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ABSTRACT 
The increasing demand for energy is one of the biggest 

reasons behind the integration of solar energy into the electric 

grids or networks. To ensure the efficient use of energy PV 

systems it becomes important to forecast information reliably. 

The accurate prediction of solar irradiance variation can 

enhance the quality of service. This integration of solar energy 

and accurate prediction can help in better planning and 

distribution of energy. 

Here in this paper, a deep review of methods which are used 

for solar irradiance forecasting is presented. These methods 

help in selecting the appropriate forecast technique according 

to the needs or requirements. This paper also presents the 

metrics that are used for evaluating the performance of a 

forecast model. 
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1. INTRODUCTION 
World demand for energy is projected to more than double by 

2050 and to more than triple by the end of the century. 

Incremental improvements in existing energy networks will 

not be adequate to supply this demand in a sustainable way. 

Finding sufficient supplies of clean energy for the future is 

one of society‘s most daunting challenges.  

The supply and demand of energy is determining the course of 

global development in every sphere of human activity. 

Sufficient supplies of clean energy are intimately linked with 

global stability, economic prosperity and quality of life. 

Finding energy sources to satisfy the world‘s growing demand 

is one of the society‘s foremost challenges for the next half 

century. The importance of this pervasive problem and the 

perplexing technical difficulty of solving it require a concerted 

national effort marshalling our most advanced scientific and 

technological capabilities.  

Solar forecasting is a stepping stone to these challenges. Solar 

power forecasting depends on the factors like knowledge of 

the sun‘s path, the atmosphere‘s condition, the scattering 

process and the characteristics of a solar energy plant which 

utilizes the sun‘s energy to create solar power. Solar 

photovoltaic systems transform solar energy into electric 

power. The output power depends on the incoming radiation 

and on the solar panel characteristics. Photovoltaic power 

production is increasing nowadays.  Forecast information is 

essential for an efficient use, the management of the electricity 

grid and for solar energy trading.  

Various solar forecasting research activities get motivated due 

to the factors that accurate solar forecasting techniques 

improves the quality of the energy delivered to the grid and 

minimize the additional cost associated with weather 

dependency.   

Solar forecasts on multiple time horizons play an important 

role in storage management of PV systems, control systems in 

buildings, hospitals, schools etc., control of solar thermal 

power plants, as well as for the grids‘ regulation and power 

scheduling. It allows grid operators to adapt the load in order 

to optimize the energy transport, allocate the needed balance 

energy from other sources if no solar energy is available, plan 

maintenance activities at the production sites and take 

necessary measures to protect the production from extreme 

events.  

On the basis of the application and the corresponding time 

scale required, various forecasting approaches are introduced. 

For time horizon from several minutes up to a few hours i.e., 

for very short term time scale, time series models using on-

site measurements are adequate. Intra-hour forecasts with a 

high spatial and temporal resolution may be obtained from 

ground-based sky imagers. For a temporal range of 30 minutes 

up to 6 hours satellite images based cloud motion vector 

forecasts show good performance. Grid integration of PV 

power mainly requires forecasts up to two days ahead or even 

beyond. These forecasts are based on numerical weather 

prediction (NWP) models. Kostylev and Pavlovski [1] gave 

detailed solar forecast time scales and their corresponding 

granularities. 

For solar forecasting different types of solar power systems 

need to be distinguished. For solar concentrating systems 

(concentrating solar thermal or concentrating PV, CPV) the 

direct normal incident irradiance (DNI) must be forecast. Due 

to non-linear dependence of concentrating solar thermal 

efficiency on DNI and the controllability of power generation 

through thermal energy storage (if available), DNI forecasts 

are especially important for the management and operation of 

concentrating solar thermal power plants. Without detailed 

knowledge of solar thermal processes and controls, it is 

difficult for 3rd parties (solar forecast providers) to 

independently forecast power plant output. 
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On the other hand, CPV production is highly correlated to 

DNI. DNI is impacted by phenomena that are very difficult to 

forecast such as cirrus clouds, wild fires, dust storms, and 

episodic air pollution events which can reduce DNI by up to 

30percent on otherwise cloud-free days. Water vapor, which is 

also an important determinant of DNI, is typically forecast to 

a high degree of accuracy through existing NWP. Major 

improvement in aerosol and satellite remote sensing are 

required to improve DNI forecasts. 

