
International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.5, July 2016

23

FP-Split SPADE-An Algorithm for Finding Sequential

Patterns

Pragya Goel
M.Tech Student

Department of Computer
Science & Applications
Kurukshetra University,

Haryana,India

Rajender Nath
Professor

Department of Computer
Science & Applications
Kurukshetra University,

Haryana,India

Kartik
Student

Kurukshetra Institute of
Technology & Management

Kurukshetra,
 Haryana, India

ABSTRACT
Sequential Pattern Mining (SPM) is one of the key areas in

Web Usage Mining (WUM) with broad applications such as

analyzing customer behavior from weblog files. The current

algorithms in this area can be classified into two broad areas,

namely, apriori-based and pattern-growth based. Apriori

based algorithms for mining sequential patterns need to scan

the database many times as they focus on candidate

generation and test approach. A lot of research has been done

so far, but even the best apriori based algorithm for SPM in

terms of number of database scans is SPADE that scans the

database three times for discovering sequential patterns.

Pattern growth based algorithms avoid the candidate

generation step and the best pattern growth algorithm known

so far is Prefix Span that needs to scan the database at least

twice. In this paper, a novel algorithm for SPM is proposed

called FP-Split SPADE that reduced the database scan to only

one by creating an FP-Split tree and applying SPADE

algorithm on the tree instead on sequence database that

greatly improved the efficiency of mining sequential patterns.

Keywords
Sequential Pattern Mining, Web Mining, SPADE, Apriori,

FP-Split tree

1. INTRODUCTION
Web Mining is one of the main areas of Data Mining and is

defined as the application of data mining techniques to either

web log files or contents of the web documents or to the web

document’s hyperlink structure in order to extract from them

the unknown knowledge and potentially valuable patterns.

Web Mining is of three types- Web Usage Mining, Web

Structure Mining and Web Content Mining. This paper deals

with Web Usage Mining (WUM) that identifies the hidden

patterns of the visitors that accessed the website by

manipulating the web log files data and sequential pattern

mining (SPM) that discovers frequent subsequences as

patterns by analyzing sequence database. This research paper

highlights the goal of SPM in web log data i.e. to discover

user’s frequent sequential patterns while navigating a website.

SPM is an active area of research since its introduction by

Agrawal and Srikant in [2]. The SPM problem is concerned

with inter transaction patterns as opposed to association rule

mining that considered only intra transaction patterns. Thus,

SPM also takes care of the time order and can be seen as a

generalized model of association rule mining due to which

more candidates are generated and hence can be seen as an

extension of association rule mining. Many algorithms are

proposed for mining sequential patterns on the basis of

Apriori heuristic that was first put forward by Agrawal and

Srikant in association mining [1] according to which all

subsequences of a frequent sequence must also be frequent.

Though these Apriori based algorithms performed well, but

they must scan the database frequently. The scanning cost

becomes non trivial as the length of each sequence grows.

Zaki proposed SPADE [4] that was based on Apriori heuristic

but it needed to scan the database three times. Algorithm Free

Span [3] integrated the mining of frequent sequences with

frequent patterns and used projected database that confined

the search and growth of subsequent fragments. It also needed

to scan the database three times. PrefixSpan [5] was an

improved version of FreeSpan and its main idea was that

instead of projecting sequence databases, only the prefix

subsequences were examined and only their corresponding

postfix subsequences were projected into the projected

databases. It scans the database twice leading to efficient

processing. However the above methods still needs to scan the

database at least twice. An algorithm using FP tree [7] was

proposed for mining frequent items but the FP-tree

construction still needed to scan the database twice. FP-split

tree algorithm [8] was an improvement of the FP- tree

algorithm as it scanned the database just once.

In this paper, a new algorithm called FP-Split SPADE is

proposed for mining sequential patterns by using FP-Split

tree. Compared to the previous algorithms that needs to scan

the database many times, our new algorithm scans the

database only once by constructing FP-Split tree from the web

log file and then SPADE algorithm is applied on the FP-Split

tree for discovering all frequent sequences.

The rest of the paper is organized as follows: Section 2

reviews the concept of SPADE and FP-Split tree as the basis

of the proposed algorithm. In Section 3, the new algorithm is

presented, section 4 presents the experimental evaluation of

the proposed algorithm and comparison of the new algorithm

with the previous one and finally section 5 concludes the

paper.

