
International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

12

AdaSort: Adaptive Sorting using Machine Learning

Somshubra Majumdar
D. J. Sanghvi College of

Engineering
Mumbai, India

Ishaan Jain
D. J. Sanghvi College of

Engineering
Mumbai, India

Kunal Kukreja
D. J. Sanghvi College of

Engineering
Mumbai, India

ABSTRACT

Sorting algorithms and their implementations in modern

computing requires improvements in sorting large data sets

effectively, both with respect to time and memory consumed.

This paper is aimed at reviewing multiple adaptive sorting

algorithms, on the basis of selection of an algorithm based on

the characteristics of the data set. Machine Learning allows us

to construct an adaptive algorithm based on the analysis of the

experimental data. A review of algorithms designed using

Systems of Algorithmic Algebra and Genetic Algorithms was

performed. Both methods are designed to target different use

cases. Systems of Algorithmic Algebra is a representation of

pseudo code that can be converted to high level code using

Integrated toolkit for Design and Synthesis of programs, while

the Genetic Algorithm attempts to optimize its fitness function

and generate the most successful algorithm.

Keywords

Sorting, Machine Learning, Object oriented programming

1. INTRODUCTION
Sorting is defined as the operation of arranging an unordered

collection of elements into monotonically increasing (or

decreasing) order. Specifically, S = {a1, a2 ………….an} be a

sequence of n elements in random order; sorting transforms S

into monotonically increasing sequence S‟= {a1 ‟, a2

‟…………… an ‟} such that ai ‟≤ aj‟ for 1≤ i ≤ j ≤ n, and S‟ is

a permutation of S [1].

There are certain characteristics of a data set that can be

preprocessed to obtain some valuable information about the

data set itself. A few characteristics obtained from a data set

are its size and the degree of pre-sortedness. Different sizes of

a data set necessitate utilization of different algorithms to sort

them. Pre-sortedness can be described as the degree to which

the initialized data set is already sorted. A sequence of

integers to be sorted could be characterized by more than its

length, but also by its degree of pre-sortedness. Three

measures of pre-sortedness are used [2]:

 The number of inversions (INV),

 The number of runs of ascending subsequences

(RUN)

 The length of the longest ascending subsequence

(LAS)

RUN metric is shown to be the most efficient. RUN is

calculated as number of subsets of the data set that are already

sorted divided by the number of elements in the data set itself.

A data set sorted in the descending order will have a pre-

sortedness value of 1 while a data set sorted in the ascending

order will have a value equal to 1/n.

Using the aforementioned characteristics of the data set,

certain strategies can be used to optimize the performance

of the algorithm used to sort the set. Two main strategies that

can be used are Machine Learning and Genetic algorithm.

Machine learning allows us to classify the data for making

decisions on which algorithm is optimal, while Genetic

Algorithm modifies itself to optimize the performance of the

algorithm. These two are discussed in detail below.

Machine learning explores the study and construction of

algorithms that can learn from and make predictions on data

[3]. Such algorithms operate by building a model from

example inputs in order to make data-driven predictions or

decisions [4], rather than following strictly static program

instructions. The machine learning techniques can be

categorized based on the desired output of a machine-learned

system [4]:

 Classification: Input sets are classified into one or

more output classes based on a model

 Regression: the outputs are continuous rather than

discrete values.

 Clustering: Inputs are divided into output groups.

However, unlike classification, the groups are not

known beforehand

Genetic algorithm is a search technique that simulates the

process of natural selection. This technique is routinely used

to obtain useful solutions to optimization and search

problems. Genetic algorithm techniques are inspired by

natural evolution - as in inheritance, mutation, selection and

crossover. In such an algorithm, a set of possible candidate

solutions to an optimization problem is evolved toward better

solutions. Each candidate solution has a set of properties (its

chromosomes or genotype) which can be mutated and altered

[5].

In this paper, in section 2, features of the data sets used to

perform analysis are studied. In section 3, The proposed

model as well as methodology in creating the data sets and

pre-sorting them are discussed. In section 4, The performance

of the composite algorithms is compared with other base

algorithms. In section 5, the conclusion is discussed.

2. LITERATURE SURVEY
An adaptive sorting algorithm is developed with the help of

some pre-existing well known sorting algorithms, namely -

Insertion sort, Shell sort, Heap sort, Merge sort and Quicksort.

