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ABSTRACT 

Sorting algorithms and their implementations in modern 

computing requires improvements in sorting large data sets 

effectively, both with respect to time and memory consumed. 

This paper is aimed at reviewing multiple adaptive sorting 

algorithms, on the basis of selection of an algorithm based on 

the characteristics of the data set. Machine Learning allows us 

to construct an adaptive algorithm based on the analysis of the 

experimental data. A review of algorithms designed using 

Systems of Algorithmic Algebra and Genetic Algorithms was 

performed. Both methods are designed to target different use 

cases. Systems of Algorithmic Algebra is a representation of 

pseudo code that can be converted to high level code using 

Integrated toolkit for Design and Synthesis of programs, while 

the Genetic Algorithm attempts to optimize its fitness function 

and generate the most successful algorithm. 
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1. INTRODUCTION 
Sorting is defined as the operation of arranging an unordered 

collection of elements into monotonically increasing (or 

decreasing) order. Specifically, S = {a1, a2 ………….an} be a 

sequence of n elements in random order; sorting transforms S 

into monotonically increasing sequence S‟= {a1 ‟, a2 

‟…………… an ‟} such that ai ‟≤ aj‟ for 1≤ i ≤ j ≤ n, and S‟ is 

a permutation of S [1]. 

There are certain characteristics of a data set that can be 

preprocessed to obtain some valuable information about the 

data set itself. A few characteristics obtained from a data set 

are its size and the degree of pre-sortedness. Different sizes of 

a data set necessitate utilization of different algorithms to sort 

them. Pre-sortedness can be described as the degree to which 

the initialized data set is already sorted. A sequence of 

integers to be sorted could be characterized by more than its 

length, but also by its degree of pre-sortedness. Three 

measures of pre-sortedness are used [2]:  

 The number of inversions (INV),  

 The number of runs of ascending subsequences  

(RUN) 

 The length of the longest ascending subsequence 

(LAS) 

RUN metric is shown to be the most efficient. RUN is 

calculated as number of subsets of the data set that are already 

sorted divided by the number of elements in the data set itself. 

A data set sorted in the descending order will have a pre-

sortedness value of 1 while a data set sorted in the ascending 

order will have a value equal to 1/n. 

Using the aforementioned characteristics of the data set, 

certain strategies can be used to optimize the performance  

 

of the algorithm used to sort the set. Two main strategies that 

can be used are Machine Learning and Genetic algorithm. 

Machine learning allows us to classify the data for making 

decisions on which algorithm is optimal, while Genetic 

Algorithm modifies itself to optimize the performance of the 

algorithm. These two are discussed in detail below. 

Machine learning explores the study and construction of 

algorithms that can learn from and make predictions on data 

[3]. Such algorithms operate by building a model from 

example inputs in order to make data-driven predictions or 

decisions [4], rather than following strictly static program 

instructions. The machine learning techniques can be 

categorized based on the desired output of a machine-learned 

system [4]: 

 Classification: Input sets are classified into one or 

more output classes based on a model 

 Regression: the outputs are continuous rather than 

discrete values.  

 Clustering: Inputs are divided into output groups. 

However, unlike classification, the groups are not 

known beforehand 

Genetic algorithm is a search technique that simulates the 

process of natural selection. This technique is routinely used 

to obtain useful solutions to optimization and search 

problems. Genetic algorithm techniques are inspired by 

natural evolution - as in inheritance, mutation, selection and 

crossover. In such an algorithm, a set of possible candidate 

solutions to an optimization problem is evolved toward better 

solutions. Each candidate solution has a set of properties (its 

chromosomes or genotype) which can be mutated and altered 

[5]. 

In this paper, in section 2, features of the data sets used to 

perform analysis are studied. In section 3, The proposed 

model as well as methodology in creating the data sets and 

pre-sorting them are discussed.  In section 4, The performance 

of the composite algorithms is compared with other base 

algorithms. In section 5, the conclusion is discussed. 

2. LITERATURE SURVEY 
An adaptive sorting algorithm is developed with the help of 

some pre-existing well known sorting algorithms, namely - 

Insertion sort, Shell sort, Heap sort, Merge sort and Quicksort. 

