
International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.4, July 2016

1

Monitoring Software Failure Process using Half Logistic
Distribution

R. Satya Prasad
PhD, Associate Professor

Dept. of CS & Engg.
Acharya Nagarjuna University

K. Sowmya
Assistant Professor

Dept. of CSE
Dhanekula Institute of

Engineering & Technology

R. Mahesh
Dept. of CSE

Dhanekula Institute of
Engineering & Technology

ABSTRACT

In this paper, Software reliability is the anticipation of

operations which are free of error in the software in a stated

environment during the detailed time duration. Statistical

Process Control can survey the gauging of software failure

and thereby devote significantly to the enhancement of

software reliability. Such an assessment assists the software

development team to pinpoint and diagnose their actions

during software failure process and hence, assure superior

software reliability. A control mechanism planted on the

cumulative observations of interval domain failure data using

mean value function of the Half Logistic Distribution (HLD)

based on Non Homogeneous Poisson Process (NHPP) is

proposed. The maximum likelihood estimation approach is

used to estimate the unknown parameters of the model. A new

mechanism is coded to analyze the observations instead of

using regular control charts.

General Terms

Decision Rule, Software testing, Software failure data,

Quality Software.

Keywords

Statistical Process Control (SPC); Software reliability;

Probability limits; HLD; Maximum Likelihood Estimation;

Failure count data

1. INTRODUCTION
Software reliability assessment is vital to appraise and

envision the reliability and pursuance of software system. The

gauging of Software reliability process is like biting of more

than to be chewed. Over the years, several intellectuals have

endorsed the benefits of SPC for software process monitoring.

A few others have focal pointed the potential entanglements

in its use[1]. Few cogitations equip the guidelines in the

practice of SPC by modifying general SPC principles to

costume the special requirements of software development [2]

[3][4]. It is especially obvious that Burr and Owen supplied

crucial ground rules by portraying the techniques currently in

prevalent for governing the reliability of software SPC

concepts and methods, which are further recycled to access

the performance of a software process over time in order to

authenticate that the process remains in the stand of statistical

control. It guides in finding debatable causes, remote future

upgrades in the software process. To pin point and wipe out

human errors in software development process and also to

enhance software reliability, the Statistical Process Control

(SPC) concepts and methods are the best choice.

Software process control is employed to guarantee the quality

of the eventual product which will adhere to preordained

norms. A proceeding is treated as statistically “in-control”

when it behaves with few and far between elements of

deviation and when assignable variations are prevalent, then it

can be claimed the process is statistically “out-of-control”.

The widely used convention for studying the control state of

process is control charting. SPC provides problem solving

analysis to inaugurate tractable process baselines; understand,

specific and vigorously enhance process capabilities; and

target business areas needing calibration. The initial inference

of software missteps will mitigate the software reliability. The

appropriation of suitable SPC charts is required for impressive

statistical process control implementation and practice. The

SPC chart choice is depended on data, circumstances and

necessity [5].A from scratch alternative approach is devised,

framed and successfully enforced to supplant the practice of

classical control charts without comprising the standards of

classical control chart.

The prime thrust of the manuscript is to designate and crop up

a list of instructions in a disciplined manner with a prospect to

guide the practitioner with correct usage of SPC during

software process monitoring and propose an alternate control

chart mechanism.

2. MODEL SELECTION
A reliability growth model is vital to figure out the prevailing

reliability level, the time and resources needed to attain the

intended reliability level. In the course of this aspect,

reliability assessment is depended upon the study of failure

data. The number of failures alighted can be signified as

stochastic counting process featured by its mean value

function. Aforementioned process can be expressed by a

Poisson model. Software reliability can be predicted once

with the persisting failure count, and then a value function is

measured using this. The afresh charting model is coded and

has been used in the software engineering so as to enhance the

quality of software products.

A thrust employing SPC in gauging software reliability is

conducted by Stieber (1997). The Sequential Probability Ratio

Test [6] considers that software failure adapt a Homogenous

Poisson Process (HPP). But, more frequently, the cases

encountered in existence are non-homogenous. Counting on

this, the failure process is audited both on Time domain data

and Interval domain data.

There are two main sectors of software reliability models: the

deterministic and the probabilistic. The degree of act of the

deterministic type is secured by inspecting the program

texture and does not get involved with any random event.

