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ABSTRACT 

Recent developments in the field of deep learning have shown 

that convolutional networks with several layers can approach 

human level accuracy in tasks such as handwritten digit 

classification and object recognition. It is observed that the 

state-of-the-art performance is obtained from model 

ensembles, where several models are trained on the same data 

and their predictions probabilities are averaged or voted on. 

Here, the proposed model is a single deep and wide neural 

network architecture that offers near state-of-the-art 

performance on various image classification challenges, such 

as the MNIST dataset and the CIFAR-10 and CIFAR-100 

datasets. On the competitive MNIST handwritten image 

classification challenge, the proposed model approaches the 

near state-of-the-art 35 model ensemble in terms of accuracy. 

On testing the model on the CIFAR datasets, it is found that 

the proposed model approaches the performance of the top 

two ensemble models. The architecture is also analyzed on the 

SVHN dataset. 
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1. INTRODUCTION 
Recent publications suggest that deep neural networks achieve 

impressive results on various challenging tasks such as 

handwritten number recognition obtained from the MNIST 

dataset [1] and general image classification from the CIFAR 

10 dataset [2]. Advances in graphic processing units have 

reduced the learning time for deep neural networks from 

several weeks or months to a few hours or days [3].  

Focus is primarily on one such deep learning architecture, 

called as Deep Convolutional Neural Network (DCNN), 

which was first introduced by K. Fukushima [4], later 

improved by Y. Lecun [1] and further simplified by [5, 6]. 

Digit classification of the famous MNIST dataset is 

approaching near human level performance, with Ciresan [7] 

approaching 0.23% error and L.Wan [8] approaching 0.21% 

error. DCNNs show their true potential when they are wide 

(have several maps per layer) and deep (have several layers). 

Training such deep and wide DCNN requires several weeks to 

months on just CPUs. Even multi-threaded CPUs are not able 

to scale performance to adequate levels. Therefore, fast highly 

parallel code for GPUs has been used to overcome this 

limitation of CPUs. The highly parallel execution of GPU 

code can offer higher performance, up to two orders of 

magnitude greater than just using CPUs [9, 10]. The training 

algorithm for such deep networks are fully online and 

adaptive [11], such that weight updates occur after each back-

propagation step. Thus the Adadelta learning algorithm has 

been utilized throughout, as it offers suitable performance for 

each iteration and does not get stuck at local optima. 

 

It is to be noted that a deep and wide DCNN does not need 

unsupervised pre training or fine-tuned initialization in order 

to achieve near state of the art performance, though it is useful 

when there are fewer samples of each class available to learn. 

A deep columnar architecture for DCNNs is introduced, 

which is forked and merged at several layers in order to create 

very wide layers upon merging the forked layers. This 

approach is similar to the architecture used by Ciresan [7], 

termed as Multi-column Deep Neural Networks, however it 

also incorporates merging of the layers to create wider 

DCNNs for each additional learning stage. 

It is seen that the proposed model approaches near state of the 

art performance on the MNIST data set using only a single 

model, and obtains slightly better results than single models 

which perform exceedingly well on CIFAR-10 and CIFAR-

100 data sets. 

2. ARCHITECTURE 
The architecture has been termed as Deep Columnar 

Convolutional Neural Network (DCCNN) due to the fact that 

like MCDNN [7], the preprocessed input is also forked to 

connect divergent DCNNs on either same input or apply 

different preprocessing steps. The difference is that the forks 

are merged after each level using one of 2 merge operations, 

which significantly impacts the learning capability of the 

network. Initially all the weights are randomly initialized 

using Glorot uniform initialization [12]. Then each layer is 

trained using a set of data termed the training set, and 

validated on a set of unseen data termed as the test set. There 

are a few important techniques incorporated to train the 

network: 

1. Wide Architecture: While a few models use only a 

few maps per layer (possess a shallow architecture) 

as seen in the LeNet 7 [13], the proposed model 

utilizes a large number of maps per layer, stacked in 

both horizontal (fork) and vertical (merge) layers. 

Fork layers usually comprise of several maps of 

same size or of different sizes. 

 

2. Deep Architecture: the proposed model utilizes a 

deep architecture of several layers, and further 

compounds the depth with a large number of forked 

layers which are merged into a single large layer. 

