
International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.2, July 2016

1

Security Testing and Assessment of Vulnerability

Scanners in Quest of Current Information Security

Landscape

Chanchala Joshi
 Institute of Computer Science

Vikram University, Ujjain, M.P. India

Umesh Kumar Singh
Institute of Computer Science

Vikram University Ujjain, M.P. India

ABSTRACT

This paper describes a web application intended to be used to

evaluate the efficiency of Netsparker, Acunetix and Burp

Suite web application vulnerability scanners. This paper also

explains the defense measures to secure the application

significantly. The results of web application evaluation

identify the most challenging vulnerabilities for scanner to

detect, and compare the effectiveness of scanners. The

assessment results suggest the areas that require further

research to improve scanner‟s detection rate.

Keywords

Vulnerability, Web Application Vulnerability Scanner,

Security trends

1. INTRODUCTION
The global distribution of web applications makes them

prone to attacks that uncover and maliciously exploit a

variety of security vulnerabilities [1]. ISO 27005 defines

vulnerability as “a weakness of an asset or group of assets

that can be exploited by one or more threats where an asset is

anything that can has value to the organization, its business

operations and their continuity, including information

resources that support the organization's mission” [2].

According to National Vulnerability Database (NVD) [3] the

number of vulnerabilities has approximately three times

increased since 2011. NTA Monitor‟s 2014 Web Application

Security Report demonstrated that Web security had actually

decreased compared to the previous year. In fact, Web

application vulnerabilities represent huge problems for

companies and organizations. According to WhiteHat

Security‟s most recent Website Security Statistics Report, 63

percent of assessed websites are vulnerable, each having an

average of six unsolved flaws [4]. These vulnerabilities

create and feed an underground economy based on attacking

and stealing data and resources. Figure shows the

vulnerability distribution by severity of the year 2015.

The web application vulnerability scanners help reduce these

security concerns in Web-based applications. In today's

market a large number of web application-scanning tools are

available, e.g. Acunetix, Netsparker, Appscan etc. Although

these tools are available in the market but question becomes

how efficient they are to address security concerns in WEB

applications? To compare vulnerability detection rate of

different scanners, it is important to have an independent test

suite. Web vulnerability scanners are often regarded as an

easy way to test applications against vulnerabilities. In fact,

vulnerability scanners provide an automatic way to search

for vulnerabilities avoiding the repetitive and tedious task of

doing hundreds or even thousands of tests by hand for each

vulnerability type. Most of these scanners are commercial

tools (e.g., IBM Rational AppScan[5] and HP

WebInspect[6]) but there are also some free application

scanners (e.g., Acunetix[7], Netsparker[8], Burp Suite[9],

Foundstone WSDigger[10] and Wsfuzzer[11]) with limited

use, as they lack most of the functionalities of their

commercial counterparts.

This paper describes a web application, which is intended to

be used to evaluate the efficiency of Netsparker, Burp Suite

and Acunetix web application vulnerability scanners. The

application implements real life scenarios for OWASP Top

Ten Security Risks [12]. For several vulnerabilities presented

in this application, this paper also explains defense measures,

which secure the application significantly.

1.1 OWASP Web Application Security

Risks
The OWASP security community has released its annual

report in 2015 capturing the top risks in web application

development as a combination of the probability of an event

and its consequence [12].

The list of the top risks in web applications is as follows:

A1 Injection

A2 Broken Authentication and Session Management (XSS)

A3 Cross Site Scripting (XSS)

A4 Insecure Direct Object References

A5 Security Misconfiguration

A6 Sensitive Data Exposure

A7 Missing Function Level Access Control

A8 Cross Site Request Forgery (CSRF)

A9 Using Components with Known Vulnerabilities

A10 Unvalidated Redirects and Forwards

The two most common risks in the Web environment are

SQL injection, which lets attackers alter SQL queries sent to

a database and cross-site scripting (XSS). Injection attacks

http://www.nta-monitor.com/

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.2, July 2016

2

take advantage of improperly coded applications to insert

and execute attacker-specified commands, enabling access to

critical data and resources. XSS vulnerabilities exist when an

application sends user-supplied data to a Web browser

without first validating or encoding that content.