 An adaptive sorting algorithm uses certain characteristics of 

the input dataset to select one or more sorting algorithms to 

sort the dataset. Generally pre-sortedness is computed using 

the RUNS metric, which is described as the number of sorted 

subsets or the data set, divided by the number of elements in 

that dataset. 

Machine learning is similar to computational statistics in the 

sense that it also focuses on prediction-making. It has strong 

https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Learning
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Mathematical_model
https://en.wikipedia.org/wiki/Cluster_analysis
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ties to mathematical optimization, which delivers 

implementations, theory and application domains to the field. 

Machine learning is used in a range of digital tasks where 

coding and implementing explicit algorithms is infeasible [4]. 

Example applications include spam filtering, speech and 

handwriting recognition, sentiment analysis, Natural 

Language Processing (NLP) and computer vision. Machine 

learning and pattern recognition can be viewed as two facets 

of the same field. 

Algebraic algorithmics (AA in short) is an important domain 

of computer science, which was born from a collaboration of 

algebra, logic and algorithm schemes. It provides a standard 

for the knowledge about subject directions with the help of 

algebra and also deals with obstacles like standardization, 

specification of correctness and modification of algorithms. 

AA uses high-level abstractions of programs, represented by 

Systems of Algorithmic Algebras (SАА). One of the 

fundamental problems of AA is to increase the degree of 

flexibility of programs to particular use cases. Specifically, 

the problem can be solved at the disadvantage of argument-

motivated creation of algorithm specifications by means of 

more complex algorithms [6].   

Genetic algorithms are widely used in obtaining solutions for 

optimization and search problems. Evolution of the candidate 

solutions starts from a random population. This is an iterative 

process, where the population in each iteration is called as a 

generation. In every epoch, the fitness of every individual in 

the pool is evaluated such that the fitness is usually the value 

of the heuristic function in the optimization problem under 

consideration. A genetic algorithm requires a representation of 

the solution space (in the form of an array of bits) and a 

fitness function to test the solution space [8]. After the genetic 

representation and the fitness function is defined, a Genetic 

Algorithm begins by initializing a population of candidate 

solutions and then attempts to improve it through multiple 

applications of the mutation, crossover, inversion and 

selection operations on the population [8]. 

The authors of the paper “Optimizing Sorting with Machine 

Learning Algorithms” [7] talks about two methods of 

generating efficient sorting techniques. The first one uses 

machine learning algorithms to generate a function for 

specific target machine that is used to select the best 

algorithm. Their second approach builds on the first approach 

and constructs new sorting algorithms from a few 

fundamental operations. Using the array size, they are able to 

determine if the input set can fit into the cache memory and 

using the entropy of the input data, differentiate between the 

relative performances of radix sort with other comparison 

based sorting algorithms. Using sorting primitives as 

operations in genetic algorithms, they are able to create a 

composite algorithm which outperforms several other 

algorithms.  

Yatsenko proposes the use of Decision Trees to classify the 

best sorting algorithm for the given data set [11]. They 

consider five sorting algorithms, mainly Insertion sort, Merge 

sort, Quick sort, Heap sort and Shell sort to analyses and 

decide the best algorithm for the given data set. They do this 

using various Decision Tree learning algorithms such as ID3, 

C4.5, NewId, ITrule and CN2. They then use SAA to 

formalize the algorithm used for conversion into C++ and 

Java code using IDS (Integrated toolkit for Design and 

Synthesis of programs). The drawbacks of this analysis is that 

there has been no consideration for multi-threaded algorithms 

which would drastically improve sorting time and also the fact 

that the study focuses on only smaller data sets (size < 100). 

Before analyzing the adaptive sorting algorithm, an analysis 

of the performance of various standard sorting algorithms and 

their time and space complexities, expressed using the Big O 

notation, must be done. 

