
International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

25

Deep Columnar Convolutional Neural Network

Somshubra Majumdar
D. J. Sanghvi College of Engineering

Mumbai, India

Ishaan Jain
D. J. Sanghvi College of Engineering

Mumbai, India

ABSTRACT

Recent developments in the field of deep learning have shown

that convolutional networks with several layers can approach

human level accuracy in tasks such as handwritten digit

classification and object recognition. It is observed that the

state-of-the-art performance is obtained from model

ensembles, where several models are trained on the same data

and their predictions probabilities are averaged or voted on.

Here, the proposed model is a single deep and wide neural

network architecture that offers near state-of-the-art

performance on various image classification challenges, such

as the MNIST dataset and the CIFAR-10 and CIFAR-100

datasets. On the competitive MNIST handwritten image

classification challenge, the proposed model approaches the

near state-of-the-art 35 model ensemble in terms of accuracy.

On testing the model on the CIFAR datasets, it is found that

the proposed model approaches the performance of the top

two ensemble models. The architecture is also analyzed on the

SVHN dataset.

Keywords

Neural Networks, Convolutional Neural Network, Computer

Vision

1. INTRODUCTION
Recent publications suggest that deep neural networks achieve

impressive results on various challenging tasks such as

handwritten number recognition obtained from the MNIST

dataset [1] and general image classification from the CIFAR

10 dataset [2]. Advances in graphic processing units have

reduced the learning time for deep neural networks from

several weeks or months to a few hours or days [3].

Focus is primarily on one such deep learning architecture,

called as Deep Convolutional Neural Network (DCNN),

which was first introduced by K. Fukushima [4], later

improved by Y. Lecun [1] and further simplified by [5, 6].

Digit classification of the famous MNIST dataset is

approaching near human level performance, with Ciresan [7]

approaching 0.23% error and L.Wan [8] approaching 0.21%

error. DCNNs show their true potential when they are wide

(have several maps per layer) and deep (have several layers).

Training such deep and wide DCNN requires several weeks to

months on just CPUs. Even multi-threaded CPUs are not able

to scale performance to adequate levels. Therefore, fast highly

parallel code for GPUs has been used to overcome this

limitation of CPUs. The highly parallel execution of GPU

code can offer higher performance, up to two orders of

magnitude greater than just using CPUs [9, 10]. The training

algorithm for such deep networks are fully online and

adaptive [11], such that weight updates occur after each back-

propagation step. Thus the Adadelta learning algorithm has

been utilized throughout, as it offers suitable performance for

each iteration and does not get stuck at local optima.

It is to be noted that a deep and wide DCNN does not need

unsupervised pre training or fine-tuned initialization in order

to achieve near state of the art performance, though it is useful

when there are fewer samples of each class available to learn.

A deep columnar architecture for DCNNs is introduced,

which is forked and merged at several layers in order to create

very wide layers upon merging the forked layers. This

approach is similar to the architecture used by Ciresan [7],

termed as Multi-column Deep Neural Networks, however it

also incorporates merging of the layers to create wider

DCNNs for each additional learning stage.

It is seen that the proposed model approaches near state of the

art performance on the MNIST data set using only a single

model, and obtains slightly better results than single models

which perform exceedingly well on CIFAR-10 and CIFAR-

100 data sets.

2. ARCHITECTURE
The architecture has been termed as Deep Columnar

Convolutional Neural Network (DCCNN) due to the fact that

like MCDNN [7], the preprocessed input is also forked to

connect divergent DCNNs on either same input or apply

different preprocessing steps. The difference is that the forks

are merged after each level using one of 2 merge operations,

which significantly impacts the learning capability of the

network. Initially all the weights are randomly initialized

using Glorot uniform initialization [12]. Then each layer is

trained using a set of data termed the training set, and

validated on a set of unseen data termed as the test set. There

are a few important techniques incorporated to train the

network:

1. Wide Architecture: While a few models use only a

few maps per layer (possess a shallow architecture)

as seen in the LeNet 7 [13], the proposed model

utilizes a large number of maps per layer, stacked in

both horizontal (fork) and vertical (merge) layers.

Fork layers usually comprise of several maps of

same size or of different sizes.

2. Deep Architecture: the proposed model utilizes a

deep architecture of several layers, and further

compounds the depth with a large number of forked

layers which are merged into a single large layer.