Upon merging, the merged layer becomes a very 

wide layer. The deeper merge layers may have 

several million parameters and this increases the 

model performance. 

 

3. GPU Processing:  As shown by S. Hochreiter [14] 

and D. E. Rumelhart [15], multi-layer deep neural 

networks are difficult to train via standard gradient 

descent. However, due to improvements in modern 

processing power and the utilization of GPUs has 

greatly reduced this problem. Optimized code for 

massively parallel Graphic Processing Unit (GPU) 
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code allow for huge gains in training speed over 

CPU code. Given a large enough sample size to 

train the network the network does not require any 

additional pre training such as described by Ranzato 

[16] or the use of Restricted Boltzmann Machines 

[17]. 

4. Pooling via Convolution Subsampling: In some 

cases, to preserve information even during pooling 

operations, the max pooling layer is replaced by a 

convolution layer and the output of the previous 

layer is subsampled, an approach used by 

Springenberg [18].This is termed as convolutional 

pooling, and requires that the map size is the same 

size as the map size of the prior layer. As seen in 

[18], it provides an improvement in convergence 

speed and increases the size of the network. 

5. Variable Kernel Size: All forked convolutional 

layers which accept a preprocessed image possess a 

5x5 kernel. This improves the convergence speed 

and the accuracy of the network. All middle tier 

fork layers utilize either a 4x4 or 3x3 kernel, while 

simultaneously increasing the number of maps. The 

final tier fork and merge layer use a 3x3 kernel to 

improve performance, and often have the largest 

map size. 

6. Fork Layers: The fork layer, also termed as a 

DCNN column, accepts a single input and may 

contain more than one convolutional layer stacked 

sequentially. There may be several fork layers at 

any given level, and the initial fork layer may accept 

either the same input or input which has been 

preprocessed by different methods. The latter is 

preferred, since it offers each fork a different view 

at the same data. Fork layers may also have 

different kernel size and different map size at the 

same level if the outputs are being concatenated at 

the merge layer. 

7. Merge Layers: The merge layer accepts k different 

fork layers from the previous level and merges them 

using one of 2 merge operations- average and 

concatenate. Each of these operations merge the 

forked layers into a single layer which increases the 

width of the network. The optimal operation used 

during testing was found to be the concatenation 

operation. The merge operation can be given as: 

𝑚𝑒𝑟𝑔𝑒𝑛 𝑚𝑎𝑝𝑛 , 𝑘𝑒𝑟𝑛𝑒𝑙𝑟𝑜𝑤 , 𝑘𝑒𝑟𝑛𝑒𝑙𝑐𝑜𝑙  = 

             𝑓𝑜𝑟𝑘𝑖
𝑛−1(𝑚𝑎𝑝𝑖 , 𝑘𝑒𝑟𝑛𝑒𝑙𝑟𝑜𝑤 , 𝑘𝑒𝑟𝑛𝑎𝑙𝑐𝑜𝑙 )

𝑘

𝑖=1

 

Where n represents the nth level of the architecture, 

k represents the number of forked layers, mapi 

represents the number of maps in the ith fork layer, 

kernelrow  is the size of kernel row and kernelcol is 

the size of kernel column. The basic architecture 

can be seen in Figure 1.  

It is to be noted that mergen  layer is the concatenation or 

average of all the maps of all previous fork layer. If one 

represents the number of maps of mergen  as mapn, and mapi 

as the number of maps of the ith fork layer, then concatenation 

operation can be represented as: 

𝑚𝑎𝑝𝑛 =   𝑚𝑎𝑝𝑖

𝑘

𝑖=1

 

On the other hand, the averaging operation can be performed 

as the average of the maps of the k fork layers at the previous 

level. It can be represented as: 

𝑚𝑎𝑝𝑛 =
1

𝑘
  𝑚𝑎𝑝𝑖

𝑘

𝑖=1

 

As can be seen, in the case of concatenation, the number of 

maps at the nth layer increase due to concatenation of each of 

the maps of the previous layers. Due to this, there is a marked 

improvement in how much information is learned from the 

previous level, but it also drastically increases the 

computation time. Convolution pooling may be applied to 

speed up the training process without losing the information 

from direct max pooling. 