 An adaptive sorting algorithm uses certain characteristics of

the input dataset to select one or more sorting algorithms to

sort the dataset. Generally pre-sortedness is computed using

the RUNS metric, which is described as the number of sorted

subsets or the data set, divided by the number of elements in

that dataset.

Machine learning is similar to computational statistics in the

sense that it also focuses on prediction-making. It has strong

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Learning
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Cluster_analysis

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

13

ties to mathematical optimization, which delivers

implementations, theory and application domains to the field.

Machine learning is used in a range of digital tasks where

coding and implementing explicit algorithms is infeasible [4].

Example applications include spam filtering, speech and

handwriting recognition, sentiment analysis, Natural

Language Processing (NLP) and computer vision. Machine

learning and pattern recognition can be viewed as two facets

of the same field.

Algebraic algorithmics (AA in short) is an important domain

of computer science, which was born from a collaboration of

algebra, logic and algorithm schemes. It provides a standard

for the knowledge about subject directions with the help of

algebra and also deals with obstacles like standardization,

specification of correctness and modification of algorithms.

AA uses high-level abstractions of programs, represented by

Systems of Algorithmic Algebras (SАА). One of the

fundamental problems of AA is to increase the degree of

flexibility of programs to particular use cases. Specifically,

the problem can be solved at the disadvantage of argument-

motivated creation of algorithm specifications by means of

more complex algorithms [6].

Genetic algorithms are widely used in obtaining solutions for

optimization and search problems. Evolution of the candidate

solutions starts from a random population. This is an iterative

process, where the population in each iteration is called as a

generation. In every epoch, the fitness of every individual in

the pool is evaluated such that the fitness is usually the value

of the heuristic function in the optimization problem under

consideration. A genetic algorithm requires a representation of

the solution space (in the form of an array of bits) and a

fitness function to test the solution space [8]. After the genetic

representation and the fitness function is defined, a Genetic

Algorithm begins by initializing a population of candidate

solutions and then attempts to improve it through multiple

applications of the mutation, crossover, inversion and

selection operations on the population [8].

The authors of the paper “Optimizing Sorting with Machine

Learning Algorithms” [7] talks about two methods of

generating efficient sorting techniques. The first one uses

machine learning algorithms to generate a function for

specific target machine that is used to select the best

algorithm. Their second approach builds on the first approach

and constructs new sorting algorithms from a few

fundamental operations. Using the array size, they are able to

determine if the input set can fit into the cache memory and

using the entropy of the input data, differentiate between the

relative performances of radix sort with other comparison

based sorting algorithms. Using sorting primitives as

operations in genetic algorithms, they are able to create a

composite algorithm which outperforms several other

algorithms.

Yatsenko proposes the use of Decision Trees to classify the

best sorting algorithm for the given data set [11]. They

consider five sorting algorithms, mainly Insertion sort, Merge

sort, Quick sort, Heap sort and Shell sort to analyses and

decide the best algorithm for the given data set. They do this

using various Decision Tree learning algorithms such as ID3,

C4.5, NewId, ITrule and CN2. They then use SAA to

formalize the algorithm used for conversion into C++ and

Java code using IDS (Integrated toolkit for Design and

Synthesis of programs). The drawbacks of this analysis is that

there has been no consideration for multi-threaded algorithms

which would drastically improve sorting time and also the fact

that the study focuses on only smaller data sets (size < 100).

Before analyzing the adaptive sorting algorithm, an analysis

of the performance of various standard sorting algorithms and

their time and space complexities, expressed using the Big O

notation, must be done.

TABLE 2.1 Comparison of Sorting Techniques Based on

the Parameters of the Proposed Model Based on Previous

Studies and Experimental Results [10]

Sorting

Method

Best Case

Time

Complexity

Worst Case

Time

Complexity

Space

Complexity

Bubble

Sort

O(n) O(n2) O(1)

Insertion

Sort

O(1) O(n2) O(n)

Shell Sort O(n log2 n) O(n2) O(n)

Heap Sort O(n) O(n log n) O(1)

Quicksort O(n log n) O(n2) O(log n)

Merge

Sort

O(n log n) O(n log n) O(n)

Based on a preliminary analysis of the various sorting

algorithms widely known, algorithms that do not perform well

for any case, or are too primitive to produce the output

efficiently can be eliminated. Sorting techniques such as

Bubble Sort and Selection sort have an average case

complexity of O(n2) with best case complexity of O(n) and

O(n2) respectively. Other considered sorting algorithms

perform relatively better for all cases and as such negate the

usage of Bubble and Selection Sort. The exception here is that

while Insertion sort also has a complexity of O(n2), it‟s best

case complexity is only O(1), which means that there are edge

cases in which insertion sort produces the output in least time

as compared to the other algorithms.