Upon merging, the merged layer becomes a very

wide layer. The deeper merge layers may have

several million parameters and this increases the

model performance.

3. GPU Processing: As shown by S. Hochreiter [14]

and D. E. Rumelhart [15], multi-layer deep neural

networks are difficult to train via standard gradient

descent. However, due to improvements in modern

processing power and the utilization of GPUs has

greatly reduced this problem. Optimized code for

massively parallel Graphic Processing Unit (GPU)

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

26

code allow for huge gains in training speed over

CPU code. Given a large enough sample size to

train the network the network does not require any

additional pre training such as described by Ranzato

[16] or the use of Restricted Boltzmann Machines

[17].

4. Pooling via Convolution Subsampling: In some

cases, to preserve information even during pooling

operations, the max pooling layer is replaced by a

convolution layer and the output of the previous

layer is subsampled, an approach used by

Springenberg [18].This is termed as convolutional

pooling, and requires that the map size is the same

size as the map size of the prior layer. As seen in

[18], it provides an improvement in convergence

speed and increases the size of the network.

5. Variable Kernel Size: All forked convolutional

layers which accept a preprocessed image possess a

5x5 kernel. This improves the convergence speed

and the accuracy of the network. All middle tier

fork layers utilize either a 4x4 or 3x3 kernel, while

simultaneously increasing the number of maps. The

final tier fork and merge layer use a 3x3 kernel to

improve performance, and often have the largest

map size.

6. Fork Layers: The fork layer, also termed as a

DCNN column, accepts a single input and may

contain more than one convolutional layer stacked

sequentially. There may be several fork layers at

any given level, and the initial fork layer may accept

either the same input or input which has been

preprocessed by different methods. The latter is

preferred, since it offers each fork a different view

at the same data. Fork layers may also have

different kernel size and different map size at the

same level if the outputs are being concatenated at

the merge layer.

7. Merge Layers: The merge layer accepts k different

fork layers from the previous level and merges them

using one of 2 merge operations- average and

concatenate. Each of these operations merge the

forked layers into a single layer which increases the

width of the network. The optimal operation used

during testing was found to be the concatenation

operation. The merge operation can be given as:

𝑚𝑒𝑟𝑔𝑒𝑛 𝑚𝑎𝑝𝑛 , 𝑘𝑒𝑟𝑛𝑒𝑙𝑟𝑜𝑤 , 𝑘𝑒𝑟𝑛𝑒𝑙𝑐𝑜𝑙 =

 𝑓𝑜𝑟𝑘𝑖
𝑛−1(𝑚𝑎𝑝𝑖 , 𝑘𝑒𝑟𝑛𝑒𝑙𝑟𝑜𝑤 , 𝑘𝑒𝑟𝑛𝑎𝑙𝑐𝑜𝑙)

𝑘

𝑖=1

Where n represents the nth level of the architecture,

k represents the number of forked layers, mapi

represents the number of maps in the ith fork layer,

kernelrow is the size of kernel row and kernelcol is

the size of kernel column. The basic architecture

can be seen in Figure 1.

It is to be noted that mergen layer is the concatenation or

average of all the maps of all previous fork layer. If one

represents the number of maps of mergen as mapn, and mapi

as the number of maps of the ith fork layer, then concatenation

operation can be represented as:

𝑚𝑎𝑝𝑛 = 𝑚𝑎𝑝𝑖

𝑘

𝑖=1

On the other hand, the averaging operation can be performed

as the average of the maps of the k fork layers at the previous

level. It can be represented as:

𝑚𝑎𝑝𝑛 =
1

𝑘
 𝑚𝑎𝑝𝑖

𝑘

𝑖=1

As can be seen, in the case of concatenation, the number of

maps at the nth layer increase due to concatenation of each of

the maps of the previous layers. Due to this, there is a marked

improvement in how much information is learned from the

previous level, but it also drastically increases the

computation time. Convolution pooling may be applied to

speed up the training process without losing the information

from direct max pooling.

Figure 1. Basic architecture of DCCNN. P1 to Pn represent

the various preprocessing steps that can be performed

prior to the first fork layer. Fij represents the j
th

Fork layer

at the i
th

level of the architecture. M1 to Mn represent the

Merge layers.