 

Figure 1. Basic architecture of DCCNN. P1 to Pn represent 

the various preprocessing steps that can be performed 

prior to the first fork layer. Fij represents the j
th 

Fork layer 

at the i
th 

level of the architecture. M1 to Mn represent the 

Merge layers. 

3. EXPERIMENTS 
The DCCNN architecture is tested on various image 

classification and object recognition benchmarks, and it is 

seen that the model approaches state of the art performance 

without the use of model ensembles. A basic architecture I 

described, which can be replicated multiple times in order to 

create deeper and wider networks as required for the image 

classification problem.  

The basic model can be given as: 

𝐼𝑛𝑝𝑢𝑡 −   32𝑛𝐶5)𝑘1 −  𝑀1
𝑘1∗  −   32𝑛𝐶4 𝑘𝑖 −  𝑀𝑖

𝑘𝑖∗  
𝑖
−

  32𝑛𝐶3 𝑘𝑛 − (𝑀𝑛
𝑘𝑛∗  −  𝑦𝐷  

Where:  

1. 32nCf refers to a convolutional layer possessing 32n 

maps and a kernel size of fxf, where f may be any 

value greater than 0. 
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2. k1 is the number of forks connected to the 

preprocessed input (same or different preprocessing 

steps can be applied to each fork). Common values 

of n at this stage are 2 - 4. 

3. ki is the number of intermediate forks which is 

connected to the ith merge layer (Mi), and these 

intermediate blocks can be replicated with varying 

values of n, ranging from 4 - 12. 

4. kn is the number of forks of the final level which is 

connected to a final fully connected dense layer yD 

where y is the number of class labels. Optimal 

values of n at this stage are 12 - 16 

5. The merge layer connected to the fork layers is 

denoted by M, subscripted with level number and 

superscripted k* value, which denotes the value of 

the merging functions. k* therefore represents the 

value of mapn, and therefore can be the sum or 

average of each mapi.  

6. Convolution pooling can be applied in between each 

block after the merge layer, which can be 

represented as (32nC4 (2x2)) which indicted a 

convolutional layer with 2x2 subsampling and 32n 

maps with a 4x4 kernel size [18]. N should be 

selected so that the value of 32n matches the 

number of maps from the prior merge layer. 

7. After each merge layer, Batch Normalization is 

used. This avoids the vanishing gradient problem 

and improves convergence. 

8. Dropout is always applied just before the final 

output layer with dropout probability (0.5) 

The Relu activation function was used in all layers other than 

the final dense layer, which used the softmax activation 

function. Leaky Relu activation function was tested for the 

CIFAR-10 and CIFAR-100 dataset and seems to offer 

substantial performance improvements according to Xu [19]. 

Therefore, the Leaky Relu activation can be utilized for those 

two data sets. The datasets were all trained using the Adadelta 

online learning algorithm [11] with initial learning rate set as 

1.0 for all tests, rho value of 0.95 and epsilon value of 10-8. In 

case Max Pooling is used instead of convolutional pooling, 

then a linear activation function is used for the max pool 

layer. The max pooling layer must also have a stride of 2x2, 

and can be represented by MP2. 

During training steps, each mini batch was preprocessed using 

several transformations such as translations, scaling and 

rotated for CIFAR data sets, whereas original images are used 

for validation. Training ends when the validation loss is zero 

or when validation loss increases repeatedly for 50 epochs. 

Weights are initialized using the glorot uniform initialization 

method [12]. In all experiments, the merge method utilized 

was the concatenation operation, since it offered slightly 

better results as compared to the averaging operation. 

3.1 MNIST 
The MNIST dataset [1] is normalized by dividing the pixel 

value by 255.0 for the grayscale channel. The entire training 

data set is utilized and simple transformations are applied to 

each batch randomly. Each mini batch can be randomly 

rotated (maximum of 20 degrees), width shifted (at most 20% 

of original width) and height shifted (at most 20% of the 

original height). The architecture selected for this data set is 

as follows: 

1𝑥28𝑥28 −   64𝐶5)2 −  𝑀1
128   − 𝑀𝑃2 −   128𝐶4 2 −

 𝑀2
256  − 𝑀𝑃2 −   256𝐶3 6 − (𝑀3

1536  − 𝑀𝑃2 −  10𝐷  

The architecture for the MNIST dataset can be seen in figure 

2.1. This network architecture possesses approximately 4.3 

million parameters and is trained for 400 epochs. Training 

time for this data set is roughly 98 seconds per epoch on a 

NVIDIA 980M GPU and total training time is approximately 

11 hours. It is observed that accuracy does not improve over 

350 epochs.  