Two outstanding eminent metric models are: McCabe‟s

Cyclomatic complexity metric (McCabe, 1976) and

Halstead‟s software metric (Halstead, 1977). The probabilistic

model serves the failure occurrences and the faults elimination

as probabilistic events. The probabilistic software reliability

models can be categorized into different groups [7] such as,

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.4, July 2016

2

Error seeding, Curve fitting, Failure rate, Reliability growth,

Markov structure, Time-series and NHPP. Counting processes

in reliability engineering are extensively contrived to portray

the possibility of events in time, e.g., failures, number of

perfect repairs, etc. The straightforward counting process is a

Poisson process. Poisson-type models consider that the count

of the failures obtained with in distinct time intervals is

separate.

(1) Homogeneous Poisson Process (HPP): with the same rate

of failure.

(2) Non-Homogeneous Poisson process (NHPP): with a

varying rate of failure

NHPP type of software reliability models and methods for

predicting software reliability are under limelight at present.

2.1 Interval Domain /Failure count models
In Failure count models, the variable in focal point is the

failure count noticed in a specified time interval and this is

designed with regard to a Poisson process. As faults are

removed from the system it is expected that the observed

number of failures per unit time will diminish. Here, the time

metric can be calendar time or CPU time. The time intervals

are fixed and recorded failure count in each interval is treated

as a random variable. The pioneering models of this category

are due to Goel and Okumoto (1979), Yamada et al., (1983)

and Musa and Okumoto (1984). The key assumptions are

given as follows [7]

Testing intervals are independent of each other. Testing with

in intervals is reasonably homogeneous. Number of faults

detected during non-overlapping intervals is independent of

each other.

Due to the data essentials for both time domain and interval

domain models, considerable testing need to be performed to

estimate the parameters. There are several functions of

fundamental importance in modern reliability engineering [8].

The first and foremost fundamental function of importance is

the density function. For a continuous variable, the density

function is denoted by f(t), gives the relative frequency with

which the t-values occur. Characteristic of these density

functions is the fact that f t dt = 1
D

 for the continuous

case. Here, „D‟ denotes the domain of definition or interval of

integration. All other functions considered depend on the

density function and its characteristics.

The second important function from the estimation and

interpretation standpoint is the cumulative density function

and is denoted by F (t). Which is given as F (t) = f t dt
t

t0
.

Where, ′t0 ′is the lower limit of domain „D‟.

2.2.Half Logistic Distribution
The estimation of parameters for the Half Logistic Software

Reliability Growth Model (SRGM)[14] introduced can be

adapted for software failure count data in the pattern of

interval domain failure data of a software product.

Occasionally data would be at hand in the form of number of

failures encountered in a span of time. The maximization of

such inference would give us better and apt results.[7]

Maximum Likelihood estimates of the parameters of an

SRGM are totally different and needs a separate treatment.

The equation for mean value function m(t) and intensity

function λ(t) of HLD[9] is given by

m (t) =
a 1−e−bt

 1+e−bt
, a>0, b>0,t≥0 (1)

λ (t) =
2ab e−bt

 1+e−bt
2 , a>0, b>0,t≥0 (2)

In equations (1) and (2) „a‟ indicates number of errors and „b‟

indicates error rate.

2.3.MLE (Maximum Likelihood) Parameter

Estimation
Assessment of parameters is very influential in predicting the

software reliability. Upon concluding the analytical solution

for m(t) for the specific model, the Maximum Likelihood

Estimate (MLE) technique is enforced for attaining the

parameter estimation. The crucial intention of Maximum

Likelihood parameter Estimation is to resolve the parameters

that magnify the probability of the fragment data. The MLE is

deliberated as vigorous, robustious and mathematically fierce.

They yield estimators with good statistical factors. In the

outline analysis, MLE methods are resilient, versatile and can

be employed to distinct models and data categories.

Accomplishing to present day‟s computer

capability, the mathematical intensity is not a considerable

hurdle.

The constants „a‟, ‟b‟ surfacing in the mean value function

also appear in NHPP, through the intensity function to

materialize error detection rate and in various other

expressions are treated as parameters of the model. To assess

the software reliability, the unknown parameters „a‟ and‟ b‟

are to be treasured and they are to be predicted using the

failure data of the software fragment data.