3. EXPERIMENTS
The DCCNN architecture is tested on various image

classification and object recognition benchmarks, and it is

seen that the model approaches state of the art performance

without the use of model ensembles. A basic architecture I

described, which can be replicated multiple times in order to

create deeper and wider networks as required for the image

classification problem.

The basic model can be given as:

𝐼𝑛𝑝𝑢𝑡 − 32𝑛𝐶5)𝑘1 − 𝑀1
𝑘1∗ − 32𝑛𝐶4 𝑘𝑖 − 𝑀𝑖

𝑘𝑖∗
𝑖
−

 32𝑛𝐶3 𝑘𝑛 − (𝑀𝑛
𝑘𝑛∗ − 𝑦𝐷

Where:

1. 32nCf refers to a convolutional layer possessing 32n

maps and a kernel size of fxf, where f may be any

value greater than 0.

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

27

2. k1 is the number of forks connected to the

preprocessed input (same or different preprocessing

steps can be applied to each fork). Common values

of n at this stage are 2 - 4.

3. ki is the number of intermediate forks which is

connected to the ith merge layer (Mi), and these

intermediate blocks can be replicated with varying

values of n, ranging from 4 - 12.

4. kn is the number of forks of the final level which is

connected to a final fully connected dense layer yD

where y is the number of class labels. Optimal

values of n at this stage are 12 - 16

5. The merge layer connected to the fork layers is

denoted by M, subscripted with level number and

superscripted k* value, which denotes the value of

the merging functions. k* therefore represents the

value of mapn, and therefore can be the sum or

average of each mapi.

6. Convolution pooling can be applied in between each

block after the merge layer, which can be

represented as (32nC4 (2x2)) which indicted a

convolutional layer with 2x2 subsampling and 32n

maps with a 4x4 kernel size [18]. N should be

selected so that the value of 32n matches the

number of maps from the prior merge layer.

7. After each merge layer, Batch Normalization is

used. This avoids the vanishing gradient problem

and improves convergence.

8. Dropout is always applied just before the final

output layer with dropout probability (0.5)

The Relu activation function was used in all layers other than

the final dense layer, which used the softmax activation

function. Leaky Relu activation function was tested for the

CIFAR-10 and CIFAR-100 dataset and seems to offer

substantial performance improvements according to Xu [19].

Therefore, the Leaky Relu activation can be utilized for those

two data sets. The datasets were all trained using the Adadelta

online learning algorithm [11] with initial learning rate set as

1.0 for all tests, rho value of 0.95 and epsilon value of 10-8. In

case Max Pooling is used instead of convolutional pooling,

then a linear activation function is used for the max pool

layer. The max pooling layer must also have a stride of 2x2,

and can be represented by MP2.

During training steps, each mini batch was preprocessed using

several transformations such as translations, scaling and

rotated for CIFAR data sets, whereas original images are used

for validation. Training ends when the validation loss is zero

or when validation loss increases repeatedly for 50 epochs.

Weights are initialized using the glorot uniform initialization

method [12]. In all experiments, the merge method utilized

was the concatenation operation, since it offered slightly

better results as compared to the averaging operation.

3.1 MNIST
The MNIST dataset [1] is normalized by dividing the pixel

value by 255.0 for the grayscale channel. The entire training

data set is utilized and simple transformations are applied to

each batch randomly. Each mini batch can be randomly

rotated (maximum of 20 degrees), width shifted (at most 20%

of original width) and height shifted (at most 20% of the

original height). The architecture selected for this data set is

as follows:

1𝑥28𝑥28 − 64𝐶5)2 − 𝑀1
128 − 𝑀𝑃2 − 128𝐶4 2 −

 𝑀2
256 − 𝑀𝑃2 − 256𝐶3 6 − (𝑀3

1536 − 𝑀𝑃2 − 10𝐷

The architecture for the MNIST dataset can be seen in figure

2.1. This network architecture possesses approximately 4.3

million parameters and is trained for 400 epochs. Training

time for this data set is roughly 98 seconds per epoch on a

NVIDIA 980M GPU and total training time is approximately

11 hours. It is observed that accuracy does not improve over

350 epochs.

Figure 2.1 DCCNN architecture for MNIST dataset. It has

a 3 level architecture, with Fork – Merge – Pool blocks.