 

Figure 2.1 DCCNN architecture for MNIST dataset. It has 

a 3 level architecture, with Fork – Merge – Pool blocks. 

The resultant accuracy of this network is compared to various 

models in Table 1. DCCNN trained with initial preprocessing 

steps being the same for level 1 fork layer accuracy is found 

to be equivalent to DCCNN trained with different 

preprocessing steps for the level 1 fork layer, however 

convergence is slightly faster (453 epochs vs 439 epochs) for 

different preprocessing. DCCNN has a very low error rate of 

0.23%, which is equivalent to MCDNN [7], and slightly more 

than the state of the art 0.21% achieved by DropConnect [8], 

both of which utilize ensembles of 35 and 5 independent 

networks respectively and then vote on their predictions.  

Thus the single model performance of the DCCNN rivals two 

large ensemble models. In addition, the DCCNN architecture 

can also be used in an ensemble of DCCNN models to 

achieve even higher accuracy, perhaps reaching the human 

level accuracy of less than 0.2 % error rate on the MNIST 

dataset.  

Table 1. Results on MNIST Dataset 

Method Error Rate % Paper 

CNN 0.40 [6] 

CNN 0.32 [21] 

CNN Committee 0.27 ± 0.02 [22] 



International Journal of Computer Applications (0975 – 8887) 

Volume 145 – No.12, July 2016 

28 

DCCNN 0.23 This 

MCDNN (35 

Column 

Ensemble) 

0.23 [7] 

DropConnect (5 

Model Ensemble) 
0.21 [8] 

 

Many of the wrongly identified digits contain random strokes 

or have wrong labels associated with them. The 23 error cases 

are associated with 23 correct second guesses, improving over 

the MCDNN [7] with only 20 correct second guesses. The 23 

images which were not classified correctly are shown in 

Figure 2.2, with the prediction of the network on the bottom 

left and the true label of the picture on the bottom right of 

each image. It can be seen that several images have been 

wrongly classified by humans, but correctly classified by the 

network.  

 

Figure 2.2 Digits which are incorrectly classified by 

DCCNN. The bottom left number of each image 

represents the predicted value by the model. The bottom 

right of each image number represents the class label 

assigned to this image. 

To ensure that performance was due to the DCCNN 

architecture and not purely due to preprocessing steps, the 

model was tested on the original data set as well. On the 

original data set, error rose slightly to 0.24%. Therefore, it is 

certain that the single model performance is attributed to the 

architecture itself, and is augmented by preprocessing steps as 

described above. It is possible that this error can further be 

minimized by using an ensemble of DCCNN but this has not 

been tested yet. Thus, a conclusion can be drawn that DCCNN 

outperforms MCDNN in terms of correct second guesses, and 

performs well in comparison to other large ensemble models 

such as DropConnect and CNN committees. 

3.2 CIFAR-10 
The CIFAR-10 dataset [2] is a collection of 32x32 pixel size 

images which belong to one of 10 distinct classes. Each class 

contains 5000 training samples and another 1000 samples for 

testing. Even within the same class, images vary greatly from 

one another. In some cases they may not be centered or may 

contain only part of the object to recognize and usually have 

different backgrounds for the same object. The objects may 

vary in size and color or texture of the objects vary greatly as 

well. 

For a complex and challenging image classification problem 

like the CIFAR-10 dataset, a deeper architecture than the 

simple MNIST DCCNN architecture as well as image 

preprocessing is utilized to improve the score. Like in the 

MNIST dataset, the pixels of each channel are divide by 255.0 

to normalize the image over RGB channels. Simple 

transformations are also applied to each mini batch randomly, 

such that the images can be rotated (up to 15 degrees), width 

and height shifted (up to 15 % of original width/height), 

sheared (up to 1 radian) and scaled (up to 20% of original 

scale). The architecture selected for CIFAR-10 is as follows.  