For non-concentrating systems (such as most PV systems), 

primarily the global irradiance (GI = diffuse + DNI) on a tilted 

surface is required which is less sensitive to errors in DNI 

since a reduction in clear sky DNI usually results in an 

increase in the diffuse irradiance. Power output of PV systems 

is primarily a function of GHI. For higher accuracy, forecast 

of PV panel temperature are needed to account for the (weak) 

dependence of solar conversion efficiency on PV panel 

temperature. 

2. SOLAR FORECASTING 

METHODOLOGIES 
Broadly solar power forecasting methods are classified into 

three categories: physical methods, statistical methods and 

hybrid methods. 

2.1.Physical Methods 
The physical method is based on the numerical weather 

prediction (NWP), cloud observations by satellite or Total Sky 

Imager (TSI) or atmosphere by using physical data such as 

temperature, pressure, humidity and cloud cover. 

2.1.1. Cloud Imagery and Satellite Based Models 
The satellite and cloud imagery based model is a physical 

forecasting model that analyzes clouds. The satellite imagery 

deals with the cloudiness with high spatial resolution. The 

high spatial resolution satellite has the potential to derive the 

required information on cloud motion. The cloud motion helps 

in locating the position of cloud and hence solar irradiance can 

be forecasted. The parameters which have the most influence 

on solar irradiance at the surface are cloud covers and cloud 

optical depth. The processing of satellite and cloud imageries 

are done in order to characterize clouds and detect their 
variability and then forecast the GHI up to 6 hours ahead. This 

model works by determining the cloud structures during 

earlier recorded time steps. The structure of the clouds and 

their positions helps in predicting solar irradiance [2]. 

2.1.1.1  Physical Satellite Models 
The basis of physical satellite models for the purpose of solar 

irradiance forecasting is totally dependent on the interaction 

between the atmospheric components like gases and aerosols 

and the solar radiation. These physical interactions are 

modelled by way of RTMs. Therefore, physical satellite 

models are said to be improved RTM based clear sky models. 

This improvement is through the addition of information 

regarding current atmospheric conditions. The account of 

atmospheric conditions is through the measurement of local 

meteorological data. This eliminates the need for solar 

irradiance data at the surface, however, because these models 

need to convert digital counts from satellite based radiometers 

into a corresponding flux densities, accurate and frequent 

calibration of the instrument is required [3]. Physical satellite 

models cover four sub models in it. 

Gautier-Diak-Masse Model 

One of the earliest physical models was developed by Gautier, 

Diak and Masse (GDM) in 1980 [4]. In this model clear and 

cloudy conditions are considered separately. To differentiate a 

given pixel as clear and cloudy brightness threshold is 

obtained by selecting a minimum value at every pixel for 

every hour from the past several days. One shortcoming of the 

original GDM model was the absence of variations in 

terrestrial albedo with changing solar zenith angle. Raphael 
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and Hay [5, 6] included the T-minimum brightness 

determination [7] in order to correct for the previous 

consideration. 

In GDM clear sky RTM model the parameters which are used 

as input are: reflection coefficient for diffuse radiation; these 

coefficients were calculated using the results from Coulson [8, 

9]; the absorption coefficient for slant water vapour path and 

the solar zenith angle; these absorption coefficients used the 

expression from Paltridge [10]. Other parameters include the 

atmospheric albedo as a function of the irradiance received by 

the satellite.  Enhancements and improvements to GDM 

model includes absorption of ozone and aerosols [11] in 

addition to multiple reflections by [12].     

In GDM cloudy sky RTM model absorption is considered in 

terms of upwelling and downwelling. This upwelling and 

downwelling are terms used for absorption above and below 

the clouds respectively. The parameters used as inputs for 

cloudy sky RTM are: cloud albedo as a function of the 

absorption of short wave radiation above and below the 

clouds, and cloud absorption coefficient estimated on the basis 

of the satellite‘s measurement of the visible brightness of the 

cloud. The relationship between measured visible brightness 

and absorption is given by Gantier in 1990 [4]. 

