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ABSTRACT 
It is highly known that an interleaver (a device that scrambles 

the order of a sequence of numbers) is a key component of a 

turbo encoder to guarantee excellent bit error rate and frame 

error rate performances. Turbo codes were initially proposed 

using a randomly constructed interleaver. Turbo codes are a 

rank of high-performance forward error correction (FEC) 

codes, which were the initial practical codes to closely 

approach the channel capability. We introduce here a method 

for generating a sequence of semi-random interleavers, 

projected to be optimally stored and employed in a turbo 

coding system that requires litheness of the input block (i.e., 

interleaver) size. By the arrangement of construction and 

random search based on a careful analysis of the low weight 

words and the distance properties of the component codes, it 

is possible to find interleavers for turbo coding with a high 

minimum distance. We have designed a block semi-random 

interleaver with permutations of each row, and found a 

combination of permutations where a tight upper bound to the 

minimum distance of the complete turbo scheme is 108. By 

using our designed technique it is easier to include restrictions 

which make the interleaver correctly-terminating or odd-even.  

While the block semi-random interleavers serves well for 

specifying interleaver spread, we think our method will 

achieve better performance in a more sophisticated designed 

criteria. 
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1. INTRODUCTION  
Interleaving is a key component of many digital 

communication systems involving forward error correction 

(FEC) coding. Interleaving the encoded symbols provides a 

form of time diversity to guard against localized corruption or 

bursts of errors. In the past the interleaving strategy was 

usually only weakly linked to the selected FEC scheme. 

Exceptions are concatenated FEC schemes such as 

concatenated convolutional and Reed-Solomon codes. In this 

case, the interleaving parameters are usually carefully selected 

to match the error correcting capabilities of the codes 

involved. Recently, interleavers have become an even more 

integral part of the code design itself. Such is the case for 

Turbo and Turbo-like codes. The problem of finding good 

interleavers for such codes is an on-going area of research. 

The use of pseudo random interleavers[1] in the turbo coding 

scheme has been a major obstacle in the analysis of distance 

properties, except for probabilistic analysis on the ensemble 

of all interleavers. Also, there are obvious reasons to believe 

that there exist better interleavers than the pseudo random 

ones. The advent of turbo codes [2] [3][4] motivated an 

extensive research aimed to explain a further improves in their 

extraordinary error performance. A codeword in turbo codes 

is produced by concatenation of the outputs of two 

convolutional encoders and the decoding is performed by an 

iterative procedure. Pure construction[5][6] based on the 

minimum weight words and distance properties of the 

component code do not seem to be a viable approach. Neither 

does a search among the pseudo random interleavers, due to 

extreme consummation of computer power since all the 

positions in the interleaver appear differently.  

We have therefore used a combination of these two 

approaches. That is an interleaver construction which enables 

a random search and still has almost the same advantages of a 

random distribution as the pseudo random interleavers. We 

have been inspired by the interleaver construction in [7], and 

have constructed a block semi-random interleaver with 

permutations of each row. For these interleavers it is possible 

to search for a large number of the most critical patterns with 

regard to a specific component code. With this approach we 

have found an interleaver where we have a tight upper bound 

to the minimum distance of the complete turbo coding scheme 

of 108. This is supported by simulations showing a 

remarkable better performance at good signal-to-noise ratios. 

 

Fig 1:  The interleaver increases the code weight for RSC 

Encoder 2 as compared to RSC    Encoder 1. 

2.  INTERLEAVER RESPONSIBILITIES  
Interleaving is a process of rearranging the ordering of a  data 

sequence in a one to one deterministic format. The inverse of 

this process is called deinterleaving which restores the 

received sequence to its original order. Interleaving is a 

practical technique to enhance the error correcting capability 

of coding. In turbo coding, interleaving is used before the 

information data is encoded by the second component encoder. 

The block interleaver is the most commonly used interleaver 

in communication system. The semi-random interleaver[8] [9]  

is a compromise between a random interleaver[10] and a 

“designed” interleaver such as the block and circular-shifting 

interleavers[11]. The permutation algorithm for the semi-

random interleaver is described below. 

Here we consider a permutation algorithm: 
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Step1: Select a random index i, belongs to [0,N-1] 

Step 2: Select a positive integer S<(N/2)^-1/2 

Step 3: Compare i to previous S integers. For each of the S 

integers, compare i to  see  if it lies within +/-S. If i does lie 

within the range, then go back to Step 1.Otherwise, keep i. 

Step 4: Go back to Step 1 until all N positions have been filled. 

3. COMPONENT CODES PROPERTIES 
For component code we will use (1, D^3 +D^2 +1/D^3 

+D+1,D^3+D^2+D+1/D^3+D+1) with rate 1/3 and 8 states. 

We use the same code for both encoders but for the second 

one the information sequence is not transmitted. This gives an 

overall rate of 1/5.  

The minimum weight word with information weight 2 has 

length 7, i.e. 10000001. In any case a sequence of 7 0's will 

bring the encoder through a sequence including all states, and 

the finale state will be identical to the initial one. Each of 

these cycles has output weight 8. Thus the length of the 

codewords with information weight 2 is 7×i+1, i=1,2,... The 

weight is 2+12+(i-1)×8. There are 6 classes of codewords 

with information weight 3. The minimum weight words in 

these classes are 110001, 1011, 1001000001, 1000101, 

100001001, 100000100001. Again sequences of 7 0's can be 

inserted.  

For codewords of weight 4 there are 36 classes of true weight 

4 words plus the combination of two words with weight 2. 