3𝑥32𝑥32 −   96𝐶5 − 96𝐶3)2 −  𝑀1
192   − 96𝐶5  2𝑥2 −

  192𝐶3 − 192𝐶3 3 −  𝑀2
576  − 192𝐶3  2𝑥2 −

   256𝐶1 ,  256𝐶3 , [256𝐶5] 1 − (𝑀3
768  −

 256𝐶3 (2𝑥2)  −  10𝐷  

The DCCNN architecture for the can be seen in Figure 3.  

 

Figure 3. DCCNN architecture for CIFAR-10 dataset. 

Convolutional Pooling is used instead of Max Pooling. 

The network is a modification of the ALL-CNN-C 

architecture proposed by Springenberg [18]. It utilizes the 

convolution pooling technique via subsampling in order to 

maximize the information that the network can learn by 

avoiding max pooling. Unlike their architecture which stacks 

multiple convolution layers sequentially, the DCCNN stacks 

the same layers horizontally and then vertically. Adding an 

additional level with large number of forks and large filters 

will outperform the ALL-CNN-C architecture, at the cost of 

nearly 8 times the number of parameters.  

This network architecture possesses approximately 5.5 million 

parameters and is trained for 600 epochs. Training time for 

this dataset is approximately 234 seconds per epoch on a 

NVIDIA 980M GPU, and total training time is approximately 

39 hours. It is observed that after 550 iterations there was no 

further improvement. The resultant accuracy of this model is 

compared to various models in Table 2.  
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Table 2. Results on CIFAR-10 Dataset 

Method Error Rate % Paper 

MCDNN 11.21 [7] 

Maxout 9.38 [23] 

DropConnect 9.32 [8] 

Network in 

Network 

8.81 [24] 

ALL-CNN-C 

(Small 

augmentation) 

7.25 [18] 

DCCNN 6.90 This 

Exponential 

Linear Unit CNN 
6.25 [25] 

Large-ALL-CNN 

(Large 

augmentation) 

4.41 [18] 

Fractional Max 

Pooling 
3.47 [21] 

 

For this dataset, presenting different preprocessed image to 

each initial fork offered no additional benefit to validation 

accuracy, however it did improve the convergence time 

slightly (maximum validation accuracy score occurred at the 

557th epoch for same preprocessed images to all initial layer, 

in contrast to the 538th epoch for different preprocessed 

images to each initial layer).  

DCCNN has a low error rate of just 6.90% compared to the 

ALL-CNN-C architecture (7.25%, [18]) with small data 

augmentation, but is higher than the state of the art Fractional 

Max Pooling (3.47%, [21]). It must be noted that the 

fractional max pooling architecture is an ensemble model with 

over 50 million parameters. The Large-ALL-CNN-C 

architecture however achieves a very high accuracy (4.41%, 

[18]) by using very large data augmentation and larger image 

sizes (128x128) to allow for more depth in the network and 

larger number of parameters as compared to the CIFAR-10 

DCCNN.  

Considering only small data augmentations, the proposed 

network performs better than the comparable ALL-CNN-C 

architecture. Out of the 690 wrong predictions, 501 second 

guess predictions were correct. Therefore, the top-2 prediction 

error rate is 1.89% 

3.3 CIFAR-100 
The CIFAR-100 dataset [2] is a collection of 32x32 pixel size 

images which belong to one of 10 distinct classes, and also 

belong to one of 100 distinct subclasses. Each class contains 

5000 training samples and another 1000 samples for testing. 

Therefore there are 500 training sample and 100 testing 

samples of each subclass. Even within the same subclass, 

images vary greatly from one another. In some cases they may 

not be centered or may contain only part of the object to 

recognize and usually have different backgrounds for the 

same object. The objects may vary in size and color or texture 

of the objects vary greatly as well. 