The web application described in this paper implements

OWASP top vulnerabilities A1, A2, A3 and A5.

In this paper used two free web application vulnerability

scanners to identify security flaws in web application. The

main objective is to study the effectiveness of the scanners

and to try to identify common types of vulnerabilities in web

application environments. In summary, practical experiment

report focuses on the following three questions:

i. What is the coverage of the vulnerability scanners tested

when used in a web services environment?

ii. What is the false-positive rate of the web vulnerability

scanners tested when used in a web services

environment?

iii. What are the most common types of vulnerabilities in

web services environments?

2. EXPERIMENTAL DETAILS
In Broad, experimental study consisted of five steps:

2.1.1 Web Application

Design a web application that implements all the

vulnerabilities from OWASP Top Ten report also select

publically available web application services.

2.1.2 Vulnerability Scanner

Select the free web application vulnerability scanners.

2.1.3 Execution

Use the vulnerability scanners to scan the services to identify

potential vulnerabilities.

2.1.4 Verification

Perform manual testing to confirm that the vulnerabilities

identified by the scanners do exist (i.e., are not false

positives).

2.1.5 Analysis

Analyze the results obtained and systematize the lessons

learned.

There are several existing web applications to demonstrate

common web application vulnerabilities such as “HacMe”

series [13] and “WebGoat” [14]. “WebGoat” is mainly used

in educational purposes. But the implementation of OWASP

Top Ten report,is not possible with these web applications.

Because of these drawbacks of available applications, there

is a need to have an independent Web Application, which

implements OWASP Top Ten vulnerabilities, to be used to

test these web scanners. This paper designs a web application

(“shopatujjain”) to simulate the steps a regular user goes

through while using a dynamic web page and replicates the

behavior. The availability of source code and the control

over server results provides better evaluation of web

application scanners.

Main functionalities of the application are:

i. First a user creates an account and provides his/her

personal data including shipping address and credit card

details.

ii. Second he/she selects the product and stores his

selection in personal shopping cart.

iii. Later when the user decides to make the purchase an

invoice is placed in queue for further processing.

iv. In addition to that the user can add reviews to products

and read other customer‟s opinions, newsletters and

subscribe to mailing list.

3. METHODOLOGY
The “shopatujjain” Web Application is PHP based

application, which is deployed on Apache Tomcat Server. It

uses database on MySQL to store the data for the web site in

its tables. The application uses PHP to present the user

interface. It also uses HTML, CSS, JavaScript, and AJAX

technologies. The presence of such technologies as AJAX

and JavaScript in web application gives additional

opportunities. JavaScript is widely used in modern web

applications and it is important to analyze the behavior of

tools and their ability to parse JavaScript code.

The web application developed is based on OWASP Top Ten

report of 2014. This section goes over the characteristics of

vulnerabilities presented in the Web Application.

3.1 SQL Injection Vulnerability
User has provided his/her credentials, username and

password via web application. Web application has stored

the user data to the SQL server. An attacker crafts HTTP

requests that are sent to the web server to inject commands to

the SQL server in order to gain system level access [15]. The

vulnerable web application allows this malicious code to be

placed on an SQL server, thus making it possible for the

attacker to use SQLI commands to get user account

credentials.

Figure Hacking Strategy of SQLI

3.1.1 Exploiting SQLI vulnerability
During SQLI Attack, a malicious string is used as an input to

a function that calls an SQL query, which is executed

immediately. In this way, the injection result is reflected

right away, thus the vulnerability is called Reflected SQLI

vulnerability.

For example, recoverPassword function is intended to

recover the user‟s password based on his/her answer to a

security question.

String recoverPassword(String emailAddress, String

answer){

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.2, July 2016

3

String query = "SELECT Password FROM v_UserPass

WHERE

(v_UserPass.EmailAddress = '" + emailAddress + "' AND

v_UserPass.Answer = '" +

answer + "') ";

}

Payload:

emailAddress=test%40test.com%27%29 --

&answer=anycolor

In recoverPassword function, concatenation is used to create

dynamic SQL query. An attacker can easily impersonate a

site user and recover a victim‟s password by commenting out

the part of the query using „--‟ single-line comment indicator

[15].