2. RELATED WORK
The problem of mining sequential patterns was first

introduced in [2] in which three algorithms were presented

viz. AprioriAll, AprioriSome, DynamcSome. All the three

algorithms were based on Apriori approach [1] according to

which all subsequences of a frequent sequence must also be

frequent. Apriori based algorithms are further classified into

two types based on database format-horizontal database

format and vertical database format. Using vertical database

format provided the benefit of generating patterns and

calculating their support count without performing costly

database scans. A number of Apriori based algorithms were

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.5, July 2016

24

based on vertical database format from which SPADE

algorithm was most efficient in terms of number of database

scans since it required only three scans of the database to

generate all frequent sequences.

SPADE (Sequential Pattern Discovery using Equivalence

classes) algorithm was proposed in [4] for mining sequential

patterns based on vertical database format. SPADE

decomposed the original problem into smaller sub problems

and used efficient lattice search techniques to solve them

independently in main memory. Only three database scans

were required to discover all the sequences. The major

performance improvement was due to the use of ID lists for

each candidate due to which the support count was calculated

from its ID list, thus reducing the cost of scanning. The

authors decoupled the problem decomposition from pattern

search that reduced both computational and input output costs.

Experiments showed that SPADE was twice as fast as GSP,

the reason being the use of more efficient support counting

method based on id list structure.

An algorithm called GO-SPADE was proposed in [6] that

extended SPADE to incorporate generalized occurrences. The

motivation behind GO-SPADE was that many sequential

databases could contain repetition of items that caused

performance degradation in the traditional SPADE approach.

The authors introduced the concept of generalized occurrences

which were compact representations of several occurrences of

a pattern and described corresponding primitive operators to

manipulate them. Using such a representation reduced the size

of ID lists significantly if large number of consecutive

occurrences appeared in the database. The authors claimed

that this approach not only reduced the memory space used

during the process of extraction but also significantly reduced

the join cost and therefore, the overall execution time.

A novel algorithm bitSPADE was presented in [9] that

combined the best features of SPADE, one of the most

memory efficient algorithm and SPAM, the fastest algorithm.

The authors used the concept of semi vertical database using

bitmap representation of SPAM and combined this semi

vertical database with SPADE’s lattice decomposition into

independent equivalence classes that allowed fast and

efficient enumeration of frequent sequences. A new pruning

strategy was also presented that could be applied

independently to each equivalence class.

pSPADE algorithm was proposed in [10] for mining

sequential patterns using personalized support threshold

value. As each user behavior was unique; using one minimum

support value for all users might affect the pattern generation.

This research introduced a personalized minimum support

threshold for each web users using their Median item support

value for reducing this problem. For selecting the most

appropriate minimum support value for each user, the process

of generating personalized minimum support was done by

manipulating the mathematical median formula. The support

for each item or pages was counted, sorted and then the

median or middle item value was selected based on the

formula presented. After generating the personalized

minimum support, the technique was then implemented in the

SPADE. pSPADE performance was highest on the discovery

of user’s origin.

For enhancing the efficiency of frequent itemsets generation,

the FP-tree and FP-growth algorithms were proposed [7]. FP-

tree was an extended prefix tree structure for storing

compressed and crucial information about frequent patterns.

FP-growth algorithm was based on the FP-tree that exploited

the set of frequent itemsets without candidate itemsets

generation and the FP-tree construction algorithm scanned the

database only twice. Thus efficiency of mining was achieved

by compressing a large database into highly condensed

smaller data structure that avoids costly and repeated database

scans. A divide and conquer based partitioning method was

also used that decomposed the mining task into a set of

smaller tasks, hence dramatically reducing the search space.

The FP-growth algorithm which was based on the FP-tree to

generate frequent itemsets was time-efficient. But the authors

ignored the fact that FP-tree construction could be time

consuming. Thus, to improve the process of FP-tree

construction, a fast algorithm called FP-split was proposed

[8]. The algorithm scanned the database only once for

generating equivalence classes of frequent items, then the

equivalence classes were sorted in descending order for

constructing the FP-split tree. This algorithm was

experimentally found efficient and scalable than the previous

algorithms.

3. FP-SPLIT SPADE PROPOSED

ALGORITHM
As discussed in the related work, some problems were found

in the existing SPADE algorithm in terms of time and

efficiency such as the number of database scans required. The

work done so far to improve the existing SPADE algorithm

has not tried to reduce the number of database scans which is

an important thread to work on. All the existing algorithms

related to SPADE [4][6][9][10] requires three database scans

to find all the frequent sequences To address this problem, a

novel and efficient algorithm called FP-Split SPADE is

proposed for mining frequent sequences that reduces the

database scan to only one by creating an FP-Split tree. The

proposed algorithm is as shown in Fig 1. The algorithm takes

as input minimum support threshold minsup as specified by

the user and dataset D.

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.5, July 2016

25

Fig 1: FP-Split SPADE algorithm

The detailed steps of the proposed algorithm are explained

below with respect to web log file collected from

http://www.uietkuk.org.

Step1: Preprocessing

Algorithm: Preprocessing of the web log file

Input: Raw web log file L

file_extension= file extension of requested uristem field

status_code= HTTP status field

method_name= HTTP access method field

for every entry in L do

 if status_code €/ [200,299] or method_name €/

 [GET or POST] or file_extension €

 [pdf,doc,docx,jpg,gif,png,bmp,css,txt,ico,xls

 spider, crawler] then

 delete this entry from L

 end

 transfer the remaining entries from L to database

end

Output: Cleaned web log file in database DB

Explanation: First of all, web log files are collected. Log files

contain noisy and ambiguous data which may affect the result

of overall mining process. So, to improve the quality of

weblog data, preprocessing needs to be done by removing the

entries that are not necessary for the mining process. For the

purpose of this research, image files (.gif, .jpeg, png, .bmp

etc), document files (.doc, .pdf, .txt, .xlsetc), failed requests

etc are removed from the web log files and the cleaned

weblog file is stored in a database.

Step 2: Create FP-Split tree

Algorithm: Creation of FP-Split tree from cleaned web log

file

Input: Cleaned web log file in database DB

ECP- Equivalence class of page p

Pid -Page id

Sid -Session id in which page p is accessed

Eid -Event id to denote the sequence

Supp-Support of page p

minsup- Minimum support threshold

header_list- header table

F1- Frequent 1 pages

(i) Create ECp with Pid on one side along with Sid and

Eid on the other side.

i.e. ECP = {Pid:{Sid:Eid}}

(ii) for each page p do

 Supp= |ECP |

 if Supp < minsup

 delete the page from DB

 end

 F1{p:supp<minsup}

(iii) Create header_list with F1 on one side and its

occurrence in FP-Split tree on the other side. Save

each F1 in one node or split into number of nodes

according to following rules:

Let n- new node to be added

 p- specific node in the tree

 root- dummy node

 if (p is root && p.link_child==null) then

 p.link_child<-n

 else compare(p.link_child.list,n.list)

 endif

 if(n.list c p.list && p.link_child==null) then

 p.link_child<-n

 else compare(p.link_child.list,n.list)

 endif

 if(n.list∩p.list==Ø && p.link_sibling==null) then

 p.link_child<-n

 else compare(p.link_child.list,n.list)

 endif

Algorithm: FP-Split SPADE (minsup, D)

 //minsup=Minimum support threshold

 // D= Dataset

Begin

1. Collect the dataset

2. Preprocess the dataset till the entries in it are

exhausted and store it in database.

2.1 Perform data cleaning

//by removing the records with keywords

(.jpg, .png, .gif, .bmp, .doc, .docx, .pdf,

.xls, .txt, .css, .ico, spider, crawler) in

URLs

2.2 Perform data filtering

// keep only unique page URLs

3. Construct FP-Split tree by performing a single

database scan

3.1 Create equivalence class of unique pages

computed in step 2.2

3.2 Create frequent-1 pages removing those that

did not satisfy the minsup

3.3 Construct FP-Split tree according to the rules

4. Apply SPADE algorithm on FP-Split tree with no

more database scans required.

4.1 Create frequent-1 and frequent-2 pages

4.2 Create prefix based equivalence class for

frequent-2 pages

4.3 Generalize the generation of rest of the

frequent sequences.

End

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.5, July 2016

26

 if(p.list∩n.list≠Ø && p.list-n.list≠Ø) then

call split(n) and return two nodes n1 and n2.

Output: FP-Split tree

Explanation: Once the database is ready, an FP-split tree [8]

is created through the following steps with the slight

modification of including event identifier EID in the tree to

capture the sequence:

(i) Create equivalence class of pages

Scan the database once to create equivalence class EC of

pages. Equivalence class of a page denotes the list of sessions

in which that page has been accessed along with the event id

to denote the sequence of pages.