The resultant accuracy of this network is compared to various

models in Table 1. DCCNN trained with initial preprocessing

steps being the same for level 1 fork layer accuracy is found

to be equivalent to DCCNN trained with different

preprocessing steps for the level 1 fork layer, however

convergence is slightly faster (453 epochs vs 439 epochs) for

different preprocessing. DCCNN has a very low error rate of

0.23%, which is equivalent to MCDNN [7], and slightly more

than the state of the art 0.21% achieved by DropConnect [8],

both of which utilize ensembles of 35 and 5 independent

networks respectively and then vote on their predictions.

Thus the single model performance of the DCCNN rivals two

large ensemble models. In addition, the DCCNN architecture

can also be used in an ensemble of DCCNN models to

achieve even higher accuracy, perhaps reaching the human

level accuracy of less than 0.2 % error rate on the MNIST

dataset.

Table 1. Results on MNIST Dataset

Method Error Rate % Paper

CNN 0.40 [6]

CNN 0.32 [21]

CNN Committee 0.27 ± 0.02 [22]

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

28

DCCNN 0.23 This

MCDNN (35

Column

Ensemble)

0.23 [7]

DropConnect (5

Model Ensemble)
0.21 [8]

Many of the wrongly identified digits contain random strokes

or have wrong labels associated with them. The 23 error cases

are associated with 23 correct second guesses, improving over

the MCDNN [7] with only 20 correct second guesses. The 23

images which were not classified correctly are shown in

Figure 2.2, with the prediction of the network on the bottom

left and the true label of the picture on the bottom right of

each image. It can be seen that several images have been

wrongly classified by humans, but correctly classified by the

network.

Figure 2.2 Digits which are incorrectly classified by

DCCNN. The bottom left number of each image

represents the predicted value by the model. The bottom

right of each image number represents the class label

assigned to this image.

To ensure that performance was due to the DCCNN

architecture and not purely due to preprocessing steps, the

model was tested on the original data set as well. On the

original data set, error rose slightly to 0.24%. Therefore, it is

certain that the single model performance is attributed to the

architecture itself, and is augmented by preprocessing steps as

described above. It is possible that this error can further be

minimized by using an ensemble of DCCNN but this has not

been tested yet. Thus, a conclusion can be drawn that DCCNN

outperforms MCDNN in terms of correct second guesses, and

performs well in comparison to other large ensemble models

such as DropConnect and CNN committees.

3.2 CIFAR-10
The CIFAR-10 dataset [2] is a collection of 32x32 pixel size

images which belong to one of 10 distinct classes. Each class

contains 5000 training samples and another 1000 samples for

testing. Even within the same class, images vary greatly from

one another. In some cases they may not be centered or may

contain only part of the object to recognize and usually have

different backgrounds for the same object. The objects may

vary in size and color or texture of the objects vary greatly as

well.

For a complex and challenging image classification problem

like the CIFAR-10 dataset, a deeper architecture than the

simple MNIST DCCNN architecture as well as image

preprocessing is utilized to improve the score. Like in the

MNIST dataset, the pixels of each channel are divide by 255.0

to normalize the image over RGB channels. Simple

transformations are also applied to each mini batch randomly,

such that the images can be rotated (up to 15 degrees), width

and height shifted (up to 15 % of original width/height),

sheared (up to 1 radian) and scaled (up to 20% of original

scale). The architecture selected for CIFAR-10 is as follows.

3𝑥32𝑥32 − 96𝐶5 − 96𝐶3)2 − 𝑀1
192 − 96𝐶5 2𝑥2 −

 192𝐶3 − 192𝐶3 3 − 𝑀2
576 − 192𝐶3 2𝑥2 −

 256𝐶1 , 256𝐶3 , [256𝐶5] 1 − (𝑀3
768 −

 256𝐶3 (2𝑥2) − 10𝐷

The DCCNN architecture for the can be seen in Figure 3.

Figure 3. DCCNN architecture for CIFAR-10 dataset.

Convolutional Pooling is used instead of Max Pooling.

The network is a modification of the ALL-CNN-C

architecture proposed by Springenberg [18]. It utilizes the

convolution pooling technique via subsampling in order to

maximize the information that the network can learn by

avoiding max pooling. Unlike their architecture which stacks

multiple convolution layers sequentially, the DCCNN stacks

the same layers horizontally and then vertically. Adding an

additional level with large number of forks and large filters

will outperform the ALL-CNN-C architecture, at the cost of

nearly 8 times the number of parameters.

