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ABSTRACT
In this research, we employ the extended exp(−ϕ(ξ))expansion
method for the first time to obtain the exact and solitary wave so-
lutions of the (3+1)-Dimensional Yu-Toda-Sasa-Fukuyama Equa-
tion. We obtain the wide range of exact and solitary wave solutions
of distinct physical structure.
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1. INTRODUCTION
Most of complicated phenomena in physics and different branches
of applied science (plasma, fluid mechanics, optical fibers,
solid state physics, chemical kinetics and geochemistry phenom-
ena...etc.) can be represented by nonlinear partial differential equa-
tions (NLPDEs.) which are widely used to describe them.The non-
linear partial differential equations of mathematical physics are
major subjects in physical science [1]. Investigation the exact so-
lutions of NLPDEs. help us to understand the nonlinear physical
phenomena. Recently, many solutions methods have been intro-
duced to get the exact solutions of NLPDEs. For example, ex-
tended Jacobian Elliptic Function Expansion Method [2], the modi-
fied simple equation method[3], the tanh method [4], extended tanh
- method [5]-[7], sine - cosine method [8]-[10], homogeneous bal-
ance method [11, 12],F-expansion method [13]-[15], exp-function
method [16, 17], trigonometric function series method [18], (G

′

G
)−

expansion method [19]-[22], Jacobi elliptic function method [23]-
[26], The exp(−ϕ(ξ))-expansion method[27]-[29] and so on.
In this article we propose a new method to get the exact travel-
ing wave solutions and the solitary wave solutions of the (3+1)-
Dimensional Yu-Toda-Sasa-Fukuyama Equatio which is a widely
used model for investigation the dynamics of solitons and nonlinear
wave in areas such as fluid dynamics, plasma physics and weakly
dispersive media by using the extended exp(−ϕ(ξ))-expansion
method.
The rest of this paper is organized as follows: In Section 2, we give
the description of The extended exp(−ϕ(ξ))-expansion method In

Section 3, we use this method to find the exact solutions of the
nonlinear evolution equations pointed out above. In Section 4, con-
clusions are given.

2. DESCRIPTION OF METHOD
Consider the following nonlinear evolution equation in the polyno-
mial form

F (u, ut, ux, utt, uxx, ....) = 0, (1)

in which the highest order derivatives and nonlinear terms are in-
volved. In the following,we give the main steps of this method
Step 1. We use the wave transformation

u(x, y, z, t) = u(ξ), ξ = x+ y + z − ωt, (2)

where c is a positive constant, to reduce Eq. (1)to the following
ODE:

P (u, u′, u′′, u′′′, .....) = 0, (3)

where P is a polynomial in u(ξ) and its total derivatives,while ′ =
d
dξ

′
.

Step 2. Suppose that the solution of ODE (3) can be expressed by
a polynomial in exp(−ϕ(ξ)) as follows

u(ξ) =

m∑
i=−m

ai (exp (−ϕ (ξ)))i , (4)

Since am (0 ≤ m ≤ n) are constants to be determined, such that
amora−m 6= 0.
the positive integer m can be determined by considering the ho-
mogenous balance between the highest order derivatives and non-
linear terms appearing in Eq. (3). Moreover precisely, we define
the degree of u (ξ) as D (u (ξ)) = m, which gives rise to degree
of other expression as follows:

D

(
dqu

dξq

)
= n+ q, D

(
up
(
dqu

dξq

)s)
= np+ s (n+ q) .

Therefore, we can find the value of m in Eq. (3), where ϕ = ϕ(ξ)
satisfies the ODE in the form

ϕ′(ξ) = exp (−ϕ (ξ)) + µexp (ϕ (ξ)) + λ, (5)
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the solutions of ODE (3) are
when λ2 − 4µ > 0, µ 6= 0,

ϕ(ξ) = ln

−
√
λ2 − 4µ tanh

(√
λ2−4µ
2

(ξ + C1)
)
− λ

2µ

 ,

(6)
and

ϕ(ξ) = ln

−
√
λ2 − 4µ coth

(√
λ2−4µ
2

(ξ + C1)
)
− λ

2µ

 ,

(7)
when λ2 − 4µ > 0, µ = 0,

ϕ(ξ) = −ln
(

λ

exp (λ (ξ + C1))− 1

)
, (8)

when λ2 − 4µ = 0, µ 6= 0, λ 6= 0,

ϕ(ξ) = ln

(
−2 (λ (ξ + C1) + 2)