3.2 Broken Authentication and Session

Management Vulnerability
The user authentication on the web typically involves the use

of a user‟s ID and password. When the authentication

mechanism does not provide enough protection, an attacker

can try to obtain credentials by using different techniques or

some other combination. Simple password recovery

mechanisms can become victims of a social engineer who

manipulates a user into revealing confidential information.

Figure: Two ways to bypass Broken Authentication

3.2.1 Exploiting Broken Authentication

Vulnerability
The password recovery mechanism is based on a secret

question and answer. A user provides the name of the city,

when he/she was born and his/her password is immediately

displayed on a web page without further verifications. Using

social engineering, an attacker can guess the country. Then

by using a dictionary method, the attacker finds the city and

obtains the victim‟s credentials. Brute force attack is widely

used to obtain log-in credentials, session identifiers, and

credit card information with the help of brute force tools [9].

Attackers can use these tools and proxy applications such as

BurpSuite to access a user‟s private information.

Brute force attack is very simple:

i. The intercepted request is sent to the Intruder

application

ii. The parameter, which is supposed to be brute forced, is

selected.

iii. The payloads are formed and configured to be used in

the task.

iv. The attack begins.

3.3 Cross Site Scripting Vulnerability
Cross Site Scripting (XSS) vulnerability occurs when there is

a possibility of injection of malicious code in web

application. Thus, the XSS flaw is as a result of not validated

or sanitized input parameters. There are three types of XSS:

Non-Persistent, called Reflected XSS; Persistent or Stored

XSS; and Document Object Model (DOM)-based [16].

3.3.1.1 Non-Persistent XSS Vulnerability:
This vulnerability occurs when a web application accepts an

attacker‟s malicious request that is then echoed into the

application's response in an unsafe way.

3.3.1.2 Persistent XSS Vulnerability:
This vulnerability occurs when a web application accepts the

attacker‟s malicious request, stores it in a data source, and

later displays the information from the request to a wide

range of users.

3.3.1.3 DOM-Based XSS Vulnerability:
This vulnerability doesn‟t involve server validation. The

attack works on a web browser, avoiding the server side [16].

The DOM „environment‟ in the victim‟s browser is modified

by original client-side script, and as a result of that, the

payload is executed.

Figure: Non-Persistent XSS Vulnerability

3.3.2 Exploiting XSS Vulnerability
XSS vulnerabilities are exploited by using XSS attacks. XSS

attacks are usually divided into three categories: Non-

Persistent or Reflected XSS Attack; Persistent or Stored XSS

Attack; and DOM-Based XSS Attack [16].

Non-Persistent or Reflected XSS Attack: User registration

information is saved in an online store database after

„creditCardNumber‟ parameter is validated on the server

side. No input inspection for „firstName‟ parameter is

performed.

<form action="registrationServlet" method=post>

First Name <input type="text" name="firstName”

value="${newUser.firstName}">

Card number <input type="text"

name="creditCardNumber">

<input type="button" value="Continue">

</form>

Payload:

firstName=John"'><script>alert("firstName parameter is

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.2, July 2016

4

vulnerable")</script>&creditCardNumber=1234

If the credit card number is incorrect, „firstName‟ value will

be reflected on the web page.

3.4 Security Misconfiguration

Vulnerability
This type of vulnerability occurs when application,

frameworks, application server, web server, database server,

and platform configurations are not securely defined to

prevent unintentional leakage of information. For example, a

web application can use the GET method in an HTTP request

for transferring password information. But while using the

GET method, the browser encodes form data into a URL.

Since form data is in the URL, it is displayed in the browser's

address bar, and information leakage occurs.

GET

http://www.vulnerableApp.com/updateUserPassword?passw

ord=falsepass HTTP/1.1

Host: vulnerableApp.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.6;

rv:11.0) Gecko/20100101

Firefox/11.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q

=0.8

Accept-Language: en-us,en;q=0.5

Accept-Encoding: gzip, deflate

Proxy-Connection: keep-alive

Referer: http:// vulnerableApp.com/displayAccountPassword

Cookie:

JSESSIONID=98224C7236B39895384AD3A760E405AB

While using the POST method, form data appears within the

message body of the HTTP request, not the URL. Thus,

password information is not revealed. To avoid security

misconfiguration vulnerability in the above example, the

password should be transferred via POST method.