This network architecture possesses approximately 5.5 million

parameters and is trained for 600 epochs. Training time for

this dataset is approximately 234 seconds per epoch on a

NVIDIA 980M GPU, and total training time is approximately

39 hours. It is observed that after 550 iterations there was no

further improvement. The resultant accuracy of this model is

compared to various models in Table 2.

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

29

Table 2. Results on CIFAR-10 Dataset

Method Error Rate % Paper

MCDNN 11.21 [7]

Maxout 9.38 [23]

DropConnect 9.32 [8]

Network in

Network

8.81 [24]

ALL-CNN-C

(Small

augmentation)

7.25 [18]

DCCNN 6.90 This

Exponential

Linear Unit CNN
6.25 [25]

Large-ALL-CNN

(Large

augmentation)

4.41 [18]

Fractional Max

Pooling
3.47 [21]

For this dataset, presenting different preprocessed image to

each initial fork offered no additional benefit to validation

accuracy, however it did improve the convergence time

slightly (maximum validation accuracy score occurred at the

557th epoch for same preprocessed images to all initial layer,

in contrast to the 538th epoch for different preprocessed

images to each initial layer).

DCCNN has a low error rate of just 6.90% compared to the

ALL-CNN-C architecture (7.25%, [18]) with small data

augmentation, but is higher than the state of the art Fractional

Max Pooling (3.47%, [21]). It must be noted that the

fractional max pooling architecture is an ensemble model with

over 50 million parameters. The Large-ALL-CNN-C

architecture however achieves a very high accuracy (4.41%,

[18]) by using very large data augmentation and larger image

sizes (128x128) to allow for more depth in the network and

larger number of parameters as compared to the CIFAR-10

DCCNN.

Considering only small data augmentations, the proposed

network performs better than the comparable ALL-CNN-C

architecture. Out of the 690 wrong predictions, 501 second

guess predictions were correct. Therefore, the top-2 prediction

error rate is 1.89%

3.3 CIFAR-100
The CIFAR-100 dataset [2] is a collection of 32x32 pixel size

images which belong to one of 10 distinct classes, and also

belong to one of 100 distinct subclasses. Each class contains

5000 training samples and another 1000 samples for testing.

Therefore there are 500 training sample and 100 testing

samples of each subclass. Even within the same subclass,

images vary greatly from one another. In some cases they may

not be centered or may contain only part of the object to

recognize and usually have different backgrounds for the

same object. The objects may vary in size and color or texture

of the objects vary greatly as well.

For a complex and challenging image classification problem

like the CIFAR-100 dataset, a deeper architecture than the

CIFAR-10 DCCNN architecture as well as image

preprocessing is utilized to improve the score. Like in the

CIFAR-10 dataset, pixels of each channel are divided by

255.0 to normalize the image over RGB channels. One can

also apply simple transformations to each mini batch

randomly, such that the images can be rotated (up to 10

degrees), width and height shifted (up to 15 % of original

width/height), sheared (up to 2 radian) and scaled (up to 20%

of original scale). The architecture selected for CIFAR-100 is

as follows:

3𝑥32𝑥32 − 96𝐶5 − 96𝐶5)2 − 𝑀1
192 − 96𝐶5 2𝑥2 −

192𝐶3−192𝐶32−𝑀2384−192𝐶4 2𝑥2−
256𝐶1𝑥3−256𝐶3𝑥1,256𝐶3𝑥1−256𝐶1𝑥3, 256𝐶1, 256𝐶3,
256𝐶51−𝑀31280− 192𝐶3 (2𝑥2 − 100𝐷

The network described above is different from the earlier

described models since it uses a deeper architecture. The first

two fork layers are composed of stacked convolution layers,

and the final fork layer consists of 2 stacks of 1x3 and 3x1

kernel size convolutional layers, along with 3 other

convolutions layers of different kernel sizes (1x1, 3x3 and

5x5). The network is a modification of the Large-ALL-CNN

architecture proposed by Springenberg [18]. It also utilizes the

convolution pooling via subsampling as was used for the

CIFAR-10 dataset. additional levels are added to increase the

depth of the network further, with more number of forks and

larger maps. It is possible to create an even deeper model,

however the training time required increases sharply since the

number of parameters also increases. An attempt was made to

create a deep architecture which balances the depth with the

number of parameters and attempts to maximize the

performance while reducing the training time.

