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ABSTRACT 

Genomic sequence alignment of varied species is one of the 

most sort of applications in bioinformatics.  In future 

bioinformatics technologies are expected to produce genomic 

data of terabyte. Bioinformatics computation require super 

computer for sequence alignment computation which involves 

huge cost. Parallelization technique is a way forward in 

computing sequence alignment with limited cost and time. 

Cloud computing and MapReduce framework play an 

important role in bioinformatics intensive application to 

achieve parallelization since it provides a consistent 

performance over time and it also provides good fault tolerant 

mechanism. The existing gene sequencing methodologies are 

designed based on Hadoop-MapReduce framework which 

adopts a serial execution strategy which is an area of concern. 

This work introduces a Smith-Waterman Alignment on the 

Bulk synchronous Parallel Map Reduce (SW-BSPMR) cloud 

platform for bioinformatics gene sequence alignment. This 

work adopts a widely accepted and accurate SW algorithm for 

sequence alignment and parallel synchronous scheduler 

methodology of map and reduce framework process is 

considered. A customized MapReduce based on Microsoft 

Azure cloud platform is developed to overcome the issue in 

Hadoop-MapReduce framework. The experimental study 

presented in this work proves that the SW-BSPMR can 

accurately and effectively align bioinformatics genomic 

sequences of various read length. 
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1. INTRODUCTION 
Bioinformatics is a field that comprises computer science, 

statistics, mathematics, and biology. One of its main goals is 

to analyse bioinformatics genome sequence data content in 

order to obtain the structure of the DNA sequences as well as 

evolutionary information. Once a new biological sequence is 

identified and generated, its structural characteristics must be 

recognized. The first step to achieve this process is to 

compare the newly obtained genomic sequence with the 

existing genomic sequences that compose reference database 

(genomic databases), in search of similarities. Genome 

Sequence is a technique or process that allows researchers to 

read and decode the genetic information found in the genomic 

data of anything from animal to plants to bacteria. Once a 

tiresome, painstaking process, today, thanks to advancement 

of techniques and the availability of super computers, it has 

been speed up a multiple fold. Gene sequencing involves 

defining the order of bases, the nucleotide subunits (Adenine, 

Guanine, Thymine, and Cytosine, referred to by the letters A, 

G, T and C) that are present in a DNA. (Humans have around 

3 billion base pairs (bp).)  

The bioinformatics genomic sequencing data is acquired from 

Next Generation Sequencing (NGS) technologies (e.g Pacific 

Bioscience, Illumina etc.). Most of the current genomic data 

available consists of millions of bioinformatics gene 

sequences between 32 to 100 base pairs (bp). With the recent 

development in bioinformatics sequencing technologies 

millions of bioinformatics sequences with greater than 100bp 

are being produced. Based on the genomic data, the different 

sequencing tools are developed. Examples of existing aligners 

include FASTA [4], BLAST [5], BLAT [6] and SOAP 

[7].Bioinformatics has considered with “Big Data” as the 

huge amounts of demonic data that is generated and used for 

various analysis. A sum of 3 billion US dollars and one 

decade of time was taken to produce the initial human 

reference genome containing about 3.5 billion bp. The recent 

developments in bioinformatics technologies available 

produce huge amount of genomic data in terms of gigabytes to 

terabyte per run [8]. Storing and analyzing such data is a 

problem that exists and needed to be handled. To cater these 

high computational needs, grid, GPU or cluster computing 

platforms were provided to the analyst [9]. The grid or cluster 

computation platforms were not adequate and were 

constrained by the hardware capacity of the cluster and the 

increasing number of concurrent access by a number of users. 

The ever growing gap between the computing capabilities and 

the sequencing performance is presented in [10]. To overcome 

this, using cloud computing platforms one can solve the 

computing and storage issue that bio sequencing brings along. 

Cloud computing has emerged as the future of data intensive 

scientific application computing paradigm [26] [27]. Cloud 

computing environments provide ubiquitous on demand 

access to shared, scalable and configurable computing 

resources with minimal management efforts and affordable 

costs [28][29]. The use of cloud computing platforms to run 

data intensive application or high performance computations 

is a widely preferred solution when compared to maintaining 

independent private computing clusters [30][31]. Features like 

resource control, resource customization, virtual platforms 

and elasticity in cloud environments enable easy migration of 

data intensive applications to the cloud. 