(ii) Create frequent 1 pages

Calculate support of each page. The support of page p refers

to the number of records contained in equivalence class of p

i.e. ECp. After calculating support for all pages, delete those

pages whose supports are below the predefined minimum

support threshold.

(iii) Construct FP-Split tree

After generating frequent pages, the equivalence class of

pages is then converted to nodes for the construction of FP-

split tree. A header table is also built so that each page can

point to its first occurrence in FP-split tree. There are two

entries for each page in the header table: one to store frequent

page and other to link to the occurrence of the associated page

in the FP-split tree. Each frequent page can be saved in one

node or split into a number of nodes.

Step 3: Apply SPADE on FP-Split tree

Algorithm: SPADE

Input: DB, FP-Split tree

F1-Frequent 1 pages

F2-Frequent 2 pages

Sid -Session id in which page p is accessed

Pid -Page id

Eid -Event id to denote the sequence

Prefixequi- Prefix based equivalence class

(i) F1 is taken from Step 2.

(ii) F2 is computed by performing vertical to horizontal

transformation of the DB with Sid on one side and

(Pid, Eid) pair on the other side i.e. {Sid :{ Pid,:Eid }}

and then pairing of pages is done for each Sid

removing pairs with sup< minsup.

(iii) Create prefixequi for F2. Two sequences are in

same prefixequi if they share a common k length

prefix.

(iv) for each prefixequi

 generalize the generation of frequent

 sequences.

Output: Frequent sequences

Explanation: After FP-Split tree is created, SPADE algorithm

[4] is applied on it to generate frequent sequences. SPADE

algorithm, works as follows:

(i) First of all, frequent 1 sequences need to be

computed that can be done without any database

scan since we have already computed it while

constructing FP-Split tree.

(ii) After computing frequent 1 sequence, frequent 2

sequences are computed by performing vertical to

horizontal transformation of the database with

session ID on one side and (page, EID) pair on the

other side and then pairing of the pages is done for

each session ID. After that, those pairs are removed

that did not satisfy the support count thus creating a

list of frequent 2 sequences.

(iii) After that prefix based equivalence class is created

by decomposing the original search space into

smaller pieces that can be processed independently

in main memory. The two sequences are in the same

equivalence class if they share a common k-length

prefix.

(iv) After creating prefix based equivalence classes, we

generalize the generation of frequent sequences.

(v) Finally frequent k length sequence that is accessed

the most is obtained.

4. EXPERIMENTAL EVALUATION OF

THE PROPOSED ALGORITHM
In order to evaluate the proposed algorithm, the, existing

SPADE algorithm and proposed FP-Split SPADE algorithm

were implemented using Java programming language and

Netbeans IDE. All experiments were performed on a PC with

Intel Core i3 CPU @ 1.70 GHz, 4GB RAM and 32 bit

Windows 7 Home Premium operating system. The

experiments were performed on dataset collected from a

reputed college’s website http://www.uietkuk.org.

The proposed algorithm was evaluated on the following

parameters- size of dataset and support count.

4.1 Evaluation of Algorithm by varying size

of dataset
Datasets having varying dataset size

(100,150,200,250,300,350,400) were generated for the

purpose of time comparison of the two algorithms and support

count was fixed at 5.

Table 1: Variation of time taken (in sec) with the dataset

size

NUMBER OF

RECORDS

TIME(in sec)

FP-SPLIT

SPADE

TIME(in sec)

SPADE

100 4.052 49.671

150 10.537 59.241

200 28.488 70.440

250 46.122 80.243

300 67.337 92.564

350 110.221 120.334

400 175.201 210.290

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.5, July 2016

27

Fig 2: Performance comparison on the basis of dataset size

Table 1 shows how the time taken by the two algorithms

varies with the dataset size.

The graph in Fig 2 shows that as the dataset size increases, the

time taken by the algorithms also increases. But the proposed

algorithm FP-Split SPADE always takes lesser time than the

traditional SPADE algorithm.

4.2 Evaluation of Algorithm by varying

support count
For the purpose of time comparison on the basis of support

count specified by the user, the two algorithms were run for

different support counts (2,3,4,5,6,7,8,9,10) and the number of

records in the database was fixed at 80.