This network architecture possesses approximately 7.6 million

parameters and is trained for 600 epochs. Training time for

this dataset is approximately 334 seconds per epoch on a

NVIDIA 980M GPU, and total training time is approximately

56 hours. It is observed that after 570 iterations there was no

further improvement. It is to be noted that due to use of

Adadelta learning algorithm it is not guaranteed to produce

exactly same results, but it should approach similar results.

,

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

30

Figure 4. DCCNN architecture for the CIFAR-100

dataset. Similar to CIFAR-10 architecture, Convolutional

Pooling is used instead of Max Pooling.

As can be seen in the Figure 4, which represents the DCCNN

architecture for the CIFAR-100 Dataset, 6 forks at the last

layer of the CIFAR-10 architecture have been replaced with 5

forks. Each fork layer also contains stacked convolutional

layers. Due to this architecture, DCCNN is able to perform

slightly better than the simpler CIFAR-10 DCCNN on this

dataset. While the overall number of filters at the last layer

may be less than that of the CIFAR-10 architecture, the

performance is better due to the additional depth of the

network.

The resultant accuracy of this model is compared to various

models in Table 3. DCCNN has a low error rate of just

28.63% compared to the ALL-CNN-C architecture (33.71%,

[18]), but is higher than the state of the art Fractional Max

Pooling (26.39%, [21]). It must be noted that the fractional

max pooling architecture is an ensemble model with over 50

million parameters. Considering only small data

augmentations, the proposed network performs better than the

comparable ALL-CNN-C architecture, and approaches similar

performance to the ensemble of Fractional Max Pooling

networks. However, the performance of DCCNN is poor

compared to the 18 convolutional layer ELU architecture [25]

which does not use model ensemble, but possesses roughly

39.4 million parameters and requires roughly 165,000

iterations to achieve such high performance. An attempt has

been made to create a deeper network to see if DCCNN

performance can come close to the ELU model, but

considering the relatively small size of the network and

shorter training time, it performs adequately well. It is seen

that out of the 2873 wrong predictions, 1124 second guess

predictions were correct. Therefore top-2 predictions error

rate is 17.39%.

Table 3. Results of CIFAR-100 Dataset

Method Error Rate % Paper

Network in

Network

35.68 [24]

Maxout 34.58 [23]

ALL-CNN-C 33.71 [18]

DCCNN 28.63 This

Fractional Max

Pooling
26.39 [21]

Exponential

Linear Unit CNN
24.28 [25]

3.4 SVHN
The Street View House Numbers (SVHN) Dataset [26] is a

real-world image dataset, which is similar to the MNIST

dataset. However, it incorporates an order of magnitude more

label data (over 600,000 images). It is also more complex to

train, given the fact that this is a real world problem, since the

images need to be recognized in different backgrounds and in

different natural scenes. The SVHN dataset it obtained from

house numbers in Google Street View Images. A few

examples of the SVHN dataset can be seen in Figure 5.

Figure 5. Image data of the SVHN dataset [26]

The SVHN dataset comes in two formats: original images

with character level bounded boxes and 32x32 images

centered on a single character (with most images having some

distracting elements near the true number). Each of these

datasets have 73257 training samples and 26032 testing

samples, along with a further 531131 extra significantly easier

extra training samples. The 32x32 cropped image dataset is

used, and two tests are run: first training-testing on the smaller

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

31

data set, and then adding the extra samples and training-

testing again.

The dataset is normalized by dividing the pixel value by 255.0

for the RGB channel. The entire training dataset is utilized

and simple transformations are applied to each batch

randomly. Each mini batch can be randomly rotated

(maximum of 20 degrees), width shifted (at most 20% of

original width) and height shifted (at most 20% of the original

height). The architecture selected for this data set is as

follows:

1𝑥28𝑥28 − 64𝐶5)2 − 𝑀1
128 − 64𝐶5 2𝑥2 −

 128𝐶4 2 − 𝑀2
256 − 128𝐶4 2𝑥2 − 256𝐶3 6 −

 (𝑀3
1536 − 256𝐶3 (2𝑥2) − 10𝐷

Since the dataset is comparable to the MNIST dataset, the

MNIST DCCNN architecture as described above in Figure 2.1

is utilized. However, The Max Pooling layer is replaced with

a Convolutional Pooling layer. The network contains

approximately 6.3 million parameters. This network is trained

with 200 epochs for the smaller dataset, and then for 200

epochs with the full dataset. This is done to understand the

model performance on the small amount of complex samples

and then on the large amount of simpler samples. Training

time for the full dataset is approximately 800 seconds per

epoch, and total training time is approximately 44 hours.