For a detail, let „n‟ be the time instances where the first,

second, third..., kth faults in the software are encountered. It

can be consolidated as, if Tk is the total time to the kth

failure, tk is an observation of random variable Tk and „n‟

such similar failures are successively recorded. The combined

probability of such failure time grasps t1, t2,.….tn is given by

the Likelihood function as

L = e−m(tn). m′(tk
n
K=1) (3)

The logarithmic application on the equation (3) would result a

log likelihood function and is given in equation (4).

LogL = ni − ni−1 . log m ti − m ti−1
k
i=1 - m tk (4)

The Maximum Likelihood Estimators (MLEs) is featured to

maximize L and estimate the values of „a‟ and „b‟. The

process to maximize is by applying partial derivation with

respective to the unknown variables and equate to zero to

obtain a close form for the required variable. If the closed

form is not destined, then the variable can be estimated using

Newton Raphson Method. Subsequently „a‟ and „b‟ would be

solutions of the equations.

Implanting the equations for m(t), (t) given by (1) and (2)

in equation (4) and executing the aforementioned process and

with the aid of few combined simplifications, and obtain a

closure form for variable „a‟ in terms of „b‟.

log log
0 , 0

L L

a b

,

0
log

2

2

b

L

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.4, July 2016

3

a = nk − n0
1+e−b tk

1−e−bk (5)

g b = nk − n0

2.t i e−b ti

 1+e−b ti
2 −

2.t i e−b ti −1

 1+e−b ti −1
2

1−e−b ti

1+e−b ti
 −

1−e−b ti −1

1+e−b ti −1

k
i=1 −

2. nk−n0 .tk .e−b tk

 1−e−b tk 1+e−b tk
 (6)

g′(b) = nk − n0

2.t i
2.e−b ti 1−e−b ti

 1+e−b ti
2 −

2.t i−1
2 .e−b ti−1 1−e−b ti−1

(1+e−b ti−1)2

1−e−b ti

1+e−b ti
−

1−e−b ti−1

1+e−b ti−1
 −

2.t i .e−b ti

(1+e−b ti)2
−

1−e−b ti−1

1+e−b ti−1

2.t i .e−b ti

(1+e−b ti)2
−

2.t i .e−b ti

(1+e−b ti)2

1−e−b ti

1+e−b ti
−

1−e−b ti−1

1+e−b ti−1

2

k
i=1

 +
2. nk−n0 .tk

2
.e
−btk .(1+e

−btk)

(1−e−btk)
2

(1+e−btk)
2 (7)

Newton-Raphson method is utilized for attaining „b‟ value

and further it can be substituted in equation (5) to get value of

„a‟

3. CONTROL LIMITS
The control limits need to be stated in a matter of course that

the process is scrutinized to be dissipated off balance

immediately upon the time of marking exactly one failure is

less than LCL or greater than UCL. The main aspiration here

is to invigilate the failure process and unmask any deviation in

the intensity parameter. Despite the process is proper

governance, there might occur an offhand situation

sometimes, and it is treated as a false alarm. The causes of the

false alarm are diverse and not considered here. The

continuous deviations help to determine the accessibilities of

the software.

Accustomed to the data readings and the fragment capacity

and using equations (5), (6), (7), the parameters number of

errors and error rate are enumerated by working with the

prominent NR method. A program coded in C#.Net [15] is

used for this purpose. The equation for mean value function of

HLD is given by (1) is used for obtaining control limits as

follows [29].

m(t) =
a 1−e−bt

 1+e−bt

Delete the term „a‟ from the mean value function. Equating

the remaining function successively to 0.99865, 0.00135, 0.5

and solve „t‟, for HLD, in order to get the usual 3 sigma

corresponding control limits, central line.