Table 2: Variation of time taken (in sec) with the support

count

SUPPORT

COUNT

TIME (in sec)

SPADE

TIME (in sec)

FP-SPLIT SPADE

2 35.256 22.245

3 35.241 13.306

4 35.239 10.905

5 35.230 10.140

6 35.220 8.845

7 35.210 8.127

8 35.208 7.815

9 35.200 6.521

10 35.190 3.401

Fig 3: Performance comparison on the basis of support

count

Table 2 shows how the time taken by the two algorithms

varies with the support count specified by the user. It also

shows that as the support count increases from 2 to 10, time

taken by the algorithms decreases i.e. there is an inverse

relationship between support count and time taken. When

support count is high, time taken is low and vice versa.

However the time decreases much more slowly in case of

traditional SPADE algorithm as compared to the proposed FP-

Split SPADE algorithm.

5. CONCLUSION
This paper has proposed a novel algorithm called FP-Split

SPADE for Sequential Pattern Mining based on SPADE and

FP-Split tree algorithms for reducing the number of database

scans. The algorithm has been evaluated on two parameters:

varying dataset size and varying support count. It has been

observed that as the dataset size increases, the time taken by

the algorithm also increases and when the support count is

high, time taken is low and vice versa. But, the time taken by

existing SPADE algorithm is always more than the proposed

algorithm. Thus, the experimental evaluation has shown that

the proposed algorithm has reduced the time taken for

discovering the sequential patterns and FP-Split SPADE

algorithm outperformed the existing SPADE algorithm in

both the cases.

6. REFERENCES
[1] Agrawal, R. and Srikant, R. 1994. Fast algorithms for

mining association rules, In Proceedings of the

20thInternational Conference on Very Large Databases,

VLDB, ACM, 487-499.

[2] Agrawal, R., and Srikant, R. 1995. Mining

sequentialpatterns, In Proceedings of the 11th IEEE

InternationalConference on Data Engineering, 3-14.

[3] Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U.,

and Hsu, M.-C. 2000. FreeSpan: frequent pattern-

projected sequential pattern mining, In Proceedings of

the 6th ACM SIGKDD International Conference

onKnowledge Discovery and Data Mining, 355-359.

0

50

100

150

200

250

100 150 200 250 300 350 400

TI
M

E
IN

 S
EC

O
N

D
S

NUMBER OF RECORDS

SPADE vs FP-SPLIT SPADE on the
basis of file size

FP-SPLIT SPADE SPADE

0
5

10
15
20
25
30
35
40

2 3 4 5 6 7 8 9 10

TI
M

E
IN

 S
EC

O
N

D
S

SUPPORT COUNT

SPADE vs FP-SPLIT SPADE on the
basis of SUPPORT COUNT

SPADE FP-SPLIT SPADE

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.5, July 2016

28

[4] Zaki, M. J. SPADE. 2001. An Efficient algorithm for

mining frequent sequences, Machine Learning, 31-60.

[5] Pei, J., Han, J., Moratzavi-Asl, B., Pinto, H., Chen, Q.,

Dayal and U. PrefixSpan. 2001. Mining Sequential

Patterns Efficiently by Prefix- Projected Pattern growth,

In Proceedings of the 17th IEEE International on Data

Engineering, 215-224.

[6] Leleu, M., Rigotti, C., Boulicaut, J.-F., and Euvrard, G.

2003. GO-SPADE: Mining Sequential Patterns

overDatasets with Consecutive Repetitions, In

Proceedingsof the 3rd International Conference on

MachineLearning and Data Mining in Pattern

Recognition, Springer, 293-306.

[7] Han, J., Pei, J., Yin, Y. and Mao R. 2004.

MiningFrequent Patterns without candidate generation:

AFrequent pattern tree approach, Data Mining and

Knowledge Discovery, Springer, 53-87.

[8] Lee, C.F., Shen and T-H. 2005. An FP-Split Method for

Fast Association Rules Mining, In Proceedings of the3rd

IEEE International Conference on

InformationTechnology: Research and Education, 459-

463.

[9] Aseervatham, S., Osmani, A., and Viennet, E. 2006.

bitSPADE:A Lattice-based Sequential Pattern Mining

Algorithm Using Bitmap Representation, InProceedings

of the 6th IEEE International Conferenceon Data Mining,

792-797.

[10] Alias, S., and Norwawi, N. M. 2008.

pSPADE:Miningsequential pattern using personalized

support thresholdvalue. International Symposium on

Information Technology, IEEE, 1-8.

IJCATM : www.ijcaonline.org

