Abstract

In this paper the concept of connected edge monophonic domination number of a graph is introduced. A set of vertices M of a graph G is a connected edge monophonic domination set (CEMD set) if it is edge monophonic set, a domination set of G and the induced sub graph is connected. The connected edge monophonic domination number (CEMD number) of G, $\gamma_{m_{ce}}(G)$ is the cardinality of a minimum CEMD set. CEMD number of some connected graphs are realized. Connected graphs of order n with CEMD number n are characterised. It is shown that for every pair of integers m and n such that $3 \leq m \leq n$, there exist a connected graph G of order n with γ m

∞

$(G) = m$. Also, for any positive integers p, q and r there is a connected graph G such that $m(G) = p, m$

∞

$(G) = q$ and γ

10.5120/ijca2016910759

{bibtex}2016910759.bib{/bibtex}
m

or

(G) \Rightarrow y.

Again, for any connected graph G, y

\[mce(G) \leq n/(1+\Delta(G)) \]

and n.

References

4. F. Buckley and F. Harary. Distance in Graphs, Addition Wesley, Redwood City, CA (1990)

Index Terms

- Computer Science
- Applied Mathematics

Keywords

- Edge monophonic number
- Monophonic domination number
- Edge monophonic domination number
- Connected edge monophonic domination number