Marullo-Dalu-Viola Model 

This model is the re-evaluation of the GDM model by using 

the data for the METEOSAT data for the Italian peninsula 

[13]. This model is similar to GDM model where clear sky 

and cloudy sky are considered separately. The only difference 

is in the name clear sky and cloudy sky are termed as standard 

atmosphere and real atmosphere respectively.  

The MDV ―standard atmosphere‖ model is similar to GDM 

clear sky model. In this, information regarding temperature 

profile of the atmosphere, water vapour content and a three 

layer aerosol column are considered [14]. A reflecting non-

absorbing layer which accounts for the presence of aerosols in 

atmosphere is added in input parameters apart from all the rest 

used in GDM clear sky model. In MDV model planetary 

albedo for a standard atmosphere was assumed to be uniform 

for the region varying only with solar zenith angle. Planetary 

albedo for a standard atmosphere was approximated though 

the use of regional clear sky data and assumed to be uniform 

for the region and varied only with solar zenith angle.  

Any significant deviation from the standard atmosphere model 

was assumed to be a consequence of atmospheric particle 

loading. The atmospheric loading in the real atmosphere was 

resolved by a thin reflecting non-absorbing layer assumed to 

be higher than the particles responsible for scattering in the 

standard atmosphere. 

Moser-Raschke Model 

This model also used METEOSAT images for estimating 

ground level irradiance [15]. The authors used the RTM 

developed by Kerschgens [16] which was more complex than 

the previous models. The only improvements in MR method 

are addition of parameters for accurately describing the 

atmospheric state and infrared data so as to estimate the cloud 

top height.  

The input parameters include the solar zenith angle, cloud top 

height, optical depth of the clouds, terrestrial albedo, 

boundary layer structure, climatological profiles of 

temperature, pressure, humidity, ozone concentration and 

cloud droplet size distribution. One significant result of this 

model was the demonstration that clouds, rather than aerosols, 

have a greatest impact on irradiance reaching ground level. 

Dedieu-Deschamps-Kerr Model 

This model is different from GDM and MDV model where 

clear sky and cloudy sky methods were considered separately. 

DDM model [17] used a single equation valid for both clear 

and cloudy conditions. For using a single equation clear sky 

model was combined with the model having only the effects 

of clouds on solar irradiance.    

The input parameters include a sky transmissivity factor, 

which accounted for Mie and Rayleigh scattering as well as 

gaseous absorption using the formulae of Lacis and Hansen 

[18] together with the RTM of Tanre [12], and planetary and 

terrestrial albedo determined from with the METEOSAT 

radiometer data. Multiple reflections between the cloud base 

and the ground were assumed to behave isotropically. It 

should be noted that as a consequence of uniformity of the 

aerosol content in both the clear sky and cloudy conditions the 

model treats an unusually strong concentration of aerosols as a 

cloud [7]. 

2.1.1.1. Statistical Satellite Models 
These models are defined on the basis of the regression 

between the pyranometer based solar irradiance at ground 

level and simultaneous digital counts provided by satellite 

based instruments. The various parameters in regression 

equations include solar zenith angle, cloud cover index, 

atmospheric transmissivity, along with current brightness, 

minimum brightness and maximum brightness of each pixel. 

According to [7] the two main difficulties which arise when 

comparing satellite and ground data are errors associated with 

the localization of the ground based pyranometer sites on the 

satellite images and the fundamental difference in the 

measurement technique. According to some authors [19, 20] 

these problems can be solved by incorporating more pixels in 

the definition of target areas by enhancing the satellite 

resolution.  

Hay-Hanson model 
One of the simplest statistical satellite models was developed 

by Hay and Hanson (HH) in 1978 [21]. The model was 

developed for the Global Atmospheric Research Program‘s 

Atlantic Tropical Experiment to generate maps of the 

shortwave radiation (0.55 - 0.75 µm) reaching the surface of 

the ocean. The HH model is based of a statistical linear 

regression of the clearness index and atmospheric 

absorptivity: 

𝐊𝐭 = 𝐚 − 𝐛𝛂𝐚                         (1) 

Hay and Hanson [21] originally determined regression 

coefficients a and b as 

𝑎 ≅ 0.79      𝑏 ≅ 0.71 
These values were later re-evaluated by Raphael and Hay [3] 

to be 

 

𝑎 ≅ 0.788        𝑏 ≅ 1.078 
which gives a better agreement with their dataset.  

