
International Journal of Computer Applications (0975 – 8887) 

Volume 145 – No.5, July 2016 

29 

A Hybrid Cache Investment Strategy for Distributed 

Database Queries 

Sanju Gupta 
The IIS University 

Jaipur, India 

Swati V. Chande, PhD 
IIIM Jaipur, India 

 

 

ABSTRACT 
Caching is one of the most popular techniques for last decades 

for improve the performance of distributed database queries. 

There are different techniques to implement the caching. This 

paper will present one of the caching methods, i.e. Cache 

Investment Technique. This technique is use to select best 

caching candidates item .These candidates item is not only 

useful for current query but also useful for subsequent queries. 

This paper will review initially existing cache investment 

policies and their comparative analysis in distributed 

environment. Then a new feasible policy proposed which is 

hybrid of existing policies. This proposed policy is based on 

existing a history based policies .This new policy gives us 

better candidate item, this improves the hit ratio. Improvement 

in hit ratio ensures the reusability of stored data efficiently. 

Due to this efficient reuse of stored data, lesser amount of data 

is required to be retrieved from remote location. Thus it 

improves the performance of queries in distributed database 

system. This paper will present the architecture of this 

proposed policy and give the detail explanation of each 

module of proposed policy. 

Keywords 
Distributed database, Caching, Cache investment .Investment 

Cost, Return on Investment (ROI) 

1. INTRODUCTION 
In the distributed system, many activities occur 

simultaneously. Usually, common resources like 

Web/application servers, cache servers, database servers and 

underlying network are shared by many clients. Computing 

load distribution is done by distributed systems. Sharing and 

allocation of resources is a major challenge in designing 

distributed architecture. Strategies like Caching, clustering, 

load-balancing, pooling and time-sharing improves the system 

performance and availability [3]. This paper focus on caching 

and one of the caching method that implementing caching i.e. 

Cache Investment in the distributed environment. 

Emerging distributed query processing system support 

flexible execution strategies. In which each query can be run 

using data shipping or query shipping or combination of both. 

Dynamic data caching can provide excellent availability and 

performance benefit in any distributed environment. A 

Circular Dependency arises when dynamic caching and 

flexible execution are combined: query operator placement 

decisions are based on (cached) data location but Caching 

occurs as a by-product of query operator placement. Due to 

this dependency the query optimization decision/optimal Plan 

for individual query can actually produce sub optimal 

performance for all queries in long run. If the circular 

dependency is not addressed, a distributed query processing 

system will suffer from suboptimal performance and poor 

utilization of caching resources. To address this problem, in 

1997 Mr.Kossman and Mr.Fraklin have developed Cache 

Investment. Cache investment is a technique for combining 

data placement and query optimization in a manner that does 

not change the query optimizer directly. The cache investment 

based on some cache investment policies decided that some 

part of a query would be a good idea to cache. It affect data 

placement by influencing the optimizer to make suboptimal 

choice regarding operator site selection. These suboptimal 

choices will be based on policies producing cached data 

placement beneficial for subsequent queries (8). 

The paper is organized as follows: Section 2 explains Cache 

investment and its policy in distributed database. Section 3 

describes the comparative analysis of existing cache 

investment policies. Here it was found that there are some 

areas where improvement in the performance of queries can 

be done by changing or modifying existing policies Section 4 

gives the explanation in detail of proposed technique for 

distributed environment. Section 5 presents the conclusions of 

this paper. 

2. CACHE INVESTMENT AND ITS 

POLICIES IN DISTRIBUTED 

ENVIRONMENT  
Cache Investment, is a technique for combining data 

placement and query optimization. Cache investment keeps 

statistics and create copies of data at clients only if these 

copies are beneficial. The foremost objective of cache 

investment is alike to that of any caching approach namely, to 

place copies of data closest to where they will most likely be 

accessed. Thus, the basic policies for cache investment rely on 

insights similar to those used in other caching schemes. But 

some are the aspects of cache investment that differentiate it 

from these other approaches of caching. These are: [9] 

 Its method of integration and utilization of the 

query optimizer, 

 Its applicability to complex relational queries; 

and 

 Its consideration of both base data and index 

data as investment candidates’ item. 

Cache investment is implemented in existing system as a 

module that sits outside of the query optimizer. For individual 

queries this module sometime influence the optimizer to make 

suboptimal operator site selection in order to effect a data 

placement which will be beneficial for subsequent queries. 

Alternately can say that, it influence the optimizer for 

investing the resource during the execution of one query in 

order to get benefit in later queries. Because this module only 

influences the optimizer, it is always up to the optimizer to 

determine if a suboptimal choice is advisable. Here are two 



International Journal of Computer Applications (0975 – 8887) 

Volume 145 – No.5, July 2016 

30 

basic thoughts behind cache investment. The first is to carry 

out what-if analyses in order to decide whether it is 

significance caching parts of a table or index. More precisely, 

what-if analyses are used in order to (1) calculate the cost (i.e., 

investment cost) of loading a client’s cache with parts of a 

table and (2) to calculate the benefits of caching parts of a 

table. The second is to pull out the optimizer, if these queries 

involve data that should be cached at the clients than 

optimizer has to perform queries at client’s .This way, data 

copies are faulted in at these clients and cache can be used in 

subsequent queries. Queries that involve data that should not 

be cached be supposed to be executed preferably at servers 

without additional cost for faulting in data [10]. 

2.1 Types of Cache Investment Policies 
The cache investment based on some cache investment 

policies decided that some part of a query would be a good 

idea to cache. Cache Investment Policies decide that when and 

for which tables the investment required initiating caching. 

These policies are used for each query that is executed at a 

client and can influence the operator site selection for that 

query. Types of cache investment policies are explained in 

following figure- 

Figure 1: Types of Cache Investment Policies 

2.1.1 Static Policies 
It assigns fixed values for investment and Return on 

Investment (ROI) to fragments independent of any history. 

There are two types of static policy- 

A) Optimistic Policy- 

It assign value in such manner that it never fires. It sets the 

ROI of all fragments to be ∞ and the investment to be 0. The 

behaviour of the Optimistic policy corresponds to that of data 

shipping. 

B) Conservative Policy- 

It sets the ROI of all fragments to be 0 and the investment cost 

to be ∞. So that it never considers any fragments to be 

candidates’ .Thus, Conservative policy never fires. The 

behaviour of the Conservative policy corresponds to that of 

query- shipping. 

2.1.2 History- based Policies 
History based policies are mainly two types- Reference 

counting and profitable. Both policies try to adapt the 

workload at each client based on the past history of the 

queries at that client. They differ in that the profitable policy 

attempts to directly estimate the investment and ROI for the 

table. While the reference counting policy is simpler, it ranks 

fragment by their frequency of use, without explicitly 

calculating expected ROI and ignore investment cost. 

1. Reference Counting Policy 

The reference counting policy considers only the most 

frequently used tables to be candidates and ignores the cost of 

investment. 

The value of a table for reference counting is a count of the 

number of queries in which a table is used, possibly weighted 

by the regency of those accesses as determined by α 

parameter. 

This policy does not compute estimated ROI for the table and 

it ignores the cost of investment. Instead, it decides on which 

table should be candidates based on the value it maintains for 

each table, the size of the table, and the size of the client 

cache. 



International Journal of Computer Applications (0975 – 8887) 

Volume 145 – No.5, July 2016 

31 

This policy is simple and easy to implement. But this policy is 

not suitable for systems that are designed for process many 

updates transactions. 

2. Profitable Policy- 

The profitable policy calculates an expected ROI for each 

fragment and chooses as candidates those fragment who have 

the highest ROI and where investment cost   is less than their 

expected ROI. Although the profitable policy is good enough 

as it gives the emphasis on investment cost and ROI. This 

policy attempts to more closely approach the ideal algorithm 

of cache investment by directly estimating the ROI of 

fragment and taking into account the cost of investment. This 

policy also has some shortcoming such as – This policy is less 

accurate than it could be because the estimation is performed 

for each table individually rather than combinations   of 

tables. Another shortcoming of this policy is that in the ROI 

calculation the size of the cache is not considered. 

3. Comparative Analysis of Existing Cache 

Investment Policies 
 

Table 1: Analysis of Existing Cache Investment Policies 

Type of 

Policy 

Name of 

Policy 

Description Advantage Disadvantage Suitable 

for 

Static 

Policy 

Optimistic 

Policy 

It set the ROI of 

all fragments to 

be ∞ and the 

investment to be 

ϴ 

It place all scans at 

the client in order to 

exploit client caching 

Server resources are not 

efficiently use. 

Data 

shipping 

system 

Static 

Policy 

Conservativ

e Policy 

It assigns the ROI 

of every fragment 

to be ϴ and the 

investment cost to 

be ∞. So it never 

considers any 

fragment to be 

candidate. 

Efficient uses of 

server recourses 

because the optimizer 

places all scans at 

servers. 

It client caches are 

always empty.  

Query 

shipping 

system 

History 

Based 

Policy 

Profitable 

Policy 

It calculate an 

expected ROI and 

investment for 

each fragment and 

choose as 

candidates those 

fragment who 

have the highest 

ROI and where 

Investment cost is 

less than their 

expected ROI 

The Policy is good 

enough because it 

gives the emphasis on 

investment and ROI. 

This Policy attempts 

to more closely 

approach  the ideal 

algorithm of cache 

investment by 

directing estimating 

the ROI of fragment 

and taking into 

account the cost of 

investment 

In the ROI calculation 

the size of the cache is 

not considered, it is not 

as much accurate as it 

could be because the 

estimation is performed 

for each table 

individually rather than 

combinations   of tables. 

 

Hybrid 

Shippin

g 

system 

History 

Based 

Policy 

Reference 

Counting 

Policy 

This policy 

considers only the 

most frequently 

used tables to be 

candidates and 

ignores the cost of 

investment. 

This Policy is simple 

and easy to implement 

This policy is not 

suitable for system that 

are designed for process 

many updated 

transaction. 

Hybrid 

shipping 

system 

 

4. PROPOSED POLICY- 
This proposed policy is a hybrid of existing history based 

policies. From the detail analysis of the literature it was found 

that there are some areas where it can improve the 

shortcoming of reference counting and profitable policies. For 

this a new feasible policy is proposed which uses the 

advantage of these existing policies. This proposed policy is 

based on Kossmann and Franklin work and gives us better 

candidate item, this improves the hit ratio. Improvement in hit 

ratio ensures the reusability of stored data efficiently. Due to 

efficient reuse of stored data, lesser amount of data is required 

to be retrieved from remote location. Thus it improves the 

performance of queries. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 145 – No.5, July 2016 

32 

Figure 6: ProRef Policy Architecture 

4.1 Formula for the Proref Policy:  
To identify the cache candidate Following Formula is used for 

Table (q) at client (i) 

Ki
t(q)= Vi

t(q) + Ri
t(q) -----         (I) 

Where  

Ki
t(q) = Proref Policy Value for table (q) after the execution of 

query (t) 

Vi
t(q) = value of table (q) assigned after the execution of 

query (t) 

Ri
t(q)=Improvement in Response time after the execution of 

query (t) 

For Value of table Vi
t(q) calculation following formula used 

Vi
t(q) =Ci

t(q) + α* Vi
t-1(q) -----         (II) 

Where:  

Ci
t(q) =Component of value for reference count   

 Ci
t(q) =0 if table is not used in query 

 Ci
t(q) = 1 if table is used in query 

α = Aging Factor (0≤ α ≤ 1). α=1 is used to give equal 

weightage  

To calculate Response time Rit(q) following formula used 

 Ri
t(q) = Oi

t(q) - Li
t(q) -----            (III) 

Where: 

Oi
t(q) = Response time to execute query with present cache 

condition using optimal plan for table (q) 

Li
t(q)=  Response time to execute query with caching the table 

(q) 

4.2 Modules for Proref policy 
4.2.1 Query parser: 
This Component is used to scan the name of table from the 

Input query.  

Input From Query 

Output to  History Analysis 

 Cost Module 

 Cache Candidate 

Module 

4.2.2 History Analysis: 
 This Module is used to maintain history information about 

tables at client site. The information stored for a table is 

number that represents a value for the table based on the 

history of queries at that client. The values of table at a client 

are updated after the execution of every query at that client. 

The value of every table is initially set to 0. To maintain the 

history information a table to be created at each client site. 

History_table (S.No, table_name, table_size, value, 

value/size_ratio). 

Formula (II) is used for calculating the value. Site Information 

of tables and their update information can get from data 

dictionary. If the table got updated put the value of that table 

Vi
t(q) =0 

Input From Query Parser, Data Dictionary 

Output to 1. Verification Module 

2. Cache Candidate Module 

4.2.3 Cost Module: 
This Module is used to calculate improvement in response 

time for the table used in present query using following 

method: 

 Calculate Response time Oi
t(q)) using optimal plan 

(using existing cache condition) 

 Calculate Response time Li
t(q) by caching table q 

(Considering in addition to optimal plan table q is 

fully cached) 

 Difference between Response time Oi
t(q)) and 

Li
t(q)=   

Input From Query Parser 

Output to Cache Candidate 

Module 

4.2.4 Cache Candidate Module: 
This Module used to identify the cache candidate. It can 

calculate by using following way. To get Proref policy Value 

Ki
t(q) using formula (I). Find the table of highest Proref policy 

value Ki
t(q) and this is our suggested cache candidate. 

Input From History Analysis 

Cost Module 

Query Parser 

Output to verification Module 



International Journal of Computer Applications (0975 – 8887) 

Volume 145 – No.5, July 2016 

33 

4.2.5 Verification Module:  
This Module is used to check whether suggested cache 

candidate is feasible to use or not. For this following 

verification check is used: 

 Whether suggested cache table is already cached or 

not. 

 Size of suggested cache table is ≤ size of available 

cache memory. 

 Value/size ratio of suggested cache candidate table 

> Value/size ratio of existing cache candidate 

Input 

From 

History Analysis 

Cache candidate Module 

Log File 

Output to Optimizer 

4.2.6 Log File: 

This file is used to gather information of already cached table. 

For this it is creating a log file table. 

Log_File (S.No, table_name, cached) 

Input From Query Evolution 

Output to Verification Module 

5. CONCLUSION  
Query performance can be improved by using of cache 

technique by providing required data closer to the entity 

required it than the source where it stored. This paper 

discussed about a caching method i.e.  Cache investment . It is 

a method or technique to identify the cache candidate and 

provide that to the existing optimizer to improve the 

performance of the database queries in distributed system. To 

find the best cache candidate, cache investment uses their 

policies. There are mainly two types of cache investment 

policies these are – Static and History based policies. These 

policies help optimizers to select best candidate for caching.  

Here this paper done the comparative analysis of existing 

cache investment policies and it found the inference that there 

are some areas of improvement and the performance of 

queries can be improved by changing or modifying existing 

cache investment policies. To extend the work of   Kossmann 

and Franklin a new feasible policy is proposed which uses the 

advantages of both history based policies. In this paper it has 

explained the proposed policy architecture in detail. The 

proposed policy helps us to get the better cache candidate 

item, which in turn improves the hit ratio. This ensures 

efficient reuse of stored data. Lesser amount of data is 

required to be retrieved from remote location due to efficient 

reuse of stored data. Thus it improves the performance of 

queries in distributed database system. 

6. REFERENCES 
[1] Donald Kossmann , Michael J. Franklin and Bjorn Thor 

Jonsson, "Performance Tradeoffs for    Client-Server 

Query Processing” , ACM – SIGMOD Conference on 

Management of Data , New York,1996. 

[2] Donald Kossmann, “ The State of the Art in Distributed 

Query Processing”, ACM Computational Surveys, vol. 

32, Dec. 2000. 

[3] Abhijit Gadkari, “ Caching in Distribute Environment”, 

The Architecture Journal,2009. 

[4] Shaina,Anshu Kamboj, “ High Performance E-Business 

using Application Level Caching”, International Journal 

of Advanced Research in Communication Engineering, 

vol3,issue sep.2014. 

[5] Mantu Kumar,Neera Batra and Hemant Aggarwalo, 

“Cache Based  Query Optimization Approach in  

Distributed  Database”,IJCSI,Vol.9, Nov.2012. 

[6] Konard G.Beiske,Jan Bjorndalen,Jon Olav Hauglid, 

”Semantic Cache Investment” , NIK-2009 conference.  

[7] Norvald H. Ryeng, Jon Olav Hauglid, and Kjetil Norvag 

, “Site-Autonomous Distribted Semantic Cachig”, 

SAC,2011 . 

[8] Donald Kossmann , Michael J. Franklin, “Cache 

Investment Strategies", Univ.of MD Technical CS-TR-

3803 and UMIACS-TR -97-50,May 1997. 

[9] Ideh Azari ,” Efficient Execution of Query in Distributed 

Database Systems”, 2010 3rd International Conference 

on Advanced Computer Theory and 

Engineering(ICACTE). 

[10] Donald Kossmann , Michael J. Franklin,Gehard Drasch, 

"Cache Investment : Integrating Query Optimization and 

Distributed Data Placement," ACM Transaction on 

Database System (TODS), Dec. 2000. 

[11] Michael J. Carey,Franklin J. Carey, Miron Livny ,”Local 

Disk Caching for Client-Server Database Systems *”, 

Computer  Science Department University of Wisconsin-

Madison,1994. 

[12] Doshi P. and Raisinghani V., “Review of Dynamic 

Optimization Strategies in Distributed Database”, 

Electronics Computer Technology (ICECT), 3rd 

International Conference, April 2011. 

[13] Yan T,IacobesnM,Garcia-Mo Lina H,”Introduction of 

Query optimization of distributed database”,  WAM 

Press, I 999. 

[14] Alaa Aljanaby, Emad Abuelrub, and Mohammed 

Odeh,“A Survey of Distributed Query Optimization”, 

The International Arab Journal of Information 

Technology, Vol. 2, January 2005. 

[15] Elmasri R. and Navathe S. B., ” Fundamentals of 

Database Systems, Reading”, MA, Addison-Wesley, 

2000. 

[16] Donald Kossmann , Michael J.Franklin,Gehard 

Drach,”Cache Investment for Indexes”,VLDB 

Conference,Feb,1998. 

[17] Hua-Ming Liao, Guo-Shun Pei, “Cache-Based Aggregate 

Query Shipping: An Efficient Scheme of Distributed 

OLAP Query Processing”, JOURNAL OF COMPUTER 

SCIENCE AND TECHNOLOGY 23(6): 905{915 Nov. 

2008 

[18] Ruby Bhati ,Nitika Bansal, S K Jha,“ Distributed 

Database System:The Current Features And Problems?”, 

International Journal of Computer Science and 

Management Research, Vol 2 , March 2013 

 

IJCATM : www.ijcaonline.org 


