’ as a primary component. The System

proposed in this paper aims at creating a system which helps

to manage Conferences into three slots viz. Shortest

Conferences first, Longest Conferences First, & First Come

First Serve, which would be done by obtaining Conference

details from the user. Details would include title of the

Conference and its duration. The slots will then be filled

depending on duration of a particular conference.

General Terms

Task Scheduling, Conference Management, Insertion Sort

Keywords
First Come First Servce Approach, Insertion Sort, Data

Structures

1. INTRODUCTION
With the increasing rate at which conferences are being

organized, may it be tech conferences, trade shows, exhibits,

conventions and seminars, or business meetings, it is of

utmost importance to manage these events in an organized

way so as to ensure their smooth functioning. With time being

the key factor that comes into play during such events, it is

important to manage them accordingly. The System proposed

in this paper would work on the principle of ‘First Come First

Approach’ which commonly used in the field on System

programming and Operating Systems for Job Scheduling of

system processes. The system would allow the user to

organize the conferences based on 3 criteria:

 Schedule Conferences in Ascending Order (Time)

 Schedule Conferences in Descending Order (Time)

 Schedule the Conferences in an FCFS Manner

2. WORKING
The system would initially require data from the user. Details

regarding the Conference, which would include the title/name

of the conference and also the duration would need to be

specified by the user. Also the date on which the conference is

to be organized will also have to be specified. The

conferences will then be pushed into a queue, where based on

the duration of the conference, they will then be allotted a slot

in either of the three Sessions. Every time a new conference

arrives in the queue, the queue management will first check

for the duration of the conference, and then accordingly, it

will be allotted to either of the three Sessions. Insertion Sort

algorithm will be used in order to populate the queue, as this

sorting algorithm is efficient with sorting small data sets. The

sorting algorithm will keep sorting the data in such a way that,

even upon insertion of new data, the output of data displayed

will remain to be sorted at all times.

3. LITERATURE REVIEW

3.1 Introduction
Scheduling, in computing refers to the process by which

work that is specified is assigned to resources that would

complete this work. [1] The work refers to threads, processes,

data flows, which are then delegated to hardware resources

such as processors. Schedulers are implemented so that they

keep the system resources busy in the most efficient way

possible. A scheduler aims at maximizing throughput,

minimizing response time or latency.

3.2 First Come First Serve Approach
First Come, First Serve, also known as the First In, First Out

(FIFO) method, is the simplest Scheduling Algorithm. FIFO

simply queues the processes/tasks in a Queue, commonly

referred to as the Task Queue. Implementation of this

methodology is of relevant to the System proposed in this

paper, as in First Come First Serve, the context of the

operation switches only upon termination of the previous task.

and no re-organizing of the Task Queue needs to be done.

Thus the scheduling overhead is minimum. Also concepts

such as wait time, turn-around time, response time are not

relevant with regard to organizing Conferences, thus using

FIFO approach is viable. Also lack of prioritization means

that as long as every conference is being allotted to a Slot, no

starvation of tasks would occur.

Figure 1: First Come First Serve Queue[4]

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.11, July 2016

41

3.3 Queue Data Structure
A Queue is a data structure where we add data to the back,

and remove data from the front. It is like ‘waiting-in-line’, the

first one to be added, will be the first one to be removed. As a

result, this Data Structure is also called as the First In First

Out (FIFO) Data Structure.

Figure 2: Queue Implementation

[2]A queue is usually implemented using a struct with a front

field and a back field. While using arrays, we deal with an

index, which is always one greater than the length of the

array. Queues use a similar strategy, wherein the back field

points to one element past the end of the queue.

struct queue{

 list front;

 list back;

};

The queue data structure has two primary operations, which

are used to manage the content of the Queue. These methods

are – Enqueue and De-queue. The Enqueue method is

responsible for adding data elements into the Queue from the

back, while the Dequeue does the exact opposite, i.e. removes

data elements from the front of the Queue.

4 METHODOLOGY/APPROACH

4.1 GUI
The UI of the application is designed using Web Technologies

such as HTML, CSS and JavaScript. Besides, the application

also employs Bootstrap (CSS front-end framework), which is

an intuitive and powerful framework for front-end

development. Also, the application is built using AngularJS

MVC client-side framework, which allows efficient

management of the system.

Figure 3: UI of the System used for taking user input

4.2 Insertion Sort Algorithm
The conference queue will be implemented using an array. In

order to sort the conferences according to the 3 slots, sorting

is key. These conferences will be sorted using Insertion sort

algorithm.

Input: A sequence of n numbers (a1,a2,…..an)

Output: A reordering of the n numbers such that

a1<=a2<,….<=an.

[3] Insertion sort is an efficient algorithm to sort small data

sets. It works the way people sort a hand while playing cards.

Starting with an empty hand, and the cards face down, we

pick up one card. This card is inserted into the correct position

in the left hand. In order to find the correct position, we

compare the card with one card before it, and one card after it.

This process continues till a certain number of cards are in the

player’s hand.

Figure 4: Operation of Insertion Sort on array

Pseudocode:

INSERTION-SORT(A)

1 for j D 2 to A.length

2 key = A[j]

3 i = j - 1

4 while i > 0 and A[i] > key

5 A[i+1] = A[i]

6 i = i - 1

7 A[i+1] = key

The UI allows the user to provide details regarding the

conference. After this detail has been obtained, the detail is

encapsulated in an object and then pushed into an array. This

array is then sorted using insertion sort, so as to provide

sorting, right at the time of insertion, thus allowing the user to

see the sequence of the conference as and when he/she adds it

to the System.

,

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.11, July 2016

42

5 SYSTEM DESIGN

5.1 Data Insertion
The GUI of the application uses a form to collect data from

the user. This data is then inserted into the System array, as an

Object. This detail maintained in the queue is further used in

order to perform Insertion Sort operation. Sorting is typically

done in-place, by iterating up the array, growing the sorted list

behind it. At each array-position, it checks the value there

against the largest value in the sorted list (which happens to

be next to it, in the previous array-position checked). If larger,

it leaves the element in place and moves to the next. If

smaller, it finds the correct position within the sorted list,

shifts all the larger values up to make a space, and inserts into

that correct position.

if($scope.eventObj.name!=""&&$scope.eventObj.time!=""){

 $scope.events.push($scope.eventObj);

$scope.fcfsEvents.push($scope.eventObj);

}

The $scope.events array is used in order to maintain the

conference information, while the $scope.fcfsEvents is an

array used to maintain Conference information for the FCFS

part of the application.

$scope.fcfsEvents = [

 {

 time : '',

 name : ''

 }

];

$scope.eventObj = {time:"",name:""};

After the user adds data to the System, it is then encapsulated

into an $scope.eventObj object, and is then pushed into the

System queue.

5.2 Scheduling (Ascending)
Shortest Job First (SJF) is job scheduling principle which is

most commonly used in System Programming & Operating

System related tasks (System Processes). The principle is

based on the simple logic in which the job which consumes

the shortest amount of time is to be scheduled first. It is

advantageous because of its simplicity and also reduces the

average amount of time that each process has to wait. While

all this is in regards with the System processes, this

phenomenon can easily be applied to the Conference

Management System, which would allow the user to sort the

Conferences in such a way that, the Conference which takes

up the minimum amount of time will be scheduled first. This

requires the system to simply apply the insertion sort

algorithm on the System Queue (array) which would then sort

the data based on the duration of all the Conferences.

This Module uses the following array as a queue in order to

sort the Conferences.

 $scope.events = [

 {

 time : '',

 name : ''

 }

];

The array consists of an Object that is modelled in such a way

that allows the Insertion Sort algorithm to arrange all the data

objects in an Ascending order.

