Abstract

Recent developments in the field of deep learning have shown that convolutional networks with several layers can approach human level accuracy in tasks such as handwritten digit classification and object recognition. It is observed that the state-of-the-art performance is obtained from model ensembles, where several models are trained on the same data and their predictions probabilities are averaged or voted on. Here, the proposed model is a single deep and wide neural network architecture that offers near state-of-the-art performance on various image classification challenges, such as the MNIST dataset and the CIFAR-10 and CIFAR-100 datasets. On the competitive MNIST handwritten image classification challenge, the proposed model approaches the near state-of-the-art 35 model ensemble in terms of accuracy. On testing the model on the CIFAR datasets, it is found that the proposed model approaches the performance of the top two ensemble models. The architecture is also analyzed on the SVHN dataset.
1. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient based learning applied to
Computer Science Department, University of Toronto, 2009.
3. Raina, Rajat, Anand Madhavan, and Andrew Y. Ng. "Large-scale Deep Unsupervised
4. Fukushima, Kunihiko. "Neocognitron: A Self-organizing Neural Network Model for a
Mechanism of Pattern Recognition Unaffected by Shift in Position." Biol. Cybernetics Biological
5. Behnke, Sven. "Hierarchical Neural Networks for Image Interpretation." Lecture Notes in
Networks Applied to Visual Document Analysis." Seventh International Conference on
Image Classification." 2012 IEEE Conference on Computer Vision and Pattern Recognition
8. Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, Rob Fergus. "Regularization of Neural
Network using DropConnect". International Conference on Machine Learning 2013
GPU-Based Convolutional Neural Networks." 2010 18th Euromicro Conference on Parallel,
10. Uetz, Rafael, and Sven Behnke. "Large-scale Object Recognition with
CUDA-accelerated Hierarchical Neural Networks." 2009 IEEE International Conference on
12. Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep
2010.
Recognition with Invariance to Pose and Lighting." Proceedings of the 2004 IEEE Computer
nets: the difficulty of learning long-term dependencies". In S. C. Kremer and J. F. Kolen, editors,
error propagation". In Parallel distributed processing: explorations in the microstructure of
16. Ranzato, Marc'aurelio, Fu Jie Huang, Y-Lan Boureau, and Yann Lecun. "Unsupervised
Learning of Invariant Feature Hierarchies with Applications to Object Recognition." 2007 IEEE
17. Erhan, Dumitru, et al. "Why does unsupervised pre-training help deep learning?." The

Index Terms

Computer Science

Networks

Keywords
Deep Columnar Convolutional Neural Network

Neural Networks, Convolutional Neural Network, Computer Vision