λ2 (ξ + C1)

)
, (9)

when λ2 − 4µ = 0, µ = 0, λ = 0,

ϕ(ξ) = ln (ξ + C1) , (10)

when λ2 − 4µ < 0,

ϕ(ξ) = ln


√

4µ− λ2 tan
(√

4µ−λ2

2
(ξ + C1)

)
− λ

2µ

 ,

(11)
and

ϕ(ξ) = ln


√

4µ− λ2 cot
(√

4µ−λ2

2
(ξ + C1)

)
− λ

2µ

 ,

(12)
where am, . . . . . . , λ, µ are constants to be determined later,
Step 3. After we determine the index parameter m, we substitute
Eq. (4) along Eq. (5) into Eq. (3) and collecting all the terms of
the same power exp (−mϕ(ξ)), m = 0, 1, 2, 3, .... and equating
them to zero, we obtain a system of algebraic equations, which can
be solved by Maple or Mathematica to get the values of ai.
Step 4. substituting these values and the solutions of Eq. (5) into
Eq. (3) we obtain the exact solutions of Eq. (3).

3. THE (3+1)-DIMENSIONAL
YU-TODA-SASA-FUKUYAMA EQUATION

Let us consider the (3+1)-Dimensional Yu-Toda-Sasa-Fukuyama
Equation [30, 31]

−4uxt + uxxxz + 4uxuxz + 2uzuxx + 3uyy = 0. (13)

This equation is a potential-type counterpart of the (3+1)-
dimensional nonlinear equation

(−4vt + φ(v)vz)x + 3vyy = 0, φ = ∂2
x + 4v + 2vx + 2vx∂

−1
x ,
(14)

introduced by Zhang et al [30] and Hu et al [31], while mak-
ing the (3+1)-dimensional generalization from (2+1)-dimensional
Calogero-Bogoyavlenkii-Schiff equation [32]:

−4vt + φ(v)vz = 0, φ = ∂2
x + 4v + 2vx∂

−1
x , (15)

as did for the KP equation from the KdV equation. Taking v = ux
Eq.y2 transform into the potential-YTSF Eq. (13). By using the
transformation (2) we get

u′′′ + 3u′2 + (4ω + 3)u′ = 0. (16)

Balancing U ′′′ and u′2 we get m = 1. So that we assume the solu-
tion be in the form

u(ξ) = a−1exp(ϕ(ξ)) + a0 + a1exp(−ϕ(ξ)). (17)

Substituting Eq. (17) and its derivatives into Eq. (16) and col-
lecting all term of the same power of exp(−iϕ(ξ)) where (i =
0,±1,±2,±3, ...) and equating them to zero, we obtain system of
algebraic equation by solving them by using Maple 16 we get
Case 1.

ω = µ− 1

4
λ2 − 3

4
, a0 = a−1 = 0, a1 = 2.

The solutions of Eq. (16) according these values
When λ2 − 4µ > 0, µ 6= 0,

u(ξ) =
−4µ√

λ2 − 4µ tanh
(√

λ2−4µ
2

(ξ + C1)
)

+ λ

, (18)

and

u(ξ) =
−4µ√

λ2 − 4µ coth
(√

λ2−4µ
2

(ξ + C1)
)

+ λ

. (19)

When λ2 − 4µ > 0, µ = 0,

u(ξ) =
2λ

exp (λ (ξ + C1))− 1
. (20)

When λ2 − 4µ = 0, µ 6= 0, λ 6= 0,

u(ξ) =
−4 (λ (ξ + C1) + 2)

λ2 (ξ + C1)
(21)

When λ2 − 4µ = 0, µ = 0, λ = 0,

u(ξ) =
2

ξ + C1

. (22)

when λ2 − 4µ < 0,

u(ξ) =
4µ√

λ2 − 4µ tan
(√

λ2−4µ
2

(ξ + C1)
)
− λ

, (23)

u(ξ) =
4µ√

λ2 − 4µ cot
(√

λ2−4µ
2

(ξ + C1)
)
− λ

, (24)