$scope.add_event = function(){

if($scope.eventObj.name!=""&&

$scope.eventObj.time!=""){

$scope.events.push($scope.eventObj);

if($scope.asc == true){

for(var j=0;j<$scope.events.length;j++){

var key = $scope.events[j];

var i = j - 1;

while(i > -1 && $scope.events[i].time > key.time){

 $scope.events[i+1]=$scope.events[i];

i = i -1;

}

$scope.events[i+1] = key;

}}}

Start

Enqueue Data Object into an Array for sorting purpose

Insert Conference Details in the form fields

Upon insertion of every single data object into the System

queue, perform Insertion Sort on the queue, so that data is

arranged in an ordered manner

Maintain Boolean values in order to track whether User is

requesting Conference Output in Ascending, Descending or

FCFS Manner

Depending upon the Boolean values, bind the

appropriate Queue to the front-end of the

application using Angular ng-controller

End

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.11, July 2016

43

Boolean Function (Ascending)

 $scope.ascActivate = function(){

 $scope.desc = false;

 $scope.asc = true;

 $scope.sort();

 }

The System maintains Boolean value in order to keep a track

of whether the user wants to sort the Conferences in an

Ascending or a Descending order. Change in this value is

triggered by a click event, upon which the Boolean is changed

to true. The sorting algorithm picks up the time attribute of the

eventsObj object. This value is then compared repeatedly with

the key value in the array in order to re-arrange the array in a

way that sorts the entire array.

5.1 Scheduling (Descending)
This Module adopts the exactly opposite functionality to that

of the previous module. After checking the Boolean value that

indicates the preference of sorting provided by the user, the

System checks if the $scope.desc is true, upon which the

Insertion Sort algorithm re-sorts the array, in case any

additional data has been appended to the Queue. After sorting

is done, the array is then reversed using the standard .reverse()

method used on JavaScript arrays. The system then binds this

data to the table on the front-end.

if($scope.desc == true){

for(var j=0;j<$scope.events.length;j++){

var key = $scope.events[j];

var i = j - 1;

while(i>-1 && $scope.events[i].time > key.time){

 $scope.events[i+1] = $scope.events[i];

i = i -1;

}

$scope.events[i+1] = key;

}

$scope.events.reverse();}

Boolean Function (Descending)

 $scope.descActivate = function(){

 $scope.asc = false;

 $scope.desc = true;

 $scope.reverseSort();

 }

6 CONCLUSION
The proposed system allows the end user to manage/schedule

conference according to his needs. It will allow the user to

completely re-order or re-organize the entire schedule if he

wishes to do so, by re-arranging the schedule upon selection

of a different tab. Insertion of Conference data is sorted as and

when the user inputs the information, thus allowing the user to

observe how the schedule will be laid out, which is possible

due to the implementation of Insertion Sort.

7 FUTURE SCOPE
Currently, the system employs simple sort algorithms which

allow easy and quick sorting of the data that the system

receives. Insertion sort works well, and in an efficient way on

small data sets. However, if the amount of Conference data

that the system handles is to be increased, the system needs to

be scaled up in way that would allow quicker sorting of data.

This would in turn require implementation of advanced

sorting algorithms which would provide a consistent

throughput. The data that is received, can also be backed up in

database, that would allow the users to access old Conference

Tracks if necessary.

8 REFERENCES
[1] https://en.wikipedia.org/wiki/Scheduling_(computing)#F

irst_in.2C_first_out

[2] https://www.cs.cmu.edu/~wlovas/15122-r11/lectures/09-

queues.pdf

[3] Introduction to Algorithms by Charles E. Leiserson,

Clifford Stein, Ronald Rivest, and Thomas H. Cormen

[4] https://en.wikipedia.org/wiki/File:Thread_pool.svg

9 AUTHOR PROFILE
Anish Narkhede received his B.E. degree in Computer

Engineering from Savitribai Phule Pune University (formerly

known as University of Pune), Maharashtra, in 2015.

IJCATM : www.ijcaonline.org

https://en.wikipedia.org/wiki/Scheduling_(computing)#First_in.2C_first_out
https://en.wikipedia.org/wiki/Scheduling_(computing)#First_in.2C_first_out