For a complex and challenging image classification problem 

like the CIFAR-100 dataset, a deeper architecture than the 

CIFAR-10 DCCNN architecture as well as image 

preprocessing is utilized to improve the score. Like in the 

CIFAR-10 dataset, pixels of each channel are divided by 

255.0 to normalize the image over RGB channels. One can 

also apply simple transformations to each mini batch 

randomly, such that the images can be rotated (up to 10 

degrees), width and height shifted (up to 15 % of original 

width/height), sheared (up to 2 radian) and scaled (up to 20% 

of original scale). The architecture selected for CIFAR-100 is 

as follows: 

3𝑥32𝑥32 −   96𝐶5 − 96𝐶5)2 −  𝑀1
192   − 96𝐶5  2𝑥2 −

192𝐶3−192𝐶32−𝑀2384−192𝐶4 2𝑥2− 
256𝐶1𝑥3−256𝐶3𝑥1,256𝐶3𝑥1−256𝐶1𝑥3, 256𝐶1, 256𝐶3, 
256𝐶51−𝑀31280− 192𝐶3 (2𝑥2  − 100𝐷  

The network described above is different from the earlier 

described models since it uses a deeper architecture. The first 

two fork layers are composed of stacked convolution layers, 

and the final fork layer consists of 2 stacks of 1x3 and 3x1 

kernel size convolutional layers, along with 3 other 

convolutions layers of different kernel sizes (1x1, 3x3 and 

5x5). The network is a modification of the Large-ALL-CNN 

architecture proposed by Springenberg [18]. It also utilizes the 

convolution pooling via subsampling as was used for the 

CIFAR-10 dataset. additional levels are added to increase the 

depth of the network further, with more number of forks and 

larger maps. It is possible to create an even deeper model, 

however the training time required increases sharply since the 

number of parameters also increases. An attempt was made to 

create a deep architecture which balances the depth with the 

number of parameters and attempts to maximize the 

performance while reducing the training time. 

This network architecture possesses approximately 7.6 million 

parameters and is trained for 600 epochs. Training time for 

this dataset is approximately 334 seconds per epoch on a 

NVIDIA 980M GPU, and total training time is approximately 

56 hours. It is observed that after 570 iterations there was no 

further improvement. It is to be noted that due to use of 

Adadelta learning algorithm it is not guaranteed to produce 

exactly same results, but it should approach similar results.  

, 
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Figure 4. DCCNN architecture for the CIFAR-100 

dataset. Similar to CIFAR-10 architecture, Convolutional 

Pooling is used instead of Max Pooling. 

As can be seen in the Figure 4, which represents the DCCNN 

architecture for the CIFAR-100 Dataset, 6 forks at the last 

layer of the CIFAR-10 architecture have been replaced with 5 

forks. Each fork layer also contains stacked convolutional 

layers. Due to this architecture, DCCNN is able to perform 

slightly better than the simpler CIFAR-10 DCCNN on this 

dataset. While the overall number of filters at the last layer 

may be less than that of the CIFAR-10 architecture, the 

performance is better due to the additional depth of the 

network. 

The resultant accuracy of this model is compared to various 

models in Table 3. DCCNN has a low error rate of just 

28.63% compared to the ALL-CNN-C architecture (33.71%, 

[18]), but is higher than the state of the art Fractional Max 

Pooling (26.39%, [21]). It must be noted that the fractional 

max pooling architecture is an ensemble model with over 50 

million parameters. Considering only small data 

augmentations, the proposed network performs better than the 

comparable ALL-CNN-C architecture, and approaches similar 

performance to the ensemble of Fractional Max Pooling 

networks.  However, the performance of DCCNN is poor 

compared to the 18 convolutional layer ELU architecture [25] 

which does not use model ensemble, but possesses roughly 

39.4 million parameters and requires roughly 165,000 

iterations to achieve such high performance. An attempt has 

been made to create a deeper network to see if DCCNN 

performance can come close to the ELU model, but 

considering the relatively small size of the network and 

shorter training time, it performs adequately well. It is seen 

that out of the 2873 wrong predictions, 1124 second guess 

predictions were correct. Therefore top-2 predictions error 

rate is 17.39%. 

Table 3. Results of CIFAR-100 Dataset 

Method Error Rate % Paper 

Network in 

Network 

35.68 [24] 

Maxout 34.58 [23] 

ALL-CNN-C 33.71 [18] 

DCCNN 28.63 This 

Fractional Max 

Pooling 
26.39 [21] 

Exponential 

Linear Unit CNN 
24.28 [25] 

3.4   SVHN 
The Street View House Numbers (SVHN) Dataset [26] is a 

real-world image dataset, which is similar to the MNIST 

dataset. However, it incorporates an order of magnitude more 

label data (over 600,000 images). It is also more complex to 

train, given the fact that this is a real world problem, since the 

images need to be recognized in different backgrounds and in 

different natural scenes. The SVHN dataset it obtained from 

house numbers in Google Street View Images. A few 

examples of the SVHN dataset can be seen in Figure 5. 

 

Figure 5. Image data of the SVHN dataset [26] 

The SVHN dataset comes in two formats: original images 

with character level bounded boxes and 32x32 images 

centered on a single character (with most images having some 

distracting elements near the true number). Each of these 

datasets have 73257 training samples and 26032 testing 

samples, along with a further 531131 extra significantly easier 

extra training samples. The 32x32 cropped image dataset is 

used, and two tests are run: first training-testing on the smaller 
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data set, and then adding the extra samples and training-

testing again.  

The dataset is normalized by dividing the pixel value by 255.0 

for the RGB channel. The entire training dataset is utilized 

and simple transformations are applied to each batch 

randomly. Each mini batch can be randomly rotated 

(maximum of 20 degrees), width shifted (at most 20% of 

original width) and height shifted (at most 20% of the original 

height). The architecture selected for this data set is as 

follows: 

1𝑥28𝑥28 −   64𝐶5)2 −  𝑀1
128   − 64𝐶5  2𝑥2 −

  128𝐶4 2 −  𝑀2
256  − 128𝐶4  2𝑥2 −   256𝐶3 6 −

 (𝑀3
1536  − 256𝐶3 (2𝑥2) −  10𝐷  

Since the dataset is comparable to the MNIST dataset, the 

MNIST DCCNN architecture as described above in Figure 2.1 

is utilized. However, The Max Pooling layer is replaced with 

a Convolutional Pooling layer. The network contains 

approximately 6.3 million parameters. This network is trained 

with 200 epochs for the smaller dataset, and then for 200 

epochs with the full dataset. This is done to understand the 

model performance on the small amount of complex samples 

and then on the large amount of simpler samples. Training 

time for the full dataset is approximately 800 seconds per 

epoch, and total training time is approximately 44 hours. 

The resultant accuracy of both tests is shown in Table 4. The 

DCCNN architecture is able to perform well on both tests, but 

does not reach near state-of-the-art performance on either test. 

This may be attributed to the simpler architecture of the 

MNIST dataset which uses fewer fork layers and smaller 

number of maps than the CIFAR-100 DCCNN model.  Using 

a deeper model was not possible due to GPU memory 

constraints, but it would help improve the score significantly. 

Table 4. Results of SVHN Dataset 

Method Error Rate % Paper 

DCCNN (small 

training set) 

5.92 This 

DCCNN (full 

dataset) 
1.92 This  

Deeply-

Supervised Net 

1.92 [27] 

Maxout NIN 1.81 [28] 

Recurrent 

Convolutional 

Network 

1.77 [29] 

Competitive 

Multi-Scale 

Convolution 

1.76 ± 0.07 [30] 

Tree + Max – 

Avg Pooling   
1.69 [31] 

4. CONCLUSION 
Deep neural networks are one of the most powerful methods 

to accomplish tasks such as image classification and object 

recognition. There are currently a few models whose 

performance rivals that of even human beings. Often, these 

models comprise of committees of networks and thus require 

vast amounts of computation time. Here, a single model is 

shown which performs as well as or only slightly worse than 

such committees. It is also shown that DCCNNs have similar 

performance to state of the art convolutional network 

architectures in image classification challenges such as 

MNIST, CIFAR-10, CIFAR-100 and SVHN with the use of a 

single model. 

This paper highlights the possibility of replacing model 

ensembles with a single similar performing model. This 

principle can be extended to using said single model in a, 

more complex, model ensemble. To put it into perspective, 

this would be similar to an ensemble of ensembles, which has 

a great scope for future development. 
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