It has been pointed out in [7] that this relationship fails under 

unusually high surface albedo which results from a snow- or 

ice-covered surface. In addition, despite what has been 

mentioned about statistical methods, this approach requires 
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the calibration of reported digital satellite counts i order to 

determine visible radiance. 

Tarpley & Justus-Paris-Tarpley Models 

Tarpley used a set of coincident satellite and ground 

pyranometer data sets taken by the National Environmental 

Satellite Data and Informations Services (NESDIS) and the 

Great Planes Agricultural Council over the central U.S. in late 

1970s [22]. This study made use of statistical regressions 

against measurements from GOES VISSR. Three separate 

cases were considered based on the value of the cloud index 

defined by Tarpley as, 

𝒏 =
𝟎.𝟓𝑵𝟐+𝑵𝟑

𝑵
    (2) 

where N is the total number of pixels included in the target 

area, and N2 and N3 are the number of pixels in partly cloudy 

and cloudy conditions respectively. The Tarpley regression 

model was defined as, 

𝐼 =

 
 
 

 
 𝑎 + 𝑏 cos 𝜃 + 𝑐𝐾𝑡 + 𝑑𝑛 + 𝑒  

𝐵𝑚

𝐵0
 

2
        𝑖𝑓 𝑛 0.4

𝑎 + 𝑏 cos 𝜃 + 𝑐𝑛  
𝐵𝑐𝑙𝑑

𝐵𝑛
 

2
                    𝑖𝑓 0.4 𝑛  1

𝑎 + 𝑏 cos 𝜃 + 𝑐  
𝐵𝑐𝑙𝑑

𝐵𝑛
                                  𝑖𝑓 𝑛 = 1

    

  (3)  

where Bm is the mean target brightens, defined as the mean 

brightness of a 7 x 6 pixel array; Bcld is the mean cloud 

brightness, estimated through an average of the brightness 

values of all the pixels in the target area brighter than a 

specified threshold; and Bn = B0 (θz = 45◦,s= 105◦) is the 

normalized clear brightness which is a special case of the 
clear brightness B0 which is obtained from the following 

regression,  

𝐵0 =

𝑎 + 𝑏𝑐𝑜𝑠 𝜃𝑧 + 𝑐 sin 𝜃𝑧 cos 
𝑠
 + 𝑑 sin 𝜃𝑧 𝑐𝑜𝑠

2 
𝑠
  

 (4)  

Raphael and Hay [23] also estimated their own regression 

coeffcients for this model which are different from Tarpley‘s 

treatment. 

 This model was later refined by Jutus, Paris and Tarpley (JPT) 

[24] for part of the Agriculture and Resources Inventory 

Surveys through Aerospace Remote Sensing (AgRISTARS) 

program. This new model replaced the three equations of 

Tarpley‘s model with the following single equation, 

𝐼 = 𝐼0  
𝑟0

𝑟
 

2
cos 𝑧  𝑎 + 𝑏 cos 𝑧 + 𝑐 𝑐𝑜𝑠2 𝑧  + 𝑑 (𝐵𝑚

2 −

𝐵0
2)  (5) 

where Bm is again the mean observed target brightness and B0 

is defined by the following relationship, 

𝐵0 =

 
 
 

 
 

𝐵0
ʹ                                                𝑖𝑓 𝐵𝑚 ≥ 𝐵𝑚𝑎𝑥

𝜔1𝐵 + 0ʹ +  1 − 𝜔1 𝐵𝑚                𝑖𝑓𝐵0
ʹ < 𝐵𝑚 < 𝐵𝑚𝑎𝑥

𝐵𝑚                                                            𝑖𝑓 𝐵0
ʹ − 2 < 𝐵𝑚 ≤ 𝐵0

ʹ

𝜔2𝐵 + 0ʹ +  1 −𝜔1 𝐵𝑚                        𝑖𝑓𝐵𝑚𝑖𝑛 ≤ 𝐵𝑚 < 𝐵0
ʹ − 2

𝐵0
ʹ                                                𝑖𝑓 𝐵𝑚 < 𝐵𝑚𝑖𝑛

 

 (6) 

As before, the authors in [24] assumed that the brightness for 

clear sky conditions 𝐵0
ʹ and the measured target mean 

brightness Bm were known. The weights w1 and w2 are values 

between 0 and 1 which were empirically determined. Each of 

the cases above approximates various conditions of the 

atmosphere. The first and fifth cases correspond to the likely 

presence of clouds and the insufficient scene illumination for 

radiation forecasts respectively; each of these cases leaves the 

clear brightness unaltered. The second case allows for 

seasonal variation in the clear brightness due to snow- or ice-

cover. The third case is to account for clearer than normal 

days while the fourth case allows for the removal of erroneous 

effects from the satellite image on B0 [7].  