F (t) =
 1−e−bt

 1+e−bt
= 0.99865

 1 − e−bt = 0.99865 1 + e−bt

e−0.95bt = 0.0512825

bt= log(0.000675456)

t = 1 b 7.300122639 = tU (8)

It gives

Ltt)002700002.0(1/b
 (9)

Ctt)098612289.1(1/b
 (10)

The afore mentioned control limits are further used to

compute specific limits UCL, LCL and CL by substituting the

tU, tC and tL in m(t) and which results m(tU), m(tC) and

m(tL) respectively. These mean time specifics are

distinguished as UCL, CL and LCL consequently. The

observations which are noticed above UCL and LCL are

alarm signals. A point below the m(tL) that is LCL is an

inkling of more desirable quality of software. The

observations inward the control limits express durable process

4. DESIGNED CONTROL CHARTS
Walter A. Shewhart devised control charts during his

contributions to Bell Labs in the 1920s. These control charts

are also acknowledged as Shewhart charts (Nelson, 1984) or

process behavior charts. A control chart is a precise category

of run charts that grant extensive adjustments to be distinct

from the regular usage of the process. They thus clearly

distinct the required tailored special variation from the

common. These are indeed graphical tools and thus extend the

users to clearly picture the nature and quantity of deviation

pertaining in a system. A control chart comprises few notable

features like points representing the measurements of a quality

characteristic, a CL is drawn at the value of the mean of the

statistic and UCL, LCL that indicate the threshold at which

the process output is considered statistically 'unlikely'. These

features of control charts are incubated and a new control

charts mechanism is code using C#.Net

private void calculations()

 {

 gettestdata();

 int i = 0;

 double g1, g2, a;

 List<double> b = new List<double>();

 b.Add(Convert.ToDouble(txtbxSeed_Val.Text));

 i = -1;

 do

 {

 i = i + 1;

 g1 = g(b[i]);

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.4, July 2016

4

 g2 = gdash(b[i]);

 b.Add(b[i] - (g1 / g2));

 } while (Math.Abs(b[i + 1] - b[i]) >= 0.00001);

 txtbxFinal_b_val.Text = b[i + 1].ToString();

 a = (n[k-1] - n[0]) *

 (

 ((double)1 + Math.Exp(-b[i + 1] * t[k - 1]))

 /

 (1 - Math.Exp(-b[i + 1] * t[k - 1]))

);

 txtbx_a_Value.Text = a.ToString();

 }

 private double g(double b)

 {

 int i;

 double sum = (double)0.0, cons = (double)0.0,

g_val;

 double p, q, r, s;

 cons = (-2 * (n[k - 1] - n[0]) * t[k - 1] *

Math.Exp(-b * t[k - 1]))

 /

 (1 - Math.Exp(-2 * b * t[k - 1]));

 for (i = 1; i < k; i++)

 {

 p = ((2 * t[i] * Math.Exp(-b * t[i])) / (sqr(1 +

Math.Exp(-b * t[i]))));

 q = ((2 * t[i - 1] * Math.Exp(-b * t[i - 1])) /

(sqr(1 + Math.Exp(-b * t[i - 1]))));

 r = (1 - Math.Exp(-b * t[i])) / (1 + Math.Exp(-b

* t[i]));

 s = (1 - Math.Exp(-b * t[i - 1])) / (1 +

Math.Exp(-b * t[i - 1]));

 sum = sum + ((p - q) / (r - s));

 }

 g_val = (n[k - 1] - n[0]) * sum + cons;

 return g_val;

 }

 double gdash(double b)

 {

 int i;

 double gdash_val, sum = 0, cons = 0;

 double p, q, r, s, pdash, qdash, rdash, sdash;

 cons = (2 * (n[k - 1] - n[0]) * sqr(t[k - 1]) *

Math.Exp(-b * t[k - 1]) * (1 + Math.Exp(-2 * b * t[k - 1])))

 /

 (sqr(1 - Math.Exp(-b * t[k - 1])) * sqr(1 +

Math.Exp(-b * t[k - 1])));

 for (i = 1; i < k; i++)

 {

 p = ((2 * t[i] * Math.Exp(-b * t[i])) / (sqr(1 +

Math.Exp(-b * t[i]))));

 q = ((2 * t[i - 1] * Math.Exp(-b * t[i - 1])) /

(sqr(1 + Math.Exp(-b * t[i - 1]))));

 r = (1 - Math.Exp(-b * t[i])) / (1 + Math.Exp(-b

* t[i]));

 s = (1 - Math.Exp(-b * t[i - 1])) / (1 +

Math.Exp(-b * t[i - 1]));

 rdash = p;

 sdash = q;

 pdash = ((2 * sqr(t[i]) * Math.Exp(-b * t[i])) *

(-1 * (1 + Math.Exp(-b * t[i])) + 2 * Math.Exp(-b * t[i]))) /

(sqr((1 + Math.Exp(-b * t[i]))) * (1 + Math.Exp(-b * t[i])));

 qdash = ((2 * sqr(t[i - 1]) * Math.Exp(-b * t[i -

1])) * (-1 * (1 + Math.Exp(-b * t[i - 1])) + 2 * Math.Exp(-b *

t[i - 1]))) / (sqr((1 + Math.Exp(-b * t[i - 1]))) * (1 +

Math.Exp(-b * t[i - 1])));

 sum += (((pdash - qdash) * (r - s)) - ((rdash -

sdash) * (p - q))) / sqr((r - s));