Cloud computing platforms provide flexibility and on-demand 

access to cloud resources. The usage cloud computing 

technologies remove the seed cost that are required to 

maintain the high computing clusters and physical storage.  

Though cloud computing provides a scalable and flexible 

infrastructure, parallel computing models for the cloud are 

required to accomplish the desired aim of analyzing gene 

sequences. One such model for the cloud, called the 

MapReduce model [11] was presented by Google. The 

University of California at Berkeley presented the Spark 

platform [12] for cloud computing. A survey of all the 

available platforms for analysis of big data on the cloud is 

available in [13]. Of all the platforms that are available, 

Hadoop- MapReduce is by far a better and popular choice due 

to its open source nature and its acceptability by various 

industry and research academic organizations. In the recent 

years to effectively utilize the full potential of the cloud, 
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public cloud service providers such as Amazon, Google, and 

Microsoft Azure etc. offer virtualized computing resources for 

both hardware and software [14].The virtualization enables 

user specific customization, flexibility, application execution 

environments, cost efficiency and reduce power consumption. 

[15] [16]. 

The Hadoop framework [17] adopts the MapReduce 

framework for computing a user specific application on the 

cloud platform. In the MapReduce model a dual phase 

execution approach is adopted. In the initial phase the input 

data to be processed is split into chunks. Each chunk is 

associated with a mapper or a map worker. The map worker 

provides the ⟨Key│Value⟩ pairs as outputs that are sorted on 

the basis of the Key values. The sorted values are provided to 

the reduce workers i.e. ⟨Key│SortedList(Value) ⟩. The reduce 

workers store the results in the Hadoop distributed file system. 

The Map and Reduce workers are generally Virtual Machines 

(VM’s) in the public cloud environments. The Next 

Generation Sequencing (NGS) tools like CloudAligner [18] 

and Cloud Burst [19] adopt the Hadoop map reduce 

framework as the computing platform. The major drawback of 

these alignment tools is that they are work well for small base 

pair when single-gap or un-gapped alignment is to be 

computed. When working with bigger sequence exhibit 

performance degradation and effect accuracy proved by the 

results presented in [24]. From the section one, it is evident 

that all the existing sequence aligners for cloud environments 

consider the Hadoop framework. Genome alignment is an 

iterative process and Hadoop suffers when iterative 

applications are hosted on the framework [20] [21]. The 

performance of Hadoop suffers when multiway joins are 

considered [22]. The Hadoop framework considers sequential 

processing of the map and then the reduce stages that effects 

performance [23]. 

In this paper a Smith-Waterman Alignment on the Parallel 

Azure Map Reduce (SW-BSPMR) to perform genomic 

sequence alignments on a cloud platform is presented. The 

SW-BSPMR uses the SW presented in [1] to perform 

sequence alignments of genomic data. A MapReduce based 

framework is considered for the execution on the public cloud 

infrastructure environment. The Smith-Waterman (SW) 

algorithm [2] [3] in the SW is optimized using MapReduce 

parallel computation technique using public cloud 

infrastructure which is discussed in the latter section of the 

paper. To overcome the issues and limitation of the Hadoop- 

MapReduce a parallel execution methodology of the Map and 

Reduce workers is considered. The Map and Reduce task 

executions on the VM based cloud worker node is parallelized 

to reduce the task completion times. The bioinformatics 

sequence aligner presented in [24] bears the accurate 

similarity of to the SW-BSPMR proposed and is considered 

for the performance comparisons. 

The paper organization is as follows: The research carried out 

so far is shown in section two and the SW algorithm and its 

optimization considered are presented in Section three. The 

results and the experimental study are presented in the section 

four. The concluding remark is discussed in the last section. 

2. LITERATURE SURVEY 
These days, each and every scientific research laboratory is 

able to generate terabytes or petabyte of data (or even more), 

which is not a surprises to new sequencing technologies in 

current genomic research. With the improvement in gene 

sequencing technology/expertise, the scientific/genomic data 

generated by the sequencer is becoming much cheaper and 

better. As a result, more genomic data is increasingly being 

generated or processed which leads to serious issues or 

concern in storing (handling) and processing. HPC 

environments keep improving which helps in processing 

large-scale data at low cost. Combining Cloud infrastructure 

and MapReduce (MR) technology together is evolving as one 

of the finest solution to handle this. However, the current tools 

(technique) of this trend are lacking the efficiency and 

common features that are found in other well-known tool 

making them unappealing to the users. Here the analysis is 

done on  some of the existing mechanism and its pros and 

cons.  

D Dahiphale et al. [32] described the issues of the 

conventional MapReduce frameworks as a) The MapReduce 

framework uses a sequential processing of the Map and 

Reduce stages. b) The scalability of the Map Reduce is 

limited. c) The MapReduce framework provides no support 

for elastic pricing options. d). The MapReduce model 

provides no provision for computing streaming data. To 

overcome these drawbacks a pipelined model is adopted to 

parallelize the execution of the map and reduce phase. The 

MapReduce model proposed in [32] is realized on the 

Amazon public EC2 cloud. The spot instance offering of the 

Amazon cloud enables flexible pricing. The experimental 

study presented considering the word count application proves 

the efficiency of the pipelining based MapReduce model 

when compared to the conventional MapReduce model. The 

major drawback of the model proposed in [32] is that the 

locality optimization is not considered and hosting of 

additional data dependent applications like Smith Waterman 

etc. cannot be executed in a pipelined fashion. 

The computation of certain data intensive applications like 

graph applications and iterative applications on MapReduce 

frameworks exhibit high computation times and costs. To 

support such applications Google introduced a proprietary 

cloud computing framework named Pregel [33] that adopts 

the BSP computing model. In Pregel the graph computations 

is achieved using a set of super-steps. A super step is used to 

execute the user defined application or function in a parallel 

fashion using the data item from the database. Each data item 

from the database behaves as an agent. The Pregel system 

adopts vertex-centric execution strategy. The computation of 

each data item has a graph like representation in BSP. The 

vertexes in the Pregel deactivate post the computation 

operation and are reactivated only if additional data items are 

presented to them. Once all the vertices are deactivated the 

computation is said to be complete. The local storage of the 

data items in the nodes executing the computation pose a 

problem. In the case the data item is large then a spilling-to-

disk techniques needs to be in place [34]. The applicability of 

Pregel for additional applications like imprecise applications, 

non-graph based external applications, biomedical 

applications etc. has not been discussed so far . 

Hyungro Lee [35] here they analyzed some of the existing 

bioinformatics application by using cloud and MapReduce 

technology such as CloudBurst, CloudBLAST etc… there 

survey shows that map reduce framework is an efficient way 

of handling sequence data. CloudBLAST used hadoop 

distributed MapReduce framework to compute similarity 

between the genes. They also analyzed scientific workflow 

system such as Galaxy which offers simple web-based 

workflow toolkits and scalable scientific computing 

environments and challenges involved in transferring 

sequence data. 
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Michael C. Schatz [36] CloudBurst employs (uses) alignment 

strategy modelled based on RMAP to map with any number 

of differences or mismatches. With the support of HDFS, 

CloudBurst genomic alignment scales linearly well as number 

of reads increases and speeds up linearly as the size of the 

cluster increases. However, CloudBurst have not enough 

enrich features as traditional map/align tools has. The most 

serious and important obstacle is that CloudBurst doesn’t 

support pair-end reads and fastq format input. CloudBurst is a 

MapReduce (MR) based read-mapping framework modelled, 

but it runs in parallel on multiple vm with Hadoop MR 

Framework. It is optimized for mapping many short reads 

from subsequent generation genomic sequencing machines to 

a reference genome by allowing dynamically for a user 

specified number of differences or mismatches. It is a type of 

seed-and-extend mechanism that indexes the non-overlapping 

k-mers in the reads as seed. The seed size s = r / (m+1) is then 

computed from the min length of the reads (r) and the max 

number of differences or mismatches (m). Then it try to 

extend the exact seed to count the number of mismatch in an 

end-to-end alignments using those seeds, and then reports 

alignment with at high m mismatches. Finally extend the 

exact seeds matched into an end-to-end gapped alignment by 

using a dynamic programming (DP) algorithm. 

Tung Nguyen et al. [37] CloudAligner address drawback of 

the existing tools (CloudBurst) and also to promote a Cloud 

and MR-based solution for genomic issues. Particularly, 

CloudAligner is specifically designed to achieve better 

efficacy, longer reads, performance, and extremely high 

scalability. Cloud aligner has more important general tasks 

such as bisulfite and pair-end mapping as well as a user 

friendly interface, and it supports more input and output 

formats. Cloud aligner works as follows there are 2 main or 

required input files for CloudAligner namely the read file and 

the reference file. The reference files are generally in the fasta 

format whereas the read files can be in the Fastq or Fasta 

format. Both are changed into the binary files and copied to 

the hadoop distributed file system or Amazon S3 cloud. When 

executing, CloudAligner splits the read or query files into 

smaller pieces called input splits and distributes them to the 

different maps. Each map aligns its input split onto the whole 

reference genome files. 

LI Xubin [38] CloudBLAST integrates MapReduce (MR) 

together with virtual machine (VM) and virtual network 

technologies. Here CloudBLAST have been evaluated in both 

non-virtualized and LAN-based implementation. Here they 

compared between mpiBLAST and CloudBLAST and result 

shows that the CloudBLAST is more efficient than the 

mpiBLAST. It is the first time that Hadoop in wide-area 

network achieves satisfied performance. CloudBLAST 

improves (achieves) efficiency by splitting both of query 

sequences and sequence database for alignment. Original 

method as CloudBLAST deals with query sequences by 

splitting and sending them to different VM computing nodes, 

while copying complete gene sequence database (DB) to each 

VM computing node. Therefore, the dual segmentation 

method presented here a good performance for generalized 

large sequence database (DB). 

Xiao-liang Yang et al. [39] here they proposed a heuristic 

method blastn which seed-and-extend to search for high 

scoring gene sequence alignments between the input genomic 

query sequence and genomic sequences in the database (DB) 

by using hadoop map reduce model. It has the following three 

main steps such as building a word list, scanning for hits, and 

extending hits. In phase one it builds a word list contains all 

the contiguous w-mers in the query sequence of nucleotides, 

then it adopts a new ‘two-hit’ technique requiring the 

existence of 2 non-overlapping word pairs within a distance D 

of one another, to trigger an extension and Finally a gap free 

extension is invoked in 2 directions to find an alignment 

called a HSP (high-scoring segment pair). If the generated 

high-scoring segment pair scores above a threshold T, then a 

gapped extension is triggered, and the alignment result is 

stated. An enhanced dynamic programming algorithm, called 

X-drop, is used in the gapped extension to construct the 

gapped local alignment. The issue with this model is that it as 

an overlap of 1Mbp at most following each fragment limits 

the range of alignment which falls in it.  

Based on above survey , A parallelized gene sequence model 

based on SW by incorporating Microsoft Azure cloud 

infrastructure platform for computation is developed. 

3. PROPOSED SYSTEM 
The proposed SW-BSPMR provides a cloud platform to 

perform sequence alignments considering genomic data 

obtained from NSG techniques. The SW-BSPMR adopts a 

cloud computing infrastructure framework for MapReduce 

computation. To support scalability in SW-BSPMR, the Map 

and Reduce Azure worker nodes are deployed on a Microsoft 

Azure cloud cluster of VM’s. For genomic sequence 

alignments the SW algorithm is adopted. The advantages of 

using the SW algorithm for sequence alignments and its 

advantages over the existing aligners are found in [1]. The 

SW-BSPMR considers the genomic alignment in dual phases 

i.e. Map and Reduce phase. The existing aligners on the cloud 

platform uses Hadoop framework. In the Hadoop framework 

based solutions the Reduce phase is initiated when Map phase 

is completed. To overcome the drawbacks or disadvantage of 

Hadoop a parallel execution mechanism of the Map and 

Reduce phases is considered. Optimization of the Smith 

Waterman algorithm is an additional feature considered in 

SW-BSPMR. Execution of the Map and Reduce functions are 

designed to run in parallel and effectively utilize the cores 

available in the worker VM’s. 

3.1 Smith Waterman Algorithm 
The Smith-Waterman algorithm is a well-known dynamic 

programming algorithm (DPL) for performing local sequence 

alignment for determining similar (unique) regions between 

two protein or DNA sequences. The algorithm was first 

proposed by T. Smith and M. Waterman in 1981. In recent 

years, it is still a spine /core algorithm of many bioinformatics 

applications. The algorithm consists of following two steps: 

1. Calculate the similarity matrix score. 

2. According to the dynamic programming method, trace back 

the similarity matrix to search for the optimal alignment. In 

the algorithm, the first step will consume the largest part of 

the total processing (calculation) time. 

Importance of Smith-Waterman Algorithm  

Sequence similarity searches performed using the Smith-

Waterman algorithm guarantees the optimal local alignments 

between query and database (Reference) sequences. Thus, 

ensuring the best performance in term of accuracy and the 

most precise results - aspects of significant importance when 

you cannot afford to miss any information gained from the 

similarity search as e.g. when searching for remote homology. 

The Smith-Waterman algorithm is one of being the most 

sensitive algorithm for detection of sequence similarity. 
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3.2 Bioinformatc Sequence Alignment 
To compare two DNA or RNA sequences, the optimal 

alignment between sequences, which is to place one DNA 

sequence above the other making clear the correspondence 

between similar characters is to be found. In an alignment, 

spaces can be placed in arbitrary positions along the DNA or 

RNA sequences. Basically, an alignment can be global, 

containing all characters of the DNA or RNA sequences; 

local, containing substrings of the genomic sequences; or semi 

global, composed of prefixes or suffixes of the genomic 

sequences, where trailing gaps are not considered. In order to 

measure the resemblance between two bio-sequences, a score 

is calculated as follows: given an alignment between genomic 

sequences      and     , the following scores are assigned, 

for example, for each column: 

       If both characters are same i.e. exact match;  

      , if the characters are not same i.e. mismatch; and  

        , if one of the characters is a gap. 

The score is the cumulative result of all these values. A 

constant value is assigned to gaps. However, keeping gaps 

together generates more significant results, in a biological 

perspective. For this reason, the first gap must have a greater 

penalty than its extension. The penalty for the initial gap is 

        and for each successive gap, the penalty 

is            . The difference                      is the 

gap opening penalty       . 

The definition of Smith-Waterman (SW) Algorithm is given 

below 

The algorithm SW is an exact method based on dynamic 

programming to find the optimal local sequence alignment 

between two genome sequences in quadratic time and space. 

The SW algorithm was modified by Gotoh [24] in order to 

calculate extension gap penalties. It is divided in to following 

phases: calculate the Dynamic Programming matrices and 

obtain the optimal local alignment. 

3.3 Calculate Dynamic Programming 

Matrices 
The algorithm receives input genome DNA sequences      
and     , with sizes   and  , respectively. For genomic DNA 

sequences      and     , there are     and     possible 

prefixes, respectively, that also include the nullgenome 

sequence. The notation used to represent the    character of 

a sequence    is       and, to represent a prefix with   

characters, the author use       . The DNA sequence 

similarity matrix is denoted   , where       contains the 

DNA sequence similarity score between prefixes   
 
      

and        . Initially the first row and column (1, 1) are 

occupied with zeroes. The remaining elements of    are 

obtained from (1), where            (match) if 

              and    (mismatch) otherwise. To calculate 

gaps based on the affine gap model, two additional matrices 

  (2) and   (3) are required. By considering this, time 

complexity remains quadratic. The optimal score between 

DNA sequences      and      is the highest value in    and 

the position        where this value occurs represents the end 

of alignment 
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Find the optimal alignment phase: To get the perfect local 

alignment, the proposed algorithm starts from the cell that has 

the maximum score and continues until a zero-valued cell is 

reached      indicates the alignment of       with a gap 

in      and the alignment of        with a gap in     . 
Finally, an arrow on the diagonal indices specifies that 

       is aligned with       . Below figure is the 

representation of Smith Waterman model. 

 

Fig 1: Smith waterman algorithm to compute    used in 

traditional Hadoop- MapReduce framework. 

 

Fig 2: Parallelization technique used to compute     in       

smith waterman algorithm to reduce computation time of 

VM 

3.4 Proposed Smith-Waterman Alignment 

on the Parallelized Map Reduce model       

SW-BSPMR 
Let   denote a bioinformatics reference genomic sequence 

and    the genomic query sequence. The          is 
deployed on a public cloud platform namely Azure consist of a 

master node, map and reduce worker computing nodes. The 

master computing node of           initializes     Map 

and Reduce worker computing nodes using the virtual 

computing nodes. Every virtual computing node is presumed 

to CPU cores available for task computation. Let 

       denote the time engaged to initialize the virtual 
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platform. The bioinformatics reference sequence   is split into 

   chunks of sequence with overlapping sections. A reference 

chunk sequence and the    isthen sent to the map computing 

nodes as input key, value pairs. The key value pairs 

considering the reference chunk  is denoted as 
         where    is the key and     which contains the 

overlapping offset genome data.  The key value pair of genome 

query sequence   is denoted as           where     is the 

key and    is the genome query sequence. In each of the     
computing map workers, query sequence    is again divided 

into     chunks and kept in the available local memory 

storage. Sequence alignment is done using the smith waterman 

algorithm considering   and every single   in a parallel 

approach using the  cores. The smith waterman algorithmis 

optimized by a parallelization technique to cut sequence 

alignment completion times. Let     depicts the average 

completion time of the    map computing nodes.  The map 

workers post computations provide alignment positions 

between     and reference chunk  along with the computed 

score. The multiple alignment positions and computed score 

i.e.     along the chunk id of   i.e.     is stored in the 

temporary cloud storage memory as              . The 

map function of the          can be represented 

as                                       .  

The   reduce computing worker nodes get the intermediate 

genomic data i.e.              execute the shuffle and 

sort task. In the reduce phase, the collection of all alignment 

positions i.e.          that are non-overlapping and non-

redundant is considered. The reduce process can be represented 

as                                . Let    denote 

the average time taken by the     reducecomputing worker 

nodes to perform the shuffle, sort and reduce process. The total 

execution time of the          cloud platform to align 

the genomic sequence    against   is computed as, 

                      (4) 

The overview of the          cloud platform is shown in 

Fig. 3. 

Map phase 

In the map phase of the           Azure cloud platform, 

sequence alignment positions and corresponding sequence 

scores between query sequence    and reference sequence 

chunk   are computed. The required sequence data i.e.    and 

chunk  , is obtained from the cloud storage memory. Let 

         denote the time taken to get the sequence data. To 

reduce the sequence alignment computation times using 

parallel computing techniques the sequence    is divided 

into   chunks. Let    denote the time taken to split query 

sequence    into    chunks. The sequence alignment 

considering one chunk of    and  is done using the smith 

waterman algorithm. The seed matches of genomic 

sequences   and   is computed by using a dynamic 

programming methodology. The seeds computed are extended 

to guarantee rule alignment of the genomic sequences using 

the                algorithm. 

 

Fig 3: Proposed SW-BSPMR Cloud Model for           

Bioinformatics sequence alignment 

To reduce sequence alignment computation time 

parallelization of the    algorithm is considered in   
     . The parallelization technique to optimize 

computation is discussed in the latter sub-section.  

Let   denote the time taken to align      chunk 

and  using the    algorithm. The complete time taken to 

align the entire   chunks is therefore         . 
As   virtual computing cores are available with each cloud 

worker node, the parallel computation of    number of chunks 

of    is probable. The computation time considering the 

total   chunks and   cores is represented as 
       

 
 . The 

alignment positions and alignment scores are stored in the 

cloud container for reduce computing workers. The time 

engaged to store this data per map computing worker is 

denoted as             . The total time of the     map 

computing worker node can be represented as 

 

                        
       

 

                   

(5) 

The average execution time of the    map computing 

nodes is defined as 

 

     
      

  

   

  
 

(6) 

Reduce Phase 

The master node in          initializes    reduce 

computing nodes and     map computing nodes concurrently. 

This parallel initialization methodology allows reducing the 

total execution time   . In the reduce phase the shuffle task 

obtains the intermediate data (produced by the computing 

nodes) from the cloud storage. The sequence alignment 

positions obtained from the cloud intermediate data are sorted 

based on the offset data. The time taken by the     reduce 

computing node, to get the intermediate data, shuffle and sort it 

is represented as         . The reduce function in    

      is used to aggregate the alignment positions. The 
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redundant and overlapping alignments are neglected. 

Parallelization of the reduce function is considered in    
      to utilize the   virtual computing cores available. 

Let
      

 
denote the time taken to compute the reduce job 

utilizing the     virtual computing cores. The reduce phase 

provides the sequence alignment results between the genomic 

sequences   and    that are written to the cloud container 

storage for further examination. Let              represent the 

time taken, by the     reduce computing node to write the 

results onto the cloud container storage. The total time of the 

    reduce computing node can be represented as 

 

                   
      

 
                   

(7) 

The average execution time of the    reduce computing 

nodes i.e.   is defined as  

 

     
      

  

   

  
 

(8) 

Using (6), (8) the total execution time of the    
      can be defined as 

 

           
              

  

   

  
    

    (9) 

From (9) it can be observed that the computing time of the 

         depends on the computation time of the map 

and reduce computation nodes. The core alignment steps (i.e. 

based on the   algorithm) are done by the map computing 

nodes i.e.          . The time taken to start the map and 

reduce computing      i.e.        is dependent on the cloud 

platform user for deployment and can be ignored. Therefore it 

can be stated that the total sequence alignment execution time 

 

   
        

  

   

  
    

     (10) 

Optimizing the    algorithm in    is a possible solution 

to reduce the total execution time  

 

Smith Waterman Algorithm Optimization 

In the    algorithm computation of the similarity matrix 

score i.e.  consumes the maximum time. Adopting the 

parallelization technique for computation of   is considered 

in         . To parallelize the computation of     the 

adoption of CUDA/GPU based techniques is considered. The 

availability and the cost of such computing platforms on the 

public clouds is an issue. To maximize the utilization of 

resources available with the   computing node at minimal 

costs in           . The parallel computation technique 

is shown by grey parallel lines in Fig. 2. The computation of 

all the cells of  that fall under the parallel lines can be 

computed in a parallelized fashion. 

4. SIMULTION RESULT AND 

ANALYSIS 
The system environment used is windows 7 enterprises 64-bit, 

8 GB ram, i-5 quad core processor operating system. Dot net 

framework 4.0 and C# 6.0 programming language is used for 

the proposed work and java programing language is used for 

the existing Hadoop and conducted experimental study on 

following parameter for linear speed ups and task completion 

time and compared the proposed gene sequencing model with  

existing sequencing model. 

To evaluate the performance of SW-BSPMR comparison with 

the SW-Hadoop is considered. The deployment of SW-

Hadoop and SW-BSPMR is considered with one VM 

computing node. The SW-BSPMR is deployed on the 

Microsoft Azure cloud platform. The SW-Hadoop is designed 

using the Hadoop- MapReduce framework. The Apache 

Hadoop & YARN 2.6.0 version is used in the deployment of 

the SW-Hadoop. Identical configurations of VM computing 

nodes are considered in the deployments. The 

       model is deployed on the Azure cloud considering 

A3 VM instances. Each A3 VM instance consists of 4virtual 

computing cores, 7 GB of RAM and 120 GB of local hard 

drive space. The         model deployed on the Azure 

cloud platforms consists of one master node and four worker 

nodes to perform the map and reduce jobs/tasks. Using Azure 

HDInsight [40] [41]. HDInsight enables deployment and 

provisioning of Apache Hadoop clusters on the Azure cloud 

platform. The Apache Hadoop & YARN version 2.6.0 is 

considered for performance evaluation. The master node of the 

Azure cluster runs on the Windows Server 2012 R2 operating 

system. A cluster of 4 worker nodes of A3 VM instances is 

considered for the Hadoop deployment.  The baker yeast 

genomic database (Saccharomyces cerevisiae S288c) is 

considered for evaluation [25]. Experiments are conducted 

using a constant reference genomic sequence and four query 

sequences of varied lengths are considered. The experiments 

conducted with the reference and query genomic sequences 

are summarized in Table 1. Considering the smith waterman 

sequence alignment computation on the SW-BSPMR and 

SW-Hadoop clusters the total time taken to execute the 

alignment is monitored. The time taken of the Map stage 

(which is shown in Fig 4&7) and the Reduce stage (which is 

shown in Fig 5&7) along with the total time taken to complete 

sequence alignment (which is shown in Fig 6&7) is observed. 

In Fig 9 the total time taken to align sequence by different 

map worker with varied query sequence size is shown and in 

Fig 10 the total time taken by different reduce worker with 

varied query sequence size is shown. The results obtained 

prove that the proposed SW-BSPMR aligner deployed on 

Azure outperforms the SW-Hadoop. In experiment 1 

(sequence length of 1K) the speed up achieved for SW-

BSPMR is about 12.5. For sequence alignments i.e. in 

experiment 4 (sequence length of 500k which is shown in Fig 

4) the speedup was observed to be 43.5. As it is seen that the 

query length increases the computation time to align sequence 

also increase and also the performance of SW-Hadoop 

severely degrades with increase in query size when compared 

with the performance of the proposed SW-BSPMR. Fig 8 

shows that an average speed up of 23.5 is achieved 

considering SW-BSPMR when compared to the SW-Hadoop. 
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Table 1: Experiment information considered to compare the performance of          with the 

          

 

No Reference Genome  Length Query Genome  Length 

1 
Saccharomyces cerevisiae 

S288cchromosome XII 
1001933 bp 

Saccharomyces cerevisiae 

KillerVirusM1_1996_NC001782  
1859 bp 

2 
Saccharomyces cerevisiae 

S288c chromosome XII 
1001933 bp 

Saccharomyces cerevisiae virus L-

BC_ NC_001641.1 
4478 bp 

3 
Saccharomyces cerevisiae 

S288c chromosome XII 
1001933 bp 

Saccharomyces cerevisiae S288c 

chromosome_ NC_001224 
85984 bp 

4 
Saccharomyces cerevisiae 

S288c chromosome XII 
1001933 bp 

Saccharomyces cerevisiae S288c 

chromosome VIII 

559066 

bp 

 

 

Fig 4: Sequence alignment map execution 

 

Fig 5: Sequence alignment reduce execution 

 

Fig 6: Sequence alignment execution time 

 

Fig 7: Observation time for 500k query length. 

 

Fig 8: Average sequence alignment execution time 

 

Fig 9: Map execution time for varied sequences. 
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Fig 10: Reduce execution time for varied sequence 

5. CONCLUSION 
To solve the issues related to data storage and data intensive 

computation cloud platforms are used. Bio-sequencing 

analysis of genomic data is a vital application. The enormous 

growth of the NSG technologies produce huge amount of 

bioinformatics data. For analysis of genomic data various 

alignment tools are used. The current sequence aligners 

exhibit deficiencies in alignment of sequence genomic data 

that are currently been used. The existing bioinformatics 

sequence aligners that uses hadoop MapReduce framework 

for computation suffer from issues that are discussed in this 

work. In this paper the SW-BSPMR cloud platform is used 

align sequences is proposed. The smith waterman algorithm is 

been used for bio-sequence alignment in the SW-BSPMR 

cloud platform and a parallel Map Reduce execution 

methodology is used. A parallel execution of the map and 

reduce framework is utilized to maximize the utilization of the 

virtual machine based cloud computing platform. The paper 

also highlights the comparison of the proposed SW-BSPMR 

with the existing systems sequence alignments. Experiments 

to prove the efficiency of the optimized SW algorithm is 

presented. Comparison with the SW-Hadoop for sequence 

alignment is presented through experimental study. The 

results obtained shows significant improvement considering 

the SW-BSPMR when compared to the SW-Hadoop. In the 

future the authors propose to undertake the efficiency of the 

proposed scheduler by running varied application on it. 
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