In addition to the above mentioned sequential sorting

algorithms, a parallel quick sort algorithm is also incorporated

into the testing procedure [12]. Utilizing a thread pool in order

to limit the number of threads, the algorithm performs very

well on large data sets and utilizes minimal additional

memory resources. It is found to be more efficient than

Parallel Merge Sort as the data set size increases above a few

hundred thousand elements. In addition to the parallel quick

sort algorithm, parallel merge sort implemented in the Java 8

Software Development Kit (JDK) is also incorporated as a test

algorithm. It can be accessed using the Arrays.parallelSort()

method, and is a Sort-Merge algorithm which uses the Fork-

Join Common Pool introduced in Java 8 [14].

3. PROPOSED MODEL AND

METHODOLOGY

3.1 Construction of dataset
Since example data set utilized for analysis needs to be an

array of integers, one can generate a data set consisting of

integers generated using a uniform Gaussian random number

generator. Data sets of sizes varying sizes from 50 to 1 million

uniformly distributed integers is generated. Due to the

requirement of preprocessed arrays, 7 such replicas of each

data set, whose subsets are then sorted according to the given

input parameters of “pre-sortedness”, are created. Thus each

replicated dataset is pre-sorted according to the vector of 1/n

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Spam_filter
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Fitness_(biology)
https://en.wikipedia.org/wiki/Objective_function

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

14

to 1 where n is the size of the data set. Thus 42 data sets each

having nearly 100 sample arrays are made. The exception to

this is the data set of 1 million integers, of which there are far

fewer samples. This is because the sorting time of such large

data sets using Insertion Sort and

Shell Sort is far too large to be compared with faster sorting

algorithms such as parallel merge sort and quicksort. It can be

assumed that either parallel merge sort or quicksort will be the

winning algorithm when such large data sets are given to the

model.

Figure 3.1 describes the distribution of the generated arrays

each having been pre-sorted to various degrees of pre-

sortedness. Due to the large number of smaller sized arrays,

the number of arrays which are almost completely sorted is

higher than any other type of array.

3.2 Feature Selection
The proposed model will be using two features that are

characteristic to each of the data sets. The first attribute will

be the size of the array, as larger data sets cannot be sorted in

an efficient manner using algorithms such as Insertion Sort

and Shell Sort. The second attribute will be the pre-sortedness

of the array, computed as the “RUNS” metric.

𝑅𝑈𝑁𝑆 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡𝑒 𝑎𝑟𝑟𝑎𝑦

Thus, for a completely sorted array, the RUNS value will be 1

/ size of the array, whereas for an array sorted in descending

order, RUNS value will be 1.

Figure 3.1 Number of instances of arrays with different

degrees of pre-sortedness (RUNS value)

3.3 Preprocessing
These pre-sorted data sets are then sorted using Insertion Sort,

Shell Sort, Heap Sort, Merge Sort, Quicksort, Parallel Merge

Sort and Parallel Quick Sort. The sorting time for each

algorithm on each array of each data set is computed and

stored for later analysis. Alongside these results, the winning

algorithm, that is the algorithm which uses the minimum time,

can be determined to sort the given data set. In case of ties,

one can select an algorithm which performs the best on

similar data sets. Algorithms tie when data set size is small, as

multiple algorithms sort the data set in almost exactly the

same amount of time. In such cases, one can see which

algorithm generally performs as the best algorithm in other

data sets of the same size, and so assume it is also the current

winner.

3.4 Optimizations
Each of the above algorithms was implemented using all

feasible optimizations that would affect the sorting speed of

any algorithm by a significant factor. Implementations of

Quicksort were optimized according to the optimizations

suggested by R. Sedgewick [13]. Parallel Quick Sort is

implemented in accordance with the algorithm provided [12]

and internally utilizes Dual Pivot Quicksort, available in the

form of Arrays.sort() method in the Java 8 SDK to sort small

subsets sequentially. Merge sort was tested in both iterative

and recursive variants, and it was found that the recursive

variant slightly outperformed the iterative counterpart.

The computed value of the threshold for Parallel Quick Sort

was altered in order to reduce the execution time even further,

while the general algorithm was implemented as is. Let data

set size be given as „n‟, and the number of available

processors be „p‟.

The computation of the threshold can now be given as:

min_granularity := 8192

if n < min_granularity:

 SortDirectly(data_set)

else

 g := n / (p << 2)

 if g > min_granularity:

 threshold := g

 else:

 threshold := min_granularity

If the data set size „n‟ is less than the minimum granularity,

then a sequential sorting algorithm is applied. If n is larger, g

is used to determine the minimum threshold.

By computing the threshold in this manner, the average

performance of the Parallel Quick Sort algorithm was found

to have increased, and thus this threshold computation was

adopted.

3.5 Proposed Model
Following Yatsenko‟s model [11], a Decision Tree can be

used to analyze and learn the features of the array size and

degree of pre-sortedness and the winning algorithm as the

target feature. Also use of the Gaussian Naive Bayes to

classify the features, as well as train a multiclass Support

Vector Machine with the Linear Dual Coordinate Descent as

the optimization algorithm is made. The decision tree will also

attempt to classify the data set with the splitting criterion as

the gini score or with the information entropy score. The

depth of the tree is also limited to prevent overfitting. Naive

Bayes and multi class Support Vector Machine are also used

to cross validate the classification results.

While Yatsenko‟s model [11] focused on smaller data sets of

size smaller than 100 elements, the proposed model focuses

on larger data sets of sizes in the range of 50 elements to 1

million elements. Focus is also on sorting large data sets using

parallel algorithms and the threshold where thread creation

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

15

cost is insignificant compared to the gain in sorting speed.

The proposed model also attempt to measure the optimal

threshold for dividing a data set into partitions for improving

the performance of Merge Sort, Quick Sort and Parallel

Merge Sort.

4. ANALYSIS OF PERFORMANCE OF

ADASORT

4.1 Comparison of winning algorithms
Each of the seven sorting algorithms is utilized to sort the

entire data set and provide information as to how much time

in micro seconds was required to sort each array of each type

in the data set by each algorithm. It was observed that each

algorithm was a clear winner in a certain set of circumstances.

However, there existed certain algorithms which performed

poorly in every test condition.

Figure 4.1 Number of instances in dataset where

algorithm is the winner

In Figure 4.1, one can see that depending solely on the data

set size, each algorithm is well suited to sort a given dataset of

some size in the shortest time possible. It is seen that heap sort

performs poorly for any given data set size, at least in

comparison to other more efficient algorithms such as Parallel

Merge sort and Quicksort. Due to this, a negligible number of

instances where heapsort outperforms other algorithms from

the final dataset are removed.

4.2 Machine learning to determine

algorithm
According to Yatsenko [11], the use of a Decision Tree is

optimal to understand and implement an equivalent sorting

algorithm in any programming language, as the decision tree

can be easily understood and implemented using if-else

constructs available to all modern programming languages.

A decision tree is very prone to suffer from the overfitting

problem. 10 fold cross validation has been used to limit the

depth of the tree in the Machine Learning library,

Accord.NET. Therefore even with a very large number of

unique samples, the decision tree does not suffer from

overfitting. The C4.5 learning algorithm was chosen for the

Decision Tree Learning algorithm, due to its superior

performance in comparison to the Iterative Dichometer 3

(ID3) Algorithm.

Since there exists no direct method to visualize the Decision

tree in a graphical format using Accord.NET, the decision tree

has been exported to a format that is suitable for the Java

based machine learning tool, Weka, in order to obtain the

graphical representation of the decision tree.

Figure 4.2 Decision Tree visualization

As seen in the decision tree, there are many redundant paths

which can be pruned by logical inference. When the model is

implemented to match the Decision Tree, the time required to

compute the presortedness metric for very large size data sets

(above 100,000 items) takes more time than to directly sort

the data using a fast general algorithm such as Parallel Merge

or Quick sort.

In order to optimize this algorithm, a few redundant branches

of the tree can be pruned in order to avoid computation of the

runs metric for large data sets. This technique reduces the

accuracy of the final algorithm, but the composite algorithm is

sufficiently fast enough in general and the gain in execution

time is less than 5 % of the best execution time in most cases.

The classification accuracy of this decision tree to determine

the winning algorithm is 98.3969 %, but practically another

algorithm is superior in some cases. It is to be noted that in

such cases, the difference in execution speed between the

winning algorithm and the algorithm selected by the decision

tree is small enough to be considered inconsequential. In most

cases, the percentage difference between the two execution

speeds is less than 5 % of the execution time of the faster

algorithm.