 }

 gdash_val = (n[k - 1] - n[0]) * sum + cons;

 return gdash_val;

 }

 double sqr(double x)

 {

 return (x * x);

 }

 private void btnGenChart_Click(object sender,

EventArgs e)

 {

chart1.Series[0].Points.Clear();

chart1.Series[1].Points.Clear();

chart1.Series[2].Points.Clear();

chart1.Series[3].Points.Clear();

 chart1.Visible = true;

chart1.ChartAreas[0].AxisX.Minimum = 0;

chart1.ChartAreas[0].AxisY.Minimum = 0.001;

chart1.ChartAreas["ChartArea1"].AxisX.MajorGrid.Enab

led = false;

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.4, July 2016

5

chart1.ChartAreas["ChartArea1"].AxisY.MajorGrid.Enab

led = false;

stringStrQuery;

stringconnetionString = null;

connetionString =

HalfLogisticDistribution.Properties.Settings.Default.HalfLDis

_DBConnectionString;

SqlConnection con = new

SqlConnection(connetionString);

SqlCommandcmd = new SqlCommand();

doublem_t_u, m_t_l, m_t_c;

 List<double>succ_m_t = new List<double>();

 List<double>cumm_fd = new List<double>();

try {

StrQuery = "select m_t_u,m_t_l,m_t_c from

TestTableNames where TestDataName='" +

cmbBxTestTableNames.SelectedItem.ToString().TrimEnd() +

"'";

cmd.CommandText = StrQuery;

cmd.Connection = con;

con.Open();

SqlDataReaderdr;

dr = cmd.ExecuteReader();

dr.Read();

m_t_u = Convert.ToDouble(dr["m_t_u"]);

m_t_l = Convert.ToDouble(dr["m_t_l"]);

m_t_c = Convert.ToDouble(dr["m_t_c"]);

dr.Close();

StrQuery = "select cumm_fd,s_m_t from " +

cmbBxTestTableNames.SelectedItem.ToString().TrimEnd();

cmd.CommandText = StrQuery;

dr = cmd.ExecuteReader();

while (dr.Read())

 {

cumm_fd.Add(Convert.ToDouble(dr[0]));

if(!DBNull.Value.Equals(dr[1]))

succ_m_t.Add(Convert.ToDouble(dr[1]));

 }

dr.Close();

chart1.Series["m(tl)"].Points.AddXY(0, m_t_l);

chart1.Series["m(tc)"].Points.AddXY(0, m_t_c);

chart1.Series["m(tu)"].Points.AddXY(0, m_t_u);

for (inti = 0; i< cumm_fd.Count-1;i++)

 {

chart1.Series["m(tl)"].Points.AddXY(cumm_fd[i],

m_t_l);

chart1.Series["m(tc)"].Points.AddXY(cumm_fd[i],

m_t_c);

chart1.Series["m(tu)"].Points.AddXY(cumm_fd[i],

m_t_u);

chart1.Series["Successive Diff of

m(t)"].Points.AddXY(cumm_fd[i], succ_m_t[i]);

 }

 }

catch (Exception ex) {

MessageBox.Show(ex.Message.ToString() + "Can not

complete the operation. Try again!! ");

 }

finally {

con.Close();

 }

 }

5. RESULTS

The procedure of monitoring software process with failure

domain data through failure control chart will be illustrated

with examples. With the stated process the appropriate values

for parameters „a‟ and „b‟ for an apt seed value are obtained.

Using these values, m(t)values and thus their successive

differences can also be obtained. Here two real time datasets

(Table 1 & Table 2) [10] which contain failure data of two

distinct projects are considered and demonstrated. Table 1&

Table 2 shows the time between failures of a software product

[10]. Table 3 contains the estimated parameter values for both

the datasets (1 &2) and their respective control limits.

6. CONCLUSION

A control mechanism is proposed for the cumulative

observations of interval domain failure data using mean value

function of the HLD based on Non Homogeneous Poisson

Process. The (MLE) Maximum Likelihood Estimation

approach is used to estimate the unknown parameters of the

model. A new mechanism is coded to analyze the

observations instead of using regular control charts.

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.4, July 2016

6

Table1: Successive differences of mean values of Dataset 1

TT(day) CF m(t) Successive

differences

TT(day) CF m(t) Successive

differences

1 2 3.32911444 3.24619174 12 25 33.4736671 0.850365341

2 3 6.63027763 3.16599679 13 27 35.30622 1.185042

3 4 9.87647 3.063118 14 31 36.981926 0.21476762

4 5 13.0424662 5.74283743 15 32 38.5077 0.846567

5 7 16.1055851 5.14301157 16 38 39.8915977 0.08814403

6 9 19.046257 4.487447 17 39 41.1424 0.205616966

7 11 21.8484211 1.99478745 18 42 42.2693253 0.0526794866

8 12 24.4997063 9.808073 19 43 43.28174 0.122744448

9 19 26.9914322 2.44186473 20 46 44.1889458 0.0314152

10 22 29.3184566 0.6443972 21 47 45

11 23 31.47888 1.08155239

Figure 1: Mean Value Chart for Dataset 1

In figure 1, the control chart, at point 18 of x-axis, highlights

an alarm and consequently at 20 and 22 it further indicates the

failure of the process. The durability of the process is at stake.

Table 2: Successive differences of mean values of Dataset 2

TT(day) CF m(t) Successive
differences

TT(day) CF m(t) Successive
differences

1 1 2.73077273 2.681832 8 13 24.27901 1.33174026

2 2 5.412605 2.58739734 9 15 25.61075 1.61538172

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.4, July 2016

7

3 3 8.000002 4.743524 10 19 27.2261314 0.6404373

4 5 12.7435265 5.71788836 11 22 27.86657 0.146042377

5 8 18.4614143 1.50995469 12 23 28.0126114 0.121249989

6 9 19.9713688 2.47105312 13 24 28.1338615 0.183970675

7 11 22.4424229 1.83658755 14 26 28.3178329

In figure 2, the control chart indicates the reliability of the

project as the mean values are within the limits.

Figure 2: Mean Value Chart for Data Set 2

Table 3: Parameter estimates and Control limits of Interval domain data

DataSet No. of
Samples

Estimated Parameters Control Limits

a b UCL CL LCL

1 21 51.27368 0.130039 51.204464 25.63684 0.069219

2 14 28.717968 0.190755 28.6792 14.358984 0.038769

7. REFERENCES
[1] N. Boffoli, G. Bruno, D. Cavivano, G. Mastelloni;

Statistical process control for Software: a systematic

approach; 2008 ACM 978-1-595933-971-5/08/10.

[2] K. U. Sargut, O. Demirors; Utilization of statistical

process control (SPC) in emergent software

organizations: Pitfallsand suggestions; Springer Science

+ Business media Inc. 2006.

[3] Burr,A. and Owen ,M.1996. Statistical Methods for

Software quality .Thomson publishing Company.ISBN

1-85032-171-X.

[4] Carleton, A.D. and Florac, A.W. 1999. Statistically

controlling the Software process. The 99 SEI Software

Engineering Symposimn, Software Engineering Institute,

Carnegie Mellon University.

[5] MacGregor, J.F., Kourti, T., 1995. “Statistical process

control of multivariate processes”. Control Engineering

Practice Volume 3, Issue 3, March 1995, Pages 403-414 .

[6] Wald, A.(1947). “Sequential Analysis”.Wiley, New

York.

[7] Pham. H., 2006.“System software reliability”, Springer.

[8] E. E. Lewis, 1996 “Introduction to Reliability

Engineering” John Wiley & Sons.

[9] Pham.H., 2003. “Handbook Of Reliability Engineering”,

Springer.

[10] Xie, M., Goh. T.N., Ranjan.P., “Some effective control

chart procedures for reliability monitoring” -Reliability

engineering and System Safety 77 143 -150¸ 2002.

