
International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.2, July 2016

14

Designing a Sensible Block Semi-Random Interleaver for

Turbo Codes

Md. Nahidul Islam
Assistant Programmer

ICB Capital
Management Limited

Md. Rakibul Islam
Assistant Programmer

ICB Capital
Management Limited

Mahmudul Hasan
Assistant Professor

Dept. of CSE
Comilla University,

Bangladesh

Ohidujjaman
Lecturer

Dept. of CSE, DIU.

ABSTRACT
It is highly known that an interleaver (a device that scrambles

the order of a sequence of numbers) is a key component of a

turbo encoder to guarantee excellent bit error rate and frame

error rate performances. Turbo codes were initially proposed

using a randomly constructed interleaver. Turbo codes are a

rank of high-performance forward error correction (FEC)

codes, which were the initial practical codes to closely

approach the channel capability. We introduce here a method

for generating a sequence of semi-random interleavers,

projected to be optimally stored and employed in a turbo

coding system that requires litheness of the input block (i.e.,

interleaver) size. By the arrangement of construction and

random search based on a careful analysis of the low weight

words and the distance properties of the component codes, it

is possible to find interleavers for turbo coding with a high

minimum distance. We have designed a block semi-random

interleaver with permutations of each row, and found a

combination of permutations where a tight upper bound to the

minimum distance of the complete turbo scheme is 108. By

using our designed technique it is easier to include restrictions

which make the interleaver correctly-terminating or odd-even.

While the block semi-random interleavers serves well for

specifying interleaver spread, we think our method will

achieve better performance in a more sophisticated designed

criteria.

Keywords
Interleavers, Encoder, Iterative decoding, Bit error rate, Turbo

Code.

1. INTRODUCTION
Interleaving is a key component of many digital

communication systems involving forward error correction

(FEC) coding. Interleaving the encoded symbols provides a

form of time diversity to guard against localized corruption or

bursts of errors. In the past the interleaving strategy was

usually only weakly linked to the selected FEC scheme.

Exceptions are concatenated FEC schemes such as

concatenated convolutional and Reed-Solomon codes. In this

case, the interleaving parameters are usually carefully selected

to match the error correcting capabilities of the codes

involved. Recently, interleavers have become an even more

integral part of the code design itself. Such is the case for

Turbo and Turbo-like codes. The problem of finding good

interleavers for such codes is an on-going area of research.

The use of pseudo random interleavers[1] in the turbo coding

scheme has been a major obstacle in the analysis of distance

properties, except for probabilistic analysis on the ensemble

of all interleavers. Also, there are obvious reasons to believe

that there exist better interleavers than the pseudo random

ones. The advent of turbo codes [2] [3][4] motivated an

extensive research aimed to explain a further improves in their

extraordinary error performance. A codeword in turbo codes

is produced by concatenation of the outputs of two

convolutional encoders and the decoding is performed by an

iterative procedure. Pure construction[5][6] based on the

minimum weight words and distance properties of the

component code do not seem to be a viable approach. Neither

does a search among the pseudo random interleavers, due to

extreme consummation of computer power since all the

positions in the interleaver appear differently.

We have therefore used a combination of these two

approaches. That is an interleaver construction which enables

a random search and still has almost the same advantages of a

random distribution as the pseudo random interleavers. We

have been inspired by the interleaver construction in [7], and

have constructed a block semi-random interleaver with

permutations of each row. For these interleavers it is possible

to search for a large number of the most critical patterns with

regard to a specific component code. With this approach we

have found an interleaver where we have a tight upper bound

to the minimum distance of the complete turbo coding scheme

of 108. This is supported by simulations showing a

remarkable better performance at good signal-to-noise ratios.

Fig 1: The interleaver increases the code weight for RSC

Encoder 2 as compared to RSC Encoder 1.

2. INTERLEAVER RESPONSIBILITIES
Interleaving is a process of rearranging the ordering of a data

sequence in a one to one deterministic format. The inverse of

this process is called deinterleaving which restores the

received sequence to its original order. Interleaving is a

practical technique to enhance the error correcting capability

of coding. In turbo coding, interleaving is used before the

information data is encoded by the second component encoder.

The block interleaver is the most commonly used interleaver

in communication system. The semi-random interleaver[8] [9]

is a compromise between a random interleaver[10] and a

“designed” interleaver such as the block and circular-shifting

interleavers[11]. The permutation algorithm for the semi-

random interleaver is described below.

Here we consider a permutation algorithm:

RSC

Encoder 1

RSC

Encoder 2
Interleaver

High-weight

 code

systematic code

Low-weight code

X C1

C3

C2

15

Step1: Select a random index i, belongs to [0,N-1]

Step 2: Select a positive integer S<(N/2)^-1/2

Step 3: Compare i to previous S integers. For each of the S

integers, compare i to see if it lies within +/-S. If i does lie

within the range, then go back to Step 1.Otherwise, keep i.

Step 4: Go back to Step 1 until all N positions have been filled.

3. COMPONENT CODES PROPERTIES
For component code we will use (1, D^3 +D^2 +1/D^3

+D+1,D^3+D^2+D+1/D^3+D+1) with rate 1/3 and 8 states.

We use the same code for both encoders but for the second

one the information sequence is not transmitted. This gives an

overall rate of 1/5.

The minimum weight word with information weight 2 has

length 7, i.e. 10000001. In any case a sequence of 7 0's will

bring the encoder through a sequence including all states, and

the finale state will be identical to the initial one. Each of

these cycles has output weight 8. Thus the length of the

codewords with information weight 2 is 7×i+1, i=1,2,... The

weight is 2+12+(i-1)×8. There are 6 classes of codewords

with information weight 3. The minimum weight words in

these classes are 110001, 1011, 1001000001, 1000101,

100001001, 100000100001. Again sequences of 7 0's can be

inserted.

For codewords of weight 4 there are 36 classes of true weight

4 words plus the combination of two words with weight 2.

4. CONSTRUCTION OF THE

INTERLEAVER
The block semi-random interleaver [12] is based on an

iterative construction. We will construct the interleavers based

on block and semi-random interleavers[13][14], i.e. write by

row and read by column. But before reading we will make a

permutation of the symbols in the rows. These permutations

may be different for all the rows or identical for some of the

rows. The permutations we will use are of the form i ->a×i

mod rowsize. Where „a‟ is some (prime) number. With these

interleavers it is possible to search for a large number of the

most critical patterns for the specific component code, and

find a combination of „a‟ values where the worst

combinations are avoided.

We will divide the possible ”interleaver defects” in four

different classes. These cases relate both to the effect of the

“defects” and to the amount of time necessary for the search.

The classes are: Low weight words appearing at any position

in the interleaver, low weight words appearing at any position

in a row, low weight words appearing at specific positions in a

row and finally low weight words due to truncation.

For the first class the problem is rectangular patterns where

the errors appear in rows with the same permutation (that may

be the same row) as illustrated in Figure 2a and 2b. If we

chose 11 permutations, the minimum weight is 132 and 120

respectively for the two cases. For the second class the main

problem is two or three bit patterns (of different length)

appearing in rows with different permutations but permuted to

positions below each other, as illustrated in Figure 2a, 2b and

2c. This must be checked for all the „a‟ values. Further the

appearance of two or three bits in one row, as illustrated in

Figure 2d and 2e, may appear as a codeword for the second

code.

The third class includes bursts of errors distributed over two

consecutive rows as illustrated in Figure 2f. Again the

possibilities of low weight patterns must be checked for all a‟s.

The fourth class of “interleaver defects” concern special

problems due to truncation. We expect this to be a minor

problem.

5. EXPERIMENTAL RESULTS
Here can consider multiple conditions for this block semi-

random interleaver.

We have constructed an 11×907 (block size 9977) interleaver

with 11 permutations. Further we write the rows in steps of 5,

i.e. row 0, 5, 10, 4, 9With this interleaver we have

searched for a number of critical patterns, that is:

 Single 2-bit patterns (2d)

Two horizontal 2-bit patterns (2a)

Two vertical 2-bit patterns (2a)

2-bit patterns divided on two rows (2f)

Single 3-bit patterns

Two horizontal 3-bit patterns (2c)

Two vertical 3-bit patterns (2b)

3-bit patterns divided on to rows

 Two horizontal true 4-bit patterns

Two vertical true 4-bit patterns

 Some patterns related to truncation

With „a‟ values 7, 11, 13, 17, 37, 43, 47, 53, 59, 61, 67. The

minimum weight word found for these cases have weight 108.

This word appears as two 3-bit patterns in rows with different

permutations, as shown in Figure 2c. This pattern (i.e. 907

words with weight 108) corresponds to an expected bit error

rate of 1x10^ -12 at E /N = 2 dB. As a comparison we must

expect two words of weight 32 with a semi-random

interleaver of N size. These words occur when a two bit word

is interleaved to a similar pattern.

We have tried to verify this upper bound on the minimum

distance by simulation. In Figure 3 these results are compared

with simulation results with a semi-random interleaver of

approximately the same size (10,000). In both cases we show

the results after 9 iterations and after 32 iterations. While the

system with the pseudo random interleaver suffers from an

error floor at a BER about (1.0×10)^-12, no error floor is seen

for the system with the row permuted block semi-random

interleaver.

This means that the error floor at least has been lowered

several decades. At Eb /No = 2 dB we have simulated 1e8

frames with errors 100 after 32 iterations. What might look as

the beginning of an error floor for the curve representing 9

iterations, is more probable just due to uncertainty on the

simulation results since only one erroneous frame was

observed at 2 dB.

For the low signal-to-noise ratios the performance is not

dominated by the minimum weight words, but by lack of

convergence in the decoding process. There seem to be a

small advantage (< 1 dB) for the pseudo random interleaver

after a large number of iterations in this region.

16

Fig 2: Different Critical patterns

Fig 3: Simulation result with convolutional and block

interleaver with Block semi-random interleaver.

Fig 4: Log-MAP, Bit-Length 1024

Fig 5: Another performance analysis with convolutional

interleaver(CI) and block semi-random interleaver (BSRI).

From these above figures we clearly see that our designed

block semi-random interleaves provide more sophisticated

result compared with other traditional interleavers.

6. CONCLUSION
The technique proposed in this paper to design block semi-

random interleaver allows the designer to satisfy the

requirement of prunability without sacrificing performance.

 1...1

 . .

 . .

 1...1

 1…
 …1

 1…1..1

 1…1

 1…1.1

 . .

 . .

 1 1.1

 1…1

 1…1

 . .

 . .

 1 1

2a 2b

2c 2d

2f 2e

17

To substantiate this statement, results were given in terms of

spreading parameters, obtainable free distance of the actual

codes, and simulated frame error probabilities. We have

proposed here a new interleaver design technique and show

that it performs better than other random or partly semi-

randomized designs.

With this new interleaver construction we have been able to

remove the error floor problem. We do not claim that this is

the optimal interleaver/coding scheme in anysense, but just

that it represents the first step towards a structured interleaver

design and weight analysis. The number of critical patterns in

the search list can of cause be augmented or adjusted. In

future we will overcome our limitations regarding the

simulation and other threshold calculation techniques.

7. REFERENCES
[1] Mahmudul Hasan, Iqbal Izaz Khan “Block Semi Random

Interleaver Design for Turbo Codes”, in ICECC, 27-29

June-2007, Rajshahi University,Rajshahi.

[2] J. D. Andersen,”Turbo Codes Extended with Outer BCH

code”, Electronics Letters, Vol. 32, No. 22, October 1996.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near

Shannon limit error-correcting coding and decoding:

Turbo-codes,” in Proc. IEEE Int. Commun. Conference

(ICC), 1993, pp. 1064–1070.

[4] S. Dolinar and D. Divsalar, Weight distribution for turbo

codes using random and nonrandom permutations, in

TDA Progress Rep. 42-122, Aug. 1995.

[5] J. Hokfelt, O. Edfors, and T. Maseng, “Assessing

interleaver suitability for turbo codes,” in Nordic Radio

Symp., Saltsjobaden, Sweden, Oct. 1998.

[6] S. Crozier, “New high-spread high-distance interleavers

for turbo-codes,” in Proc. 20th Biennial Symp. on

Communications. Kingston, ON, Canada, May 2000, pp.

3–7.

[7] S. Benedetto and G. Montorsi, “Design of parallel

concatenated convolutional codes,” IEEE Trans.

Commun., vol. 44, no. 5, May 1996.

[8] L.Dinoi and S. Benedetto, “Design of prunable S-random

interleavers,” in Proc. Int. Symp. on Turbo Codes, Brest,

France, 2003, pp. 279–282.

[9] M. Ferrari, F. Scalise, and S. Bellini, “Prunable S-

random interleavers,” in Proc. IEEE Int. Commun. Conf.

(ICC), vol. 3, 2002, pp. 1711–1715.

[10] Petar Popovski, Ljupco Kocarev and Aleksandar Risteski,

“Design of Flexible-Length S-Random Interleaver for

Turbo Codes” in Proc. IEEE communication letters vol.

8, no. 7, July 2004.

[11] Fu-hua Huang, “Turbo Code” in Blacksburg, Varginia,

May 29, 1997.

[12] Berrou, Claude; Glavieux, Alain; Thitimajshima, Punya,

Near Shannon Limit Error - Correcting, retrieved 11

February 2010

[13] C. Berrou, A. Glavieux, and P. Thitimajshaima, “Near

Shannon limit error-correcting coding and decoding:

turbo-codes,” in Proc. IEEE Int. Conf. Commun., May

1993, pp. 1064–1070.

[14] C. Berrou, A. Glavieux ,”Near optimum error correcting

coding and decoding: Turbo codes,” IEEE Trans.

Communications, vol. 44,No 10 pp. 1261–1271,Oct.

1996.

[15] Robert Garello,Paola Pierleoni and Sergio Benedetto,”

Computing the free distance of turbo codes and serially

concatenated codes with interleavers : Algorithms and

Applications,” IEEE Journal on selected areas in

communications,Vol.19 No.5,May 2001

IJCATM : www.ijcaonline.org