TABLE 2.1 Comparison of Sorting Techniques Based on 

the Parameters of the Proposed Model Based on Previous 

Studies and Experimental Results [10] 

Sorting 

Method 

Best Case 

Time 

Complexity 

Worst Case 

Time 

Complexity 

Space 

Complexity 

Bubble 

Sort 

O(n) O(n2) O(1) 

Insertion 

Sort 

O(1) O(n2) O(n) 

Shell Sort O(n log2 n) O(n2) O(n) 

Heap Sort O(n) O(n log n) O(1) 

Quicksort O(n log n) O(n2) O(log n) 

Merge 

Sort 

O(n log n) O(n log n) O(n) 

 

Based on a preliminary analysis of the various sorting 

algorithms widely known, algorithms that do not perform well 

for any case, or are too primitive to produce the output 

efficiently can be eliminated. Sorting techniques such as 

Bubble Sort and Selection sort have an average case 

complexity of O(n2) with best case complexity of O(n) and 

O(n2) respectively. Other considered sorting algorithms 

perform relatively better for all cases and as such negate the 

usage of Bubble and Selection Sort. The exception here is that 

while Insertion sort also has a complexity of  O(n2),  it‟s best 

case complexity is only O(1), which means that there are edge 

cases in which insertion sort produces the output in least time 

as compared to the other algorithms. 

In addition to the above mentioned sequential sorting 

algorithms, a parallel quick sort algorithm is also incorporated 

into the testing procedure [12]. Utilizing a thread pool in order 

to limit the number of threads, the algorithm performs very 

well on large data sets and utilizes minimal additional 

memory resources. It is found to be more efficient than 

Parallel Merge Sort as the data set size increases above a few 

hundred thousand elements. In addition to the parallel quick 

sort algorithm, parallel merge sort implemented in the Java 8 

Software Development Kit (JDK) is also incorporated as a test 

algorithm. It can be accessed using the Arrays.parallelSort() 

method, and is a Sort-Merge algorithm which uses the Fork-

Join Common Pool introduced in Java 8 [14]. 

3. PROPOSED MODEL AND 

METHODOLOGY 

3.1 Construction of dataset 
Since example data set utilized for analysis needs to be an 

array of integers, one can generate a data set consisting of 

integers generated using a uniform Gaussian random number 

generator. Data sets of sizes varying sizes from 50 to 1 million 

uniformly distributed integers is generated. Due to the 

requirement of preprocessed arrays, 7 such replicas of each 

data set, whose subsets are then sorted according to the given 

input parameters of “pre-sortedness”, are created. Thus each 

replicated dataset is pre-sorted according to the vector of 1/n 

https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Spam_filter
https://en.wikipedia.org/wiki/Optical_character_recognition
https://en.wikipedia.org/wiki/Computer_vision
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Iteration
https://en.wikipedia.org/wiki/Fitness_(biology)
https://en.wikipedia.org/wiki/Objective_function
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to 1 where n is the size of the data set. Thus 42 data sets each 

having nearly 100 sample arrays are made. The exception to 

this is the data set of 1 million integers, of which there are far 

fewer samples. This is because the sorting time of such large 

data sets using Insertion Sort and  

Shell Sort is far too large to be compared with faster sorting 

algorithms such as parallel merge sort and quicksort. It can be 

assumed that either parallel merge sort or quicksort will be the 

winning algorithm when such large data sets are given to the 

model. 

Figure 3.1 describes the distribution of the generated arrays 

each having been pre-sorted to various degrees of pre-

sortedness. Due to the large number of smaller sized arrays, 

the number of arrays which are almost completely sorted is 

higher than any other type of array. 

3.2 Feature Selection 
The proposed model will be using two features that are 

characteristic to each of the data sets. The first attribute will 

be the size of the array, as larger data sets cannot be sorted in 

an efficient manner using algorithms such as Insertion Sort 

and Shell Sort. The second attribute will be the pre-sortedness 

of the array, computed as the “RUNS” metric.  

𝑅𝑈𝑁𝑆 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑠𝑢𝑏𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡𝑒 𝑎𝑟𝑟𝑎𝑦
 

Thus, for a completely sorted array, the RUNS value will be 1 

/ size of the array, whereas for an array sorted in descending 

order, RUNS value will be 1. 