Cano-HELIOSAT Model 

Cano developed a model for the French HELIOSAT project in 

1982 which used visible band METEOSAT data [25]. The 

Cano-HELIOSAT model proposes a simple linear relationship 

between the clearness index Kt and the cloud index nt at the 

same point in time and space. This is accomplished by 

considering local values of Kt and nt at each pixel as, 

𝑲𝒕 𝒊, 𝒋 = 𝑨 𝒊, 𝒋 𝒏𝒕 𝒊, 𝒋 + 𝑩(𝒊, 𝒋)   
 (7) 

where A and B are matrices of regression coefficients [26]. 

The cloud cover index was defined as, 

𝑛𝑡 𝑖, 𝑗 =
𝜌𝑡 𝑖 ,𝑗  −𝜌0 𝑖,𝑗  

𝜌𝑐−𝜌 𝑖 ,𝑗  
    

  (8) 

where t  is the measured ground albedo, ρ0 is the reference 

ground albedo and ρc is the average albedo of the top of the 

clouds. The reference ground albedo was calculated using 

Bourges model [27] and a recursive procedure which 

minimized the variance of the errors of the clear sky model. 

Refinements to the Cano-HELIOSAT model include use of 

the ESRA clear sky model to correct the estimation of the 

terrestrial and atmospheric albedos by Rigollier et al. [28]. 

These corrections were subsequently used to derive the 

following relationship between the cloud index nt and a clear 

sky index kt, 

𝑘𝑡 =

 
 

 
1.2                                                                                 𝑖𝑓 𝑛𝑡 < −0.2

1 − 𝑛𝑡                                                                 𝑖𝑓 − 0.2 ≤ 𝑛𝑡 < 0.8

2.0667 − 3.6667𝑛𝑡 + 1.6667𝑛𝑡
2                     𝑖𝑓 0.8 ≤ 𝑛𝑡 < 1.1 

0.05                                                                                         𝑖𝑓 𝑛 ≥ 1

   

 (9) 

More recent developments of the Cano-HELIOSAT model 

include consideration of the three dimensional structure of 

cloud in the determination of the cloud index [29], 

modification of the previous kt-nt relationship to include 

moments of the cloud index distribution [30], corrections for 

non-Lambertian reflectivity and the backscattering of clouds 

[31] and integration of the SOLIS-RTM platform [32]. 
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Perez Operational Model 

One of the most widely used statistical satellite models is the 

operational model of Perez [33]. The Perez model uses a 

modified version of Kasten‘s clear sky model which defines a 

Link turbidity coefficient independent of air mass [34]. The 

model also allows for the modification of the algorithm based 

on real time measurements of snow- or ice-cover as well as 

the correction of sun satellite angle effects for each pixel [35].  

The model relates hourly global irradiance It and cloud index 

nt through a simple regression: 

𝑰𝒕 = 𝑰𝒄𝒍𝒓,   𝒕 𝒇(𝒏𝒕) 𝒂𝑰𝒄𝒍𝒓,   𝒕 + 𝒃   (10) 

where 𝑓 𝑛𝑡  is a fifth order polynomial of the cloud index 

given by, 

𝒇 𝒏𝒕 = 𝒄𝟓𝒏𝒕
𝟓 + 𝒄𝟒𝒏𝒕

𝟒 + 𝒄𝟑𝒏𝒕
𝟑 + 𝒄𝟐𝒏𝒕

𝟐 + 𝒄𝟏𝒏𝒕 + 𝒄𝟎   
(11) 

 Values of the coefficients as calculated by Perez in 

are given in [35]. This model was also modified by Perez and 

Ineichen to forecast DNI from GHI forