Abstract

The increasing demand for energy is one of the biggest reasons behind the integration of solar energy into the electric grids or networks. To ensure the efficient use of energy PV systems it becomes important to forecast information reliably. The accurate prediction of solar irradiance variation can enhance the quality of service. This integration of solar energy and accurate prediction can help in better planning and distribution of energy.

Here in this paper, a deep review of methods which are used for solar irradiance forecasting is presented. These methods help in selecting the appropriate forecast technique according to the needs or requirements. This paper also presents the metrics that are used for evaluating the performance of a forecast model.

References

18. A. A. Lacis and J. Hansen, “A Parameterization for the Absorption of Solar Radiation in
19. P. Ineichen, “Comparison of eight clear sky broadband models against 16 independent
20. B Molineaux, P Ineichen and N. O’Neill, “Equivalence of pyrheliometric and
irradiance at the ocean surface during GATE”, Bulletin of the American Meteorological Society,
22. J. D. Tarpley, “Estimating incident solar radiation at the surface from geostationary
Sup´erieure des t´el´ecomunications, 1982.
2000.
27. G. Bourges, Courbes de Freqence Cumulees de l’Irradiation Solaire Globale Horaire
Recue par une Surface Plane, tech. rep., Centre d’Energetique de l’Ecole National Superieur
28. C. Rigollier, “The method HELIOSAT-2 for deriving shortwave solar radiation from
29. M Girodo, R W Mueller and D. Heinemann, “Influence of three dimensional cloud effects
on satellite derived solar irradiance estimation First approaches to improve the Heliosat
30. L F Zarzalejo, L Ramirez, and J. Polo, “Artificial intelligence techniques applied to hourly
global irradiance estimation from satellite-derived cloud index”, Energy, vol. 30, no. 9, pp. 1685
Kuhlemann, J Olseth, G Piernavieja, C Reise, L Wald, and D. Heinemann, “Rethinking
satellite-based solar irradiance modelling: The SOLIS clear-sky module”, Remote Sensing of
34. P Ineichen, and R. Perez, “A new airmass independent formulation for the Linke turbidity
35. V. Badescu, “Modeling Solar Radiation at the Earth Surface”, Berlin Heidelberg:
Springer-Verlag, 2008.

52. A Kazantzidis, P Tzoumanikas, A F Bais, S Fotopoulos and G. Economou., “Cloud detection and classification with the use of whole-sky ground-based images”, Atmospheric

68. E Lorenz, J Hurka, D Heinemann and H G Beyer., “Irradiance forecasting for the power prediction of grid connected photovoltaic systems”, IEEE J. of Selected Topics in Applied Earth

104. S Cao , and J Cao., “Forecast of solar irradiance using recurrent neural networks

120. A U Haque, M H Nehrir, and P. Mandal., “Solar PV power generation forecast using a

Orlando Lawrence Berkeley National Laboratory, 2010.

Index Terms

| Computer Science | Power Electronics |

Keywords

Solar forecasting, physical method, statistical method, hybrid method, evaluation metrics.