4.3 AdaSort Algorithm
By reducing the various decision paths the algorithm must

take, the execution speed of the adaptive algorithm is

improved. The algorithm can be given as:

Algorithm AdaSort(data, n)

{

 if n <= 100:

 runs := computeRunsMetric(data, n)

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

16

 if runs > 0.68799:

 shellSort(data, n)

 else if n <= 50 and runs > 0.44:

 parallelMergeSort(data, n, p)

 else if n <= 50 and runs > 0.25388:

 mergesort(data, n)

 else:

 insertionSort(data, n)

 else if n <= 1000:

 quickSort(data, n)

 else if n <= 500000:

 parallelMergeSort(data, n, p)

 else:

 parallelQuickSort(data, n, p)

}

As seen by the algorithm, the decision path taken by the

algorithm has been heavily pruned as the size of the data sets

increases. It is observed in the decision tree that, when there

are less than 1000 items in the array, Quicksort is almost

always selected, and only under cases of almost completely

sorted arrays does Parallel Quick Sort perform better.

Removal of the overhead of computing the runs metric and

generalization of the solution to use Quicksort all of the time

when the data set size is between 100 and 1000 items.

Similarly, for data sets smaller than 500,000 items, it is noted

that Parallel Merge Sort generally outperforms all others in a

large variety of cases, so the algorithm can simply be

generalized to use Parallel Merge Sort if the data set size if

between 1,000 and 500,000. This also avoids the lengthy

computation of the runs metric for such large data sets.

4.4 Optimizations to AdaSort

It must be noted that for small data sets of size 100 items are

less are sorted in only a few microseconds. There are

circumstances where optimizations native to the programming

language are necessary in order for the composite algorithm to

perform better than the core algorithm.

Computation of the runs metric is trivial for small data sets.

However for larger data sets, the execution time required to

compute the runs metric is often too large. The adaptive

algorithm will perform poorly if the runs metric is computed

for data sets larger than 100 items. Generally, computation of

runs is unnecessary for such large data sets, since a single

algorithm is generally fast enough for a certain data set size,

and thus outliers can be neglected.

For data sets of size less than 100 items, even insertion sort

completes the sorting process in less than 5 microseconds. As

such, the comparison of multiple runs values can be a minor

drawback. In such cases, a group of runs metrics can be

merged into a single comparison in order to cover more search

cases, at the expense of a small gain in sorting speed of the

composite algorithm (1-2 microseconds).

The execution environment chosen for testing is a 64 bit 4

core (2 Physical, 4 Logical) Intel i5 processor and possessing

8 GB of RAM. Upon testing various conditions, it was found

that comparison of 2 double type values was slightly slower

than comparing 2 long type data values. While this difference

is miniscule at execution speeds of less than 5 microseconds,

it caused the composite algorithm to perform less efficiently.

In order to correct this, the runs metric was multiplied by 105

and stored in a variable of data type long. The comparisons

were then made using this long variable and the 3 runs metrics

which were also precomputed to long values by multiplying

them by 105. This small gain was sufficient in improving the

execution speed of the adaptive algorithm and being

comparable to the straight insertion sort algorithm.

4.5 Analysis of performance
The analysis of the composite adaptive algorithm was done as

follows. Each of the arrays of the data set was sorted by the

adaptive algorithm once, and the resulting execution times

were compared with the winning algorithm identified by the

lowest execution time among the rest 7 algorithms. The

adaptive algorithm was considered to be the „best‟ if its

execution time was equal to or lesser than the winning

algorithm. It was found that the optimized adaptive algorithm

was as fast as / slightly slower than the winning algorithm

nearly 96.3795 % of the time.

The small reduction in accuracy of the optimized algorithm

was due to the pruned decision process in the adaptive sorting

algorithm. However this reduction in classification of the best

algorithm is acceptable, as the time required to predict the

correct algorithm is reduced due to the pruning procedure.

Figure 4.3 Number of instances in dataset where AdaSort

is the winner

It is to be noted that on several occasions, the adaptive

algorithm (AdaSort) was only a few micro seconds slower

than the winning algorithm. Taking a 5 % margin of

difference in execution speed between the winning algorithm

and the adaptive algorithm, the adaptive algorithm performs

as well as the winner nearly 96.5758 % of the time.

In table 4.1, the average sorting time in microseconds of all 7

general algorithms is provided, along with the sorting time

required by the adaptive algorithm, taking into account a 5 %

difference in execution time of the adaptive algorithm and the

best algorithm for sorting that data set. The table considers

only arrays which are partially sorted (runs value of

approximately 0.8). This is because most data sets found in

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

17

the real world are almost not sorted at all, and runs metric of

0.9 suggests an almost unsorted array.

Table 4.1 Average sorting time in microseconds of various algorithms, partially sorted with runs metric close to 0.8, and taking

5 % margin of difference.

Array Size Insertion Sort Shell Sort Merge Sort Quick Sort Parallel

Merge Sort

Parallel

Quick Sort

Adaptive

Sort

50 2 4 10 11 16 17 2

100 5 7 11 11 18 22 5

1,000 139 60 73 41 51 59 42

10,000 12,897 870 872 580 387 1,535 388

100,000 1,368,328 11,469 10,601 9,647 3,526 4,538 3,528

500,000 36,464,643 66,710 59,531 44,394 11,777 18,891 11,781

1,000,000 132,810,830 133754 115687 76270 34356 27983 27986

5. CONCLUSION
This paper is aimed at implementing a method to sort large

data sets while having used Machine Learning for analysis.

The analysis done previously is utilized in order to construct a

general model for adaptively sorting data sets. As shown in

Figure 4.1, certain sorting algorithms outperform others under

certain circumstances. The AdaSort algorithm utilizes this

property and performs efficiently under all circumstances.

The prospects of further investigations in this direction are

to integrate this technique into systems with larger and more

complex datasets containing user defined objects as well as

improve the stability of this sort.

Another important development prospect for this topic could

be its usage in real scenarios such as sorting data based on

physical or semi-physical relationships and forming or

discovering useful patterns in them

6. REFERENCES
[1] M.J. Quinn, “Parallel Programming in C with MPand

OpenMP” Tata McGraw Hill Publications, 2003, p. 338.

[2] Guo, H.: “Algorithm selection for sorting and

probabilistic inference: A machine learning-based

approach”. Ph.D. dissertation, Kansas State University

(2003)

[3] Ron Kohavi; Foster Provost (1998). "Glossary of terms".

Machine Learning 271–274.

[4] C. M. Bishop (2006). Pattern Recognition and Machine

Learning. Springer.ISBN 0-387-31073-8.

[5] Mitchell, Melanie (1996). An Introduction to Genetic

Algorithms. Cambridge, MA: MIT Press. ISBN

9780585030944.

[6] Doroshenko, A., Tseytlin, G., Yatsenko, O., Zachariya,

L.: Intensional Aspects of Algebra of Algorithmics.

Proceedings of International Workshop “Concurrency,

Specification and Programming” (CS&P‟2007), 27–29

September 2007, Lagow (Poland) (2007).

[7] Li, Xiaoming, Maria Jesus Garzaran, and David Padua.

“Optimizing Sorting With Machine Learning

Algorithms.” 2007 IEEE International Parallel and

Distributed Processing Symposium (2007): n. pag. Web.

[8] Whitley, Darrell (1994). "A genetic algorithm tutorial".

Statistics and Computing 4 (2): 65–85.

doi:10.1007/BF00175354.

[9] "The Analysis of Heapsort". Journal of Algorithms 15:

76–100.doi:10.1006/jagm.1993.1031.

[10] Donald Knuth. The Art of Computer Programming,

Volume 3: Sorting and Searching, Third Edition.

Addison-Wesley, 1997. ISBN 0-201-89685-0.

[11] Olena Yatsenko. (2011). On Application of Machine

Learning for Development of Adaptive Sorting Programs

in Algebra of Algorithms, Concurrency, Specification

and Programming, September 28-30, Pułtusk, Poland,

pp. 577-588.

[12] Majumdar, Somshubra, Ishaan Jain, and Aruna Gawade.

"Parallel Quick Sort Using Thread Pool Pattern."

International Journal of Computer Applications IJCA

136.7 (2016): 36-41. Print

[13] R. Sedgewick. Implementing Quicksort Programs.

Communications of the ACM, 21(10):847–857, October

1978.

[14] “Arrays (Java Platform SE 8)."Arrays (Java Platform SE

8). Web. 28 Mar,2015.

<http://docs.oracle.com/javase/8/docs/api/java/util/Array

s.html>.

IJCATM : www.ijcaonline.org