4. DEFENSE MECHANISMS

AGAINST WEB VULNERABILITY

AND SECURE CODING

TECHNIQUES
Preventing vulnerabilities in web applications is extremely

important due to the high number of attacks. The best way to

prevent vulnerabilities in applications is to write secure code.

According to Computer Emergency Response Team, or

CERT, at the Software Engineering Institute at Carnegie-

Mellon University, the following Top 10 Secure Coding

Practices [17] are vital to security.

i. Proper implementation of Input Validation helps to

avoid most of the web application vulnerabilities. But,

on the other hand, handling each input in isolation to

avoid unexpected command line arguments, user

controlled files, and other suspicious input is a complex

task, and as a result, the validation may be omitted.

ii. Warnings and Error messages can suggest the places of

possible security flaws for both developers and an

attacker. Static and dynamic analysis tools can detect

and eliminate the vulnerabilities.

iii. Strong web application architecture helps to enforce

security policies.

iv. Simple design helps to avoid errors that can be made

during implementation, configuration, and use.

v. To simplify the access mechanism, by default the access

is denied. In other words, “Everything not explicitly

permitted is forbidden.”

vi. To continue the ideas in points 4 and 5, the principle of

least privilege is introduced, which suggests the

execution of a process using the least set of privileges

necessary to complete the job.

vii. Before data is processed, it should be sanitized. The un-

validated data could be the cause of SQL, command, or

other injection attacks.

viii. In- depth defense mechanisms help to improve security

by adding layers of multiple defensive strategies, so that

if one layer of defense turns out to be inadequate,

another layer of defense can prevent a security flaw

from becoming an exploitable vulnerability, and/or limit

the consequences of a successful exploit.

ix. Quality Assurance is the key point in security of the

software. There are different techniques to improve

reliability of the application, like using source code

analysis tools, penetration testing tools, and independent

review of the system.

x. A secure coding standard should be adopted.

Programmers should develop and/or apply a secure

coding standard for the target development language

and platform.

With Top 10 Secure Coding Practices for each vulnerability

type, this paper provides the defense mechanism for top four

vulnerabilities out of top ten OWASP vulnerabilities.

4.1 SQLI Defense
Server Side defense using Prepared Statement [18] is the

most effective way to protect from SQL Injections, because

it ensures that intent of query is not changed. For example,

the insertPassword(User user) function adds a new record to

UserPass table in “shopatujjain” application database, when

a new customer is registering his/her account.

public static int insertPassword(User user) {

ConnectionPool pool =

ConnectionPool.getInstance();

Connection connection = pool.getConnection();

PreparedStatement ps = null;

ResultSet rs = null;

String query ="INSERT INTO UserPass (EmailAddress,

Password, Answer) VALUES (?, ?, ?)";

try {

ps = connection.prepareStatement(query);

ps.setString(1, user.getEmailAddress());

ps.setString(2, user.getPassword());

ps.setString(3, user.getAnswer());

return ps.executeUpdate();

} catch (SQLException e) {

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.2, July 2016

5

e.printStackTrace();

return 0;

} finally {

DBUtil.closeResultSet(rs);

DBUtil.closePreparedStatement(ps);

pool.freeConnection(connection);

}

}

In this example, PreparedStatement object is used with

parameters. Before executing the query, all special characters

will be escaped. All SQL functions, those that are not

intended to be exploited while stress testing [19] the

application, are developed using PreparedStatements.

4.2 Cross-Site Scripting (XSS) Defense
For prevention code injection attacks, including SQLI and

XSS, all user data should be validated. There are several

main rules that should be followed to increase security:

i. Check the data type and set length limits on any form

fields on your site.

ii. Encode or escape the data where it is used in your

application to ensure that the browser treats the possibly

dangerous content as text, and not as active content that

could be executed.

From a security perspective, however, client-side validation

is not effective, because it doesn‟t provide protection for

server-side code. An attacker can easily bypass the clientside

using proxies.