 

Figure 3.1 Number of instances of arrays with different 

degrees of pre-sortedness (RUNS value) 

3.3  Preprocessing 
These pre-sorted data sets are then sorted using Insertion Sort, 

Shell Sort, Heap Sort, Merge Sort, Quicksort, Parallel Merge 

Sort and Parallel Quick Sort. The sorting time for each 

algorithm on each array of each data set is computed and 

stored for later analysis. Alongside these results, the winning 

algorithm, that is the algorithm which uses the minimum time, 

can be determined to sort the given data set. In case of ties, 

one can select an algorithm which performs the best on 

similar data sets. Algorithms tie when data set size is small, as 

multiple algorithms sort the data set in almost exactly the 

same amount of time. In such cases, one can see which 

algorithm generally performs as the best algorithm in other 

data sets of the same size, and so assume it is also the current 

winner. 

3.4 Optimizations 
Each of the above algorithms was implemented using all 

feasible optimizations that would affect the sorting speed of 

any algorithm by a significant factor. Implementations of 

Quicksort were optimized according to the optimizations 

suggested by R. Sedgewick [13]. Parallel Quick Sort is 

implemented in accordance with the algorithm provided [12] 

and internally utilizes Dual Pivot Quicksort, available in the 

form of Arrays.sort() method in the Java 8 SDK to sort small 

subsets sequentially. Merge sort was tested in both iterative 

and recursive variants, and it was found that the recursive 

variant slightly outperformed the iterative counterpart. 

The computed value of the threshold for Parallel Quick Sort 

was altered in order to reduce the execution time even further, 

while the general algorithm was implemented as is. Let data 

set size be given as „n‟, and the number of available 

processors be „p‟. 

The computation of the threshold can now be given as: 

min_granularity := 8192 

if n < min_granularity: 

 SortDirectly(data_set) 

else 

 g := n / (p << 2) 

 if g > min_granularity: 

  threshold := g 

 else: 

  threshold := min_granularity 

If the data set size „n‟ is less than the minimum granularity, 

then a sequential sorting algorithm is applied. If n is larger, g 

is used to determine the minimum threshold. 

By computing the threshold in this manner, the average 

performance of the Parallel Quick Sort algorithm was found 

to have increased, and thus this threshold computation was 

adopted. 

3.5 Proposed Model 
Following Yatsenko‟s model [11], a Decision Tree can be 

used to analyze and learn the features of the array size and 

degree of pre-sortedness and the winning algorithm as the 

target feature. Also use of the Gaussian Naive Bayes to 

classify the features, as well as train a multiclass Support 

Vector Machine with the Linear Dual Coordinate Descent as 

the optimization algorithm is made. The decision tree will also 

attempt to classify the data set with the splitting criterion as 

the gini score or with the information entropy score. The 

depth of the tree is also limited to prevent overfitting. Naive 

Bayes and multi class Support Vector Machine are also used 

to cross validate the classification results.  

While Yatsenko‟s model [11] focused on smaller data sets of 

size smaller than 100 elements, the proposed model focuses 

on larger data sets of sizes in the range of 50 elements to 1 

million elements. Focus is also on sorting large data sets using 

parallel algorithms and the threshold where thread creation 
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cost is insignificant compared to the gain in sorting speed. 

The proposed model also attempt to measure the optimal 

threshold for dividing a data set into partitions for improving 

the performance of Merge Sort, Quick Sort and Parallel 

Merge Sort. 

4. ANALYSIS OF PERFORMANCE OF 

ADASORT 

4.1 Comparison of winning algorithms 
Each of the seven sorting algorithms is utilized to sort the 

entire data set and provide information as to how much time 

in micro seconds was required to sort each array of each type 

in the data set by each algorithm. It was observed that each 

algorithm was a clear winner in a certain set of circumstances.  

However, there existed certain algorithms which performed 

poorly in every test condition. 

 

Figure 4.1 Number of instances in dataset where 

algorithm is the winner 

In Figure 4.1, one can see that depending solely on the data 

set size, each algorithm is well suited to sort a given dataset of 

some size in the shortest time possible. It is seen that heap sort 

performs poorly for any given data set size, at least in 

comparison to other more efficient algorithms such as Parallel 

Merge sort and Quicksort. Due to this, a negligible number of 

instances where heapsort outperforms other algorithms from 

the final dataset are removed.  

4.2 Machine learning to determine 

algorithm 
According to Yatsenko [11], the use of a Decision Tree is 

optimal to understand and implement an equivalent sorting 

algorithm in any programming language, as the decision tree 

can be easily understood and implemented using if-else 

constructs available to all modern programming languages.  

A decision tree is very prone to suffer from the overfitting 

problem. 10 fold cross validation has been used to limit the 

depth of the tree in the Machine Learning library, 

Accord.NET. Therefore even with a very large number of 

unique samples, the decision tree does not suffer from 

overfitting. The C4.5 learning algorithm was chosen for the 

Decision Tree Learning algorithm, due to its superior 

performance in comparison to the Iterative Dichometer 3 

(ID3) Algorithm.  

Since there exists no direct method to visualize the Decision 

tree in a graphical format using Accord.NET, the decision tree 

has been exported to a format that is suitable for the Java 

based machine learning tool, Weka, in order to obtain the 

graphical representation of the decision tree. 

 

Figure 4.2 Decision Tree visualization 

As seen in the decision tree, there are many redundant paths 

which can be pruned by logical inference. When the model is 

implemented to match the Decision Tree, the time required to 

compute the presortedness metric for very large size data sets 

(above 100,000 items) takes more time than to directly sort 

the data using a fast general algorithm such as Parallel Merge 

or Quick sort.  

In order to optimize this algorithm, a few redundant branches 

of the tree can be pruned in order to avoid computation of the 

runs metric for large data sets. This technique reduces the 

accuracy of the final algorithm, but the composite algorithm is 

sufficiently fast enough in general and the gain in execution 

time is less than 5 % of the best execution time in most cases.  

The classification accuracy of this decision tree to determine 

the winning algorithm is 98.3969 %, but practically another 

algorithm is superior in some cases. It is to be noted that in 

such cases, the difference in execution speed between the 

winning algorithm and the algorithm selected by the decision 

tree is small enough to be considered inconsequential. In most 

cases, the percentage difference between the two execution 

speeds is less than 5 % of the execution time of the faster 

algorithm. 

4.3 AdaSort Algorithm 
By reducing the various decision paths the algorithm must 

take, the execution speed of the adaptive algorithm is 

improved. The algorithm can be given as: 

 

Algorithm AdaSort(data, n) 

{ 

    if n <= 100: 

 runs := computeRunsMetric(data, n) 
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 if runs > 0.68799: 

  shellSort(data, n) 

 else if n <= 50 and runs > 0.44: 

  parallelMergeSort(data, n, p) 

 else if n <= 50 and runs > 0.25388: 

  mergesort(data, n) 

 else: 

  insertionSort(data, n) 

 

    else if n <= 1000: 

  quickSort(data, n) 

    else if n <= 500000: 

  parallelMergeSort(data, n, p) 

    else: 

  parallelQuickSort(data, n, p) 

} 

As seen by the algorithm, the decision path taken by the 

algorithm has been heavily pruned as the size of the data sets 

increases. It is observed in the decision tree that, when there 

are less than 1000 items in the array, Quicksort is almost 

always selected, and only under cases of almost completely 

sorted arrays does Parallel Quick Sort perform better. 

Removal of the overhead of computing the runs metric and 

generalization of the solution to use Quicksort all of the time 

when the data set size is between 100 and 1000 items. 

Similarly, for data sets smaller than 500,000 items, it is noted 

that Parallel Merge Sort generally outperforms all others in a 

large variety of cases, so the algorithm can simply be 

generalized to use Parallel Merge Sort if the data set size if 

between 1,000 and 500,000. This also avoids the lengthy 

computation of the runs metric for such large data sets. 

4.4 Optimizations to AdaSort 

It must be noted that for small data sets of size 100 items are 

less are sorted in only a few microseconds. There are 

circumstances where optimizations native to the programming 

language are necessary in order for the composite algorithm to 

perform better than the core algorithm.  

Computation of the runs metric is trivial for small data sets. 

However for larger data sets, the execution time required to 

compute the runs metric is often too large. The adaptive 

algorithm will perform poorly if the runs metric is computed 

for data sets larger than 100 items. Generally, computation of 

runs is unnecessary for such large data sets, since a single 

algorithm is generally fast enough for a certain data set size, 

and thus outliers can be neglected. 