Case 2.
µ =

3

4
+ ω, λ = a0 = a−1 = 0, a1 = 2.
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The solutions of Eq. (16) according these values
When λ2 − 4µ > 0, µ 6= 0, µ < 0

u(ξ) =
−4µ√

λ2 − 4µ tanh
(√

λ2−4µ
2

(ξ + C1)
)

+ λ

, (25)

and

u(ξ) =
−4µ√

λ2 − 4µ coth
(√

λ2−4µ
2

(ξ + C1)
)

+ λ

. (26)

when λ2 − 4µ < 0, µ > 0

u(ξ) =
4µ√

λ2 − 4µ tan
(√

λ2−4µ
2

(ξ + C1)
)
− λ

, (27)

u(ξ) =
4µ√

λ2 − 4µ cot
(√

λ2−4µ
2

(ξ + C1)
)
− λ

, (28)

Case 3.
µ =

3

4
+

1

4
λ2 + ω, a0 = a1 = 0, a−1 =

−3

2
− λ2

2
− 2ω.

The solutions of Eq. (16) according these values
When λ2 − 4µ > 0, µ 6= 0,

u(ξ) =

(
−3

2
− λ2

2
− 2ω

)
A, (29)

and

u(ξ) =

(
−3

2
− λ2

2
− 2ω

)
B, (30)

When λ2 − 4µ > 0, µ = 0,

u(ξ) =

(
−3

2
− λ2

2
− 2ω

)
exp (λ (ξ + C1))− 1

λ
. (31)

When λ2 − 4µ = 0, µ 6= 0, λ 6= 0,

u(ξ) =

(
−3

2
− λ2

2
− 2ω

)
λ2 (ξ + C1)

2 (λ (ξ + C1) + 2)
. (32)

When λ2 − 4µ = 0, µ = 0, λ = 0,

u(ξ) =

(
−3

2
− λ2

2
− 2ω

)
(ξ + C1) . (33)

when λ2 − 4µ < 0,

u(ξ) =

(
−3

2
− λ2

2
− 2ω

)
C, (34)

u(ξ) =

(
−3

2
− λ2

2
− 2ω

)
D. (35)

Case 4.
ω = 4µ− 3

4
, a0 = λ = 0, a−1 = −2µ, a1 = 2.

The solutions of Eq. (16) according these values
When λ2 − 4µ > 0, µ 6= 0, µ < 0

u(ξ) =
A

−2µ
− +4µ√

λ2 − 4µ tanh
(√

λ2−4µ
2

(ξ + C1)
)

+ λ

,

(36)
and

u(ξ) =
B

−2µ
− 4µ√

λ2 − 4µ coth
(√

λ2−4µ
2

(ξ + C1)
)

+ λ

,

(37)
when λ2 − 4µ < 0, µ > 0

u(ξ) =
C

−2µ
− 4µ√

λ2 − 4µ tan
(√

λ2−4µ
2

(ξ + C1)
)

+ λ

, (38)

u(ξ) =
D

−2µ
− 4µ√

λ2 − 4µ cot
(√

λ2−4µ
2

(ξ + C1)
)

+ λ

, (39)

where

A =

−
√

4µ− λ2 tanh
(√

4µ−λ2

2
(ξ + C1)

)
− λ

2µ

 (40)

B =

−
√

4µ− λ2 coth
(√

4µ−λ2

2
(ξ + C1)

)
− λ

2µ

 (41)

C =

−
√

4µ− λ2 tan
(√

4µ−λ2

2
(ξ + C1)

)
− λ

2µ

 (42)

D =

−
√

4µ− λ2 cot
(√

4µ−λ2

2
(ξ + C1)

)
− λ

2µ

 (43)

4. CONCLUSION
In this research, we introduce a new technique namely the extended
exp(−ϕ(ξ))-expansion method for the first time to finding the ex-
act and solitary wave solutions the (3+1)-Dimensional Yu-Toda-
Sasa-Fukuyama equation which play an important role in mathe-
matical physics. From the suggested method we found that it in-
troduce 24 solitary wave solutions according to 4 cases and these
solutions give a wide range and more accurate than that obtained
by other methods such as tanh method,

(
G′

G

)
-expansion method,

the exp(−ϕ(ξ))-expansion method and modified simple equation
method. These solutions give more interpretation for the physical
properties to the equation studied.
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