4.3 Security Misconfiguration Defense
Maintaining security settings of the application, frameworks,

application server, web server, database server, and platform

is a very complex problem. Web servers are frequent targets

of attacks, so when trying to secure web servers, the

following aspects should be taken into account [20]:

i. Configuration

ii. Web content and server-side applications

iii. Operating System

iv. Documentation

Example:

HTTP server is subject to Slow type HTTP Attack [21].

There is number of steps to protect against this attack pattern

[22].

The RequestReadTimeout directive value should be set to

limit the time a client may take to send the request [23].

The implementation of defense mechanisms is an important

part of the code analysis that is performed to increase the

security of a web application. Some vulnerability can be

exploited only if an attacker performs several steps

successively or in specific order.

5. OBSERVATIONS
A customer cannot feel fully secured while using an

application as long as there is a possibility of losing some

personal information or other confidential data. Firstly, as

many security flaws as possible should be discovered in

order to secure a web application. To improve the success

rate of discovering application flaws Web Application

Vulnerability Scanners (WAVS) are used. WAVS are tools

that most closely mimic web application attacks. These tools

cannot guarantee that their use will eliminate the flaws

completely, but they can make the application more secure.
Web Application Security Scanner Functional Specification

Version 1.0 [24] in 2008 defined a list of requirements that

all WAVS must provide:

i. Identify all types of vulnerabilities listed.

ii. Report an attack that demonstrates the vulnerability.

iii. Specify the attack by providing script location, inputs,

and context.

iv. Identify the vulnerability with a name semantically

equivalent.

v. Be able to authenticate itself to the application and

maintain logged-in state.

vi. Have an acceptably low False Positive rate.

In this paper three prominent free Web Application Security

Scanners (Acunetix, Netsparker and Burp Suite) are used for

vulnerabilities detection. The scanning results of Web

Application Vulnerability Scanners are as follows:

5.1 Acunetix
Acunetix Web Vulnerability Scanner (WVS) [7] is an

automated web application security testing tool that audits

web applications by checking for vulnerabilities like SQL

Injections, Cross-Site Scripting and other exploitable hacking

vulnerabilities. In general, Acunetix WVS scans any website

or web application that is accessible via a web browser and

uses the HTTP/HTTPS protocol.

5.2 Netsparker
Netsparker does not require a brief knowledge to use the

tool, it has a very good user interface, and it does a decent

job detecting the most important vulnerabilities [8]. It has

good reporting features that are easy to read and intuitively

designed. Moreover it has ability to confirm detected

vulnerabilities. This feature can be a real time saver as the

tester does not need to validate those vulnerabilities that have

been confirmed by Netsparker.

5.3 Burp Suite
Burp is easy to use and intuitive, allowing new users to begin

working right away. Burp is also highly configurable, and

contains numerous powerful features to assist the most

experienced testers with their work.

There are some free WAVS available in the market. This

paper reviewed three of them: Acunetix Web Application

Scanner (WAS), Netsparker Web Vulnerability Scanner and

Burp Suite Web Vulnerability Scanner (WVS). All WAVS

follow the common strategy: firstly they crawl the victim

web site, then they create and insert payloads, and finally

they analyze the response. These scanners are chosen

because they provide the feature that; they identify all types

of vulnerabilities listed in OWASP Top Ten report

6. EVALUATION OF WEB

APPLICATION VULNERABILITY

SCANNERS
The results of Web Vulnerability Scanners Acunetix,

Netsparker and Burp Suite are shown in Table 1. The Table

contains the following data:

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.2, July 2016

6

i. The first column represents the serial number.

ii. The second column represents the vulnerability number

taken from Top Ten OWASP Vulnerabilities.

iii. The third column represents the vulnerabilities

presented in the test suite.

iv. The fourth column shows the different types of a

vulnerability presented in the third column.

v. The fifth column contains the number of vulnerabilities

detected by Acunetix WAVS.

vi. The sixth column contains the number of vulnerabilities

detected by Netsparker WAVS.

vii. The last column represents the number of vulnerabilities

detected by Burp Suite WAVS.