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.4, July 2016

8

[11] MutsumiKomuro; Experiences of Applying SPC

Techniques to software development processes; 2006

ACM 1-59593-085-x/06/0005.

[12] Ronald P.Anjard;SPC CHART selection

process;Pergaman 0026-27(1995)00119-0Elsevier

science ltd.

[13] Dr. R Satya Prasad ,K Ramchand H Rao and Dr. R.R. L

Kantham (2011),” Software Reliability Measuring using

Modified Maximum Likelihood Estimation and SPC”

IJCA Journal, Number 7 – Article1

[14] R.Satya Prasad, Half Logistic Software Reliability

Growth Model,Ph.D. Thesis,2007

[15] Swapna S. Gokhale and Kishore S.Trivedi, 1998.“Log-

Logistic Software Reliability Growth Model”.The 3rd

IEEE International Symposium on High-Assurance

Systems Engineering.IEEE Computer Society.

[16] Kimura, M., Yamada, S., Osaki, S., 1995. ”Statistical

Software reliability prediction and its applicability based

on mean time between failures”. Mathematical and

Computer Modeling Volume 22, Issues 10-12, Pages

149-155.

[17] Koutras, M.V., Bersimis, S., Maravelakis,P.E., 2007.

“Statistical process control using shewart control charts

with supplementary Runs rules” Springer Science +

Business media 9:207-224.

[18] Musa, J.D., Iannino, A., Okumoto, k., 1987. “Software

Reliability: Measurement Prediction Application”.

McGraw-Hill, New York.

[19] Ohba, M., 1984. “Software reliability analysis model”.

IBM J. Res. Develop. 28, 428-443.

[20] Pham.H., 1993. “Software reliability assessment:

Imperfect debugging and multiple failure types in

software development”. EG&G-RAAM-10737; Idaho

National Engineering Laboratory.

[21] Huang, C.Y. and Kuo, S.Y., (2003). “A unified scheme

of some Nonhomogenous Poisson process models for

software reliability estimation”, IEEE Transactions on

Software Engineering, 29 (3): 261-269.

[22] ANSI/IEEE, (1991). "Standard Glossary of Software

Engineering Terminology", STD-729-1991

[23] Ashoka. M., (2010). “Sonata software limited Data Set”,

Bangalore.

[24] Baldassarre, M.T., Boffoli, N., Caivano, D. and

Visaggio, G., (2004). “Managing software process

improvement (SPI) through Statistical Process Control

(SPC)”.In Proc.Of PROFES (kansai city Japan, 5-8.

LNCS Springer, pp. 30-46.

[25] Caivano, D. (2005). “Continuous Software Process

Improvement through Statistical Process Control”,

Proceedings of the European conference of Software

Maintanance and Reengineering-CSMR 05, IEEE

Computer Society.

[26] https://msdn.microsoft.com/

[27] Card, D., (1994). “Statistical Process Control for

Software”, IEEE Software, pp. 95-97.

[28] Chang, Y.P. (2001). “Estimation of Parameters for Non-

homogeneous Poisson Process: Software Reliability with

Change-point Model”, Communications in Statistics:

Simulation and Computation, 30(3):625–635.

[29] “Reliability Engineering Handbook” By

DodsoN/NolaN, CRC Press, 1999.

8. AUTHOR PROFILE
Dr. R. Satya Prasad received Ph.D. degree in Computer

Science in the faculty of Engineering in 2007 from Acharya

Nagarjuna University, Andhra Pradesh. He received gold

medal from Acharya Nagarjuna University for his out

standing performance in Masters Degree. He is currently

working as Associate Professor and H.O.D, in the Department

of Computer Science & Engineering, Acharya Nagarjuna

University. His current research is focused on Software

Engineering. He has published 135 papers in National &

International Journals. So far 20 Ph.D‟s awarded under his

guidance.

K.Sowmya working as Assistant professor, Department of

Computer Science & Engineering, Dhanekula Institute of

Engineering & Technology, Vijayawada, Andhra Pradesh.

Her research interests include Software Engineering and

Cloud Computing.

R.Mahesh pursuing B.Tech in Dhanekula College of

Engineering and Technology. Affiliated to JNTUK, Kakinada.

His research interest in Data Mining, Software Engineering,

CloudComputing.

IJCATM : www.ijcaonline.org