For data sets of size less than 100 items, even insertion sort 

completes the sorting process in less than 5 microseconds. As 

such, the comparison of multiple runs values can be a minor 

drawback. In such cases, a group of runs metrics can be 

merged into a single comparison in order to cover more search 

cases, at the expense of a small gain in sorting speed of the 

composite algorithm (1-2 microseconds).  

The execution environment chosen for testing is a 64 bit 4 

core (2 Physical, 4 Logical) Intel i5 processor and possessing 

8 GB of RAM. Upon testing various conditions, it was found 

that comparison of 2 double type values was slightly slower 

than comparing 2 long type data values. While this difference 

is miniscule at execution speeds of less than 5 microseconds, 

it caused the composite algorithm to perform less efficiently. 

In order to correct this, the runs metric was multiplied by 105 

and stored in a variable of data type long. The comparisons 

were then made using this long variable and the 3 runs metrics 

which were also precomputed to long values by multiplying 

them by 105. This small gain was sufficient in improving the 

execution speed of the adaptive algorithm and being 

comparable to the straight insertion sort algorithm. 

4.5 Analysis of performance 
The analysis of the composite adaptive algorithm was done as 

follows. Each of the arrays of the data set was sorted by the 

adaptive algorithm once, and the resulting execution times 

were compared with the winning algorithm identified by the 

lowest execution time among the rest 7 algorithms. The 

adaptive algorithm was considered to be the „best‟ if its 

execution time was equal to or lesser than the winning 

algorithm. It was found that the optimized adaptive algorithm 

was as fast as / slightly slower than the winning algorithm 

nearly 96.3795 % of the time. 

The small reduction in accuracy of the optimized algorithm 

was due to the pruned decision process in the adaptive sorting 

algorithm. However this reduction in classification of the best 

algorithm is acceptable, as the time required to predict the 

correct algorithm is reduced due to the pruning procedure. 

 
Figure 4.3 Number of instances in dataset where AdaSort 

is the winner 

It is to be noted that on several occasions, the adaptive 

algorithm (AdaSort) was only a few micro seconds slower 

than the winning algorithm. Taking a 5 % margin of 

difference in execution speed between the winning algorithm 

and the adaptive algorithm, the adaptive algorithm performs 

as well as the winner nearly 96.5758 % of the time. 

In table 4.1, the average sorting time in microseconds of all 7 

general algorithms is provided, along with the sorting time 

required by the adaptive algorithm, taking into account a 5 % 

difference in execution time of the adaptive algorithm and the 

best algorithm for sorting that data set. The table considers 

only arrays which are partially sorted (runs value of 

approximately 0.8). This is because most data sets found in 
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the real world are almost not sorted at all, and runs metric of 

0.9 suggests an almost unsorted array. 

 

Table 4.1 Average sorting time in microseconds of various algorithms, partially sorted with runs metric close to 0.8, and taking 

5 % margin of difference. 

Array Size Insertion Sort Shell Sort Merge Sort Quick Sort Parallel 

Merge Sort 

Parallel 

Quick Sort 

Adaptive 

Sort 

50 2 4 10 11 16 17 2 

100 5 7 11 11 18 22 5 

1,000 139 60 73 41 51 59 42 

10,000 12,897 870 872 580 387 1,535 388 

100,000 1,368,328 11,469 10,601 9,647 3,526 4,538 3,528 

500,000 36,464,643 66,710 59,531 44,394 11,777 18,891 11,781 

1,000,000 132,810,830 133754 115687 76270 34356 27983 27986 

 

5. CONCLUSION 
This paper is aimed at implementing a method to sort large 

data sets while having used Machine Learning for analysis. 

The analysis done previously is utilized in order to construct a 

general model for adaptively sorting data sets. As shown in 

Figure 4.1, certain sorting algorithms outperform others under 

certain circumstances. The AdaSort algorithm utilizes this 

property and performs efficiently under all circumstances.  

The prospects of further investigations in this direction are  

to integrate this technique into systems with larger and more 

complex datasets containing user defined objects as well as 

improve the stability of this sort. 

Another important development prospect for this topic could 

be its usage in real scenarios such as sorting data based on 

physical or semi-physical relationships and forming or 

discovering useful patterns in them 
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