Table: Results of WAVS assessment

SN

o

OWASP

report

2015

Number

OWASP

Vulnera

bilities

Vulnera

bility

Type

Acuneti

x

Netspar

ker

Burp

Suite

1 A1
SQL

Injection
 15 4 7

2 A2

Broken

Authentic

ation and

Session

Managem

ent

Password

Guessing
5 0 2

Brute

Force
1 1 0

3 A3

Cross

Site

Scripting

Non-

Persistent

XSS

9 9 2

Persistent

XSS
1 3 1

DOM

XSS
3 1 0

4 A5

Security

Misconfi

guration

Password

sent via

GET

Method

5 5 5

Web

Server

DDoS

2 0 2

Sensitive

Data

display

0 4 2

Tot

al
 40 27 18

The Table 1 reports the vulnerabilities that were detected by

web application scanners. As seen from the Table 1 all the

tool tools missed some weaknesses. The analysis of why the

scanners missed certain vulnerabilities is as follows

6.1.1 SQL Injection:

Acunetix Scanner is able to discover all SQL Injection

vulnerabilities. But Netsparker and Burp Suite scanners are

failed to find some SQL Injection vulnerabilities, which are

not executed immediately.

6.1.2 Broken Authentication and Session

Management
Both Netsparker and Burp Suite scanners were not able to

find the vulnerability.

6.1.3 Cross-Site Scripting:

Acunetix and Netsparker Scanners discovered all

NonPersistent XSS vulnerabilities. Burp Suite scanner result

is very poor. Most of the Persistent XSS and DOM XSS

vulnerabilities were missed by all scanners.

6.1.4 Security Misconfiguration:
All the scanners are able to find the vulnerability Password

get via GET Method. Acunetix Scanner missed Sensitive

Data Display vulnerability.

7. CONCLUSIONS
This paper described OWASP Top 10 Security Risks

implemented in the web application, which was used as a

testset for evaluation of effectiveness of Acunetix web

application vulnerability scanners, Netsparker web

application vulnerability scanners and Burp Suite web

application vulnerability scanners. The paper choses four

vulnerabilities from Top 10 OWASP Security Risks for

evaluation of three prominent Web Application Vulnerability

Scanners. The evaluation of three prominent Web

Application Vulnerability Scanners is done by analyzing the

results that is obtained from the execution of web scanners

against the vulnerable web application, then comparing the

number of detected vulnerabilities.

The comparison of the three chosen scanners shown by the

following graph:

The result show that both Acunetix and Netsparker scanners

able to discover cross site scripting XSS but Burp Suit results

was very poor. For SQL Injection Acunetix detect all the

vulnerabilities. Scan results of Acunetix WAVS for Broken

Authentication and Session Management vulnerabilities are

better than other two scanners. But Security

Misconfiguration vulnerabilities are not properly discovered

by Acunetix, in this case the result of Netsparker and Burp

Suit Scanners are better.

The results show that the crawling has been significantly

improved, although there are still limitations that affect the

detection rate of such vulnerabilities as SQLI and XSS.

0
2
4
6
8

10
12
14
16

SQ
L

In
je

ct
io

n

A
u

th
e

n
ti

ca
ti

o
n

X
SS

M
is

co
n

fi
gu

ra
ti

o
n

Acunetix

Netsparker

Burp Suit

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.2, July 2016

7

For several vulnerabilities presented in this application, this

paper also explains defense measures, which secure the

application significantly. The results of web application

evaluation identify the most challenging vulnerabilities for

scanner to detect, and compare the effectiveness of scanners.

The assessment results can suggest areas that require further

research to improve scanner‟s detection rate.

8. REFERENCES
[1] Sarasan S. “Detection and Prevention of Web

Application Security Attacks”, International Journal of

Advanced Electrical and Electronics Engineering,

(IJAEEE), ISSN (Print) : 2278-8948, Volume-2, Issue-

3, 2013, pp. 29- 34.

[2] International Organization for Standardization and

International Electrotechnical Commission. ISO/IEC

27001:2005, Information technology – security

techniques – information security management systems

– requirements, 2005.

[3] National Vulnerability Database, http://nvd.nist.gov

[4] N. Antunes and M. Vieira, "Enhancing Penetration

Testing with Attack Signatures and Interface

Monitoring for the Detection of Injection

Vulnerabilities in Web Services," Proc. IEEE Int'l Conf.