4. CONSTRUCTION OF THE 

INTERLEAVER 
The block semi-random interleaver [12] is based on an 

iterative construction. We will construct the interleavers based 

on block and semi-random interleavers[13][14], i.e. write by 

row and read by column. But before reading we will make a 

permutation of the symbols in the rows. These permutations 

may be different for all the rows or identical for some of the 

rows. The permutations we will use are of the form i ->a×i 

mod rowsize. Where „a‟ is some (prime) number. With these 

interleavers it is possible to search for a large number of the 

most critical patterns for the specific component code, and 

find a combination of  „a‟ values where the worst 

combinations are avoided.  

We will divide the possible ”interleaver defects” in four 

different classes. These cases relate both to the effect of the 

“defects” and to the amount of time necessary for the search. 

The classes are: Low weight words appearing at any position 

in the interleaver, low weight words appearing at any position 

in a row, low weight words appearing at specific positions in a 

row and finally low weight words due to truncation.  

For the first class the problem is rectangular patterns where 

the errors appear in rows with the same permutation (that may 

be the same row) as illustrated in Figure 2a and 2b. If we 

chose 11 permutations, the minimum weight is 132 and 120 

respectively for the two cases. For the second class the main 

problem is two or three bit patterns (of different length) 

appearing in rows with different permutations but permuted to 

positions below each other, as illustrated in Figure 2a, 2b and 

2c. This must be checked for all the „a‟ values. Further the 

appearance of two or three bits in one row, as illustrated in 

Figure 2d and 2e, may appear as a codeword for the second 

code.  

 

The third class includes bursts of errors distributed over two 

consecutive rows as illustrated in Figure 2f. Again the 

possibilities of low weight patterns must be checked for all a‟s.  

The fourth class of  “interleaver defects” concern special 

problems due to truncation. We expect this to be a minor 

problem. 

5. EXPERIMENTAL RESULTS 
Here can consider multiple conditions for this block semi-

random interleaver. 

We have constructed an 11×907 (block size 9977) interleaver 

with 11 permutations. Further we write the rows in steps of 5, 

i.e. row 0, 5, 10, 4, 9 ... .With this interleaver we have 

searched for a number of critical patterns, that is: 

  Single 2-bit patterns (2d)  

Two horizontal 2-bit patterns (2a)  

Two vertical 2-bit patterns (2a)  

2-bit patterns divided on two rows (2f)  

Single 3-bit patterns  

Two horizontal 3-bit patterns (2c)  

Two vertical 3-bit patterns (2b)  

3-bit patterns divided on to rows  

 Two horizontal true 4-bit patterns  

Two vertical true 4-bit patterns  

   Some patterns related to truncation  

With „a‟ values 7, 11, 13, 17, 37, 43, 47, 53, 59, 61, 67. The 

minimum weight word found for these cases have weight 108. 

This word appears as two 3-bit patterns in rows with different 

permutations, as shown in Figure 2c. This pattern (i.e. 907 

words with weight 108) corresponds to an expected bit error 

rate of 1x10^ -12 at E /N = 2 dB. As a comparison we must 

expect two words of weight 32 with a semi-random 

interleaver of  N size. These words occur when a two bit word 

is interleaved to a similar pattern.  

We have tried to verify this upper bound on the minimum 

distance by simulation. In Figure 3 these results are compared 

with simulation results with a semi-random interleaver of 

approximately the same size (10,000). In both cases we show 

the results after 9 iterations and after 32 iterations. While the 

system with the pseudo random interleaver suffers from an 

error floor at a BER about (1.0×10)^-12, no error floor is seen 

for the system with the row permuted block semi-random 

interleaver.  

This means that the error floor at least has been lowered 

several decades. At Eb /No = 2 dB we have simulated 1e8 

frames with errors 100 after 32 iterations. What might look as 

the beginning of an error floor for the curve representing 9 

iterations, is more probable just due to uncertainty on the 

simulation results since only one erroneous frame was 

observed at 2 dB.  

For the low signal-to-noise ratios the performance is not 

dominated by the minimum weight words, but by lack of 

convergence in the decoding process. There seem to be a 

small advantage ( < 1 dB) for the pseudo random interleaver 

after a large number of iterations in this region. 
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Fig 2:  Different Critical patterns 

 

Fig 3: Simulation result with convolutional  and block 

interleaver with Block semi-random interleaver. 

 

Fig 4: Log-MAP, Bit-Length 1024 

 

Fig 5: Another performance analysis with convolutional 

interleaver(CI) and block semi-random interleaver (BSRI). 

From these above figures we clearly see that our designed 

block semi-random interleaves provide more sophisticated 

result compared with other traditional interleavers.  

6. CONCLUSION  
The technique proposed in this paper to design block semi-

random interleaver allows the designer to satisfy the 

requirement of prunability without sacrificing performance. 
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To substantiate this statement, results were given in terms of 

spreading parameters, obtainable free distance of the actual 

codes, and simulated frame error probabilities. We have 

proposed here a new interleaver design technique and show 

that it performs better than other random or partly semi-

randomized designs.  

With this new interleaver construction we have been able to 

remove the error floor problem. We do not claim that this is 

the optimal interleaver/coding scheme in anysense, but just 

that it represents the first step towards a structured interleaver 

design and weight analysis. The number of critical patterns in 

the search list can of cause be augmented or adjusted. In 

future we will overcome our limitations regarding the 

simulation and other threshold calculation techniques.  
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