The resultant accuracy of both tests is shown in Table 4. The

DCCNN architecture is able to perform well on both tests, but

does not reach near state-of-the-art performance on either test.

This may be attributed to the simpler architecture of the

MNIST dataset which uses fewer fork layers and smaller

number of maps than the CIFAR-100 DCCNN model. Using

a deeper model was not possible due to GPU memory

constraints, but it would help improve the score significantly.

Table 4. Results of SVHN Dataset

Method Error Rate % Paper

DCCNN (small

training set)

5.92 This

DCCNN (full

dataset)
1.92 This

Deeply-

Supervised Net

1.92 [27]

Maxout NIN 1.81 [28]

Recurrent

Convolutional

Network

1.77 [29]

Competitive

Multi-Scale

Convolution

1.76 ± 0.07 [30]

Tree + Max –

Avg Pooling
1.69 [31]

4. CONCLUSION
Deep neural networks are one of the most powerful methods

to accomplish tasks such as image classification and object

recognition. There are currently a few models whose

performance rivals that of even human beings. Often, these

models comprise of committees of networks and thus require

vast amounts of computation time. Here, a single model is

shown which performs as well as or only slightly worse than

such committees. It is also shown that DCCNNs have similar

performance to state of the art convolutional network

architectures in image classification challenges such as

MNIST, CIFAR-10, CIFAR-100 and SVHN with the use of a

single model.

This paper highlights the possibility of replacing model

ensembles with a single similar performing model. This

principle can be extended to using said single model in a,

more complex, model ensemble. To put it into perspective,

this would be similar to an ensemble of ensembles, which has

a great scope for future development.

5. REFERENCES
[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.”

Gradient based learning applied to document

recognition”. Proceedings of the IEEE, 86(11):2278–

2324, November 1998.

[2] A. Krizhevsky.” Learning multiple layers of features

from tiny images”. Master’s thesis, Computer Science

Department, University of Toronto, 2009. 1

[3] Raina, Rajat, Anand Madhavan, and Andrew Y. Ng.

"Large-scale Deep Unsupervised Learning Using

Graphics Processors." Proceedings of the 26th Annual

International Conference on Machine Learning - ICML

'09 (2009). Print.

[4] Fukushima, Kunihiko. "Neocognitron: A Self-organizing

Neural Network Model for a Mechanism of Pattern

Recognition Unaffected by Shift in Position."Biol.

Cybernetics Biological Cybernetics 36.4 (1980): 193-

202. Print.

[5] Behnke, Sven. "Hierarchical Neural Networks for Image

Interpretation."Lecture Notes in Computer

Science(2003). Print.

[6] Simard, P.y., D. Steinkraus, and J.c. Platt. "Best Practices

for Convolutional Neural Networks Applied to Visual

Document Analysis." Seventh International Conference

on Document Analysis and Recognition, 2003.

Proceedings. Print.

[7] Ciresan, D., U. Meier, and J. Schmidhuber. "Multi-

column Deep Neural Networks for Image Classification."

2012 IEEE Conference on Computer Vision and Pattern

Recognition (2012). Print.

[8] Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, Rob

Fergus. “Regularization of Neural Network using

DropConnect”. International Conference on Machine

Learning 2013

[9] Strigl, Daniel, Klaus Kofler, and Stefan Podlipnig.

"Performance and Scalability of GPU-Based

Convolutional Neural Networks."2010 18th Euromicro

Conference on Parallel, Distributed and Network-based

Processing (2010). Print.

[10] Uetz, Rafael, and Sven Behnke. "Large-scale Object

Recognition with CUDA-accelerated Hierarchical Neural

Networks." 2009 IEEE International Conference on

Intelligent Computing and Intelligent Systems (2009).

Print.

[11] Zeiler, Matthew D. "ADADELTA: an adaptive learning

rate method." arXiv preprint arXiv:1212.5701 (2012).