Services Computing (SCC 11), IEEE CS, 2011, pp. 104-

111.

[5] IBM Rational AppScan, 2008, http://www-

01.ibm.com/software/awdtools/appscan/

[6] HP WebInspect, 2008, http://www.hp.com

[7] Acunetix Web Vulnerability Scanner,

2008,http://www.acunetix.com/vulnerability-scanner/

[8] Netsparker Web Vulnerability Scanner, 2012,

https://www.netsparker.com/web-vulnerability-scanner/

[9] Burp Suit Web Vulnerability Scanner,

https://portswigger.net/burp/

[10] Foundstone WSDigger, 2008,

http://www.foundstone.com/us/resources/proddesc/wsdi

gger.htm

[11] wsfuzzer, 2008,

http://www.neurofuzz.com/modules/software/wsfuzzer.

php

[12] https://www.owasp.org/images/0/0f/OWASP_T10_-

_2015_rc1.pdf

[13] Foundstone Hacme Series. McAfee Corp

[14] WebGoat Project. OWASP.

http://www.owasp.org/index.php/Category:OWASP

WebGoat Project

[15] K. K. Mookhey, Nilesh Burghate, Detection of SQL

Injection and Cross-site Scripting Attacks, Symantec

Connect Community, 02 November 2010

[16] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R.

Shin, and D. Song, “A Systematic Analysis of XSS

Sanitization in Web Application Frameworks”,

University of California, Berkeley, 2011

[17] The OWASP Foundation, “OWASP Top Ten Web

Application Security Risks”,

http://www.owasp.org/index.php/Category:OWASP_To

p_Ten_Project, 2015

[18] Oracle Documentation. “Using Prepared Statements”,

2011. Retrieved 2012 from:

http://docs.oracle.com/javase/tutorial/jdbc/basics/prepar

ed.html

[19] Yang Guang, J. J., & Jipeng, H. “System modules

interaction based stress testing model”, 2014. The

Second International Conference on Computer

Engineering and Applications, (pp. 138-141) Bali Island

[20] Neto, A. A., Duraes, J., Vieira, M., & Madeira, H.

“Assessing and Comparing Security of Web Servers”,

2008. 14th IEEE Pacific International Symposium on

Dependable Computing. IEEE Computer Society

[21] Shekyan, S. Qualys Community. “Identifying Slow

HTTP Attack Vulnerabilities on Web Applications”,

2013

[22] Shekyan, S. Qualys Community. “How to Protect

Against Slow HTTP Attacks”, 2014

[23] Apache Software Foundation. “Security Tips, V 2.5”,

2011. Retrieved 2014, from:

http://httpd.apache.org/docs/2.0/misc/security_tips.html

[24] Black, P. E., Fong, E., Okun, V., & Gaucher, R.

National Institute of Standards and Technology (NIST).

“Software Assurance Tools: Web Application Security

Scanner Functional Specification”

[25] Vieira M, Antunes N, Madeira H. “Using Web Security

Scanners to Detect Vulnerabilities in Web Services”,

Coimbra - 2015

IJCATM : www.ijcaonline.org

http://nvd.nist.gov/
http://www-01.ibm.com/software/awdtools/appscan/
http://www-01.ibm.com/software/awdtools/appscan/
http://www.hp.com/
https://www.netsparker.com/web-vulnerability-scanner/
https://portswigger.net/burp/
http://www.foundstone.com/us/resources/proddesc/wsdigger.htm
http://www.foundstone.com/us/resources/proddesc/wsdigger.htm
http://www.neurofuzz.com/modules/software/wsfuzzer.php
http://www.neurofuzz.com/modules/software/wsfuzzer.php
https://www.owasp.org/images/0/0f/OWASP_T10_-_2015_rc1.pdf
https://www.owasp.org/images/0/0f/OWASP_T10_-_2015_rc1.pdf
http://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html
http://docs.oracle.com/javase/tutorial/jdbc/basics/prepared.html
http://httpd.apache.org/docs/2.0/misc/security_tips.html

