Abstract

The increasing demand for energy is one of the biggest reasons behind the integration of solar energy into the electric grids or networks. To ensure the efficient use of energy PV systems it becomes important to forecast information reliably. The accurate prediction of solar irradiance variation can enhance the quality of service. This integration of solar energy and accurate prediction can help in better planning and distribution of energy.

Here in this paper, a deep review of methods which are used for solar irradiance forecasting is presented. These methods help in selecting the appropriate forecast technique according to the needs or requirements. This paper also presents the metrics that are used for evaluating the performance of a forecast model.

References

1. V Kostylev and A. Pavlovski, “Solar Power Forecasting Performance Towards Industry...
18. A. A. Lacis and J. Hansen, “A Parameterization for the Absorption of Solar Radiation in

52. A Kazantzidis, P Tzoumanikas, A F Bais, S Fotopoulos and G. Economou., “Cloud detection and classification with the use of whole-sky ground-based images”, Atmospheric
68. E Lorenz, J Hurka, D Heinemann and H G Beyer., “Irradiance forecasting for the power prediction of grid connected photovoltaic systems”, IEEE J. of Selected Topics in Applied Earth

Solar Power Forecasting: A Review

87. S K Chow, E W Lee and D.H. Li., “Short term prediction of photovoltaic energy
88. A Sozen, E Arcaklioglu, M Ozalp and N. Caglar., “Forecasting based on neural network
90. J Cao, and X. Lin., “Study of hourly and daily solar irradiation forecast using diagonal
recurrent wavelet neural networks”, Energy Conversion and Management, vol.49, no.6, pp.1396
based on dynamic artificial neural network for short-term forecasting of the power output of a PV
forecasting based on irradiance forecasting using artificial neural networks”, 39th Annu. Conf. of
output for grid-connected solar photovoltaic installations using Artificial Neural Networks”, IEEE
2nd Int. Conf. on Emerging Electronics (ICEE), Bangalore, pp.1-4, Dec,2014.
94. A Yona , T Senju, A Saber, T Funabashi, H Sekine, and C H. Kim., “Application of
neural network to 24-hour-ahead generating power forecasting for PV system”, IEEE Proc. in
Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in
96. F O G Hocaoglu, N Omer and M. Kurba., “Hourly solar radiation forecasting using
approach for predicting global radiation”, Energy Conversion and Management, vol.50, no.6,
network: Application for performance prediction of a gridconnected PV plant at Trieste, Italy”,
99. W K Yap and V. Karri., “Comparative study in predicting the global solar radiation for
time series simulation in Athens, using neural networks”, Theoretical and Applied Climatology,
104. S Cao , and J Cao., “Forecast of solar irradiance using recurrent neural networks

120. A U Haque, M H Nehrir, and P. Mandal., “Solar PV power generation forecast using a

Index Terms

Computer Science
Power Electronics

Keywords

Solar forecasting, physical method, statistical method, hybrid method, evaluation metrics.