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.12, July 2016

32

[12] Glorot, Xavier, and Yoshua Bengio. "Understanding the

difficulty of training deep feedforward neural networks."

International conference on artificial intelligence and

statistics. 2010.

[13] Lecun, Y., Fu Jie Huang, and L. Bottou. "Learning

Methods for Generic Object Recognition with Invariance

to Pose and Lighting."Proceedings of the 2004 IEEE

Computer Society Conference on Computer Vision and

Pattern Recognition, 2004. CVPR 2004.Print.

[14] S. Hochreiter, Y. Bengio, P. Frasconi, and J.

Schmidhuber. “Gradient flow in recurrent nets: the

difficulty of learning long-term dependencies”. In S. C.

Kremer and J. F. Kolen, editors, A Field Guide to

Dynamical Recurrent Neural Networks. IEEE Press,

2001.

[15] D. E. Rumelhart, G. E. Hinton, and R. J. Williams.

“Learning internal representations by error propagation”.

In Parallel distributed processing: explorations in the

microstructure of cognition, vol. 1: foundations, pages

318–362. MIT Press, Cambridge, MA, USA, 1986

[16] Ranzato, Marc'aurelio, Fu Jie Huang, Y-Lan Boureau,

and Yann Lecun. "Unsupervised Learning of Invariant

Feature Hierarchies with Applications to Object

Recognition."2007 IEEE Conference on Computer

Vision and Pattern Recognition (2007). Print.

[17] Erhan, Dumitru, et al. "Why does unsupervised pre-

training help deep learning?." The Journal of Machine

Learning Research 11 (2010): 625-660.

[18] Springenberg, Jost Tobias, et al. "Striving for simplicity:

The all convolutional net." arXiv preprint

arXiv:1412.6806 (2014).

[19] Xu, Bing, et al. "Empirical evaluation of rectified

activations in convolutional network." arXiv preprint

arXiv:1505.00853 (2015).

[20] D. C. Ciresan, U. Meier, L. M. Gambardella, and J.

Schmidhuber. “Deep, big, simple neural nets for

handwritten digit recognition”. Neural Computation,

22(12):3207–3220, 2010.

[21] Graham, Benjamin. "Fractional max-pooling." arXiv

preprint arXiv:1412.6071(2014).

[22] D. C. Ciresan, U. Meier, L. M. Gambardella, and J.

Schmidhuber. Convolutional neural network committees

for handwritten character classification. In International

Conference on Document Analysis and Recognition,

pages 1250–1254, 2011.

[23] Goodfellow, Ian J., et al. "Maxout networks." arXiv

preprint arXiv:1302.4389(2013).

[24] Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in

network." arXiv preprint arXiv:1312.4400 (2013).

[25] Clevert, Djork-Arné, Thomas Unterthiner, and Sepp

Hochreiter. "Fast and Accurate Deep Network Learning

by Exponential Linear Units (ELUs)." arXiv preprint

arXiv:1511.07289 (2015).

[26] Yuval Netzer, Tao Wang, Adam Coates, Alessandro

Bissacco, Bo Wu, Andrew Y. Ng. “Reading Digits in

Natural Images with Unsupervised Feature Learning.”

NIPS Workshop on Deep Learning and Unsupervised

Feature Learning 2011.

[27] Lee, Chen-Yu, et al. "Deeply-supervised nets." arXiv

preprint arXiv:1409.5185 (2014).

[28] Chang, Jia-Ren, and Yong-Sheng Chen. "Batch-

normalized Maxout Network in Network." arXiv preprint

arXiv:1511.02583 (2015).

[29] Liang, Ming, and Xiaolin Hu. "Recurrent convolutional

neural network for object recognition." Proceedings of

the IEEE Conference on Computer Vision and Pattern

Recognition. 2015.

[30] Liao, Zhibin, and Gustavo Carneiro. "Competitive Multi-

scale Convolution." arXiv preprint arXiv:1511.05635

(2015).

[31] Lee, Chen-Yu, Patrick W. Gallagher, and Zhuowen Tu.

"Generalizing Pooling Functions in Convolutional

Neural Networks: Mixed, Gated, and Tree." arXiv

preprint arXiv:1509.08985 (2015).

IJCATM : www.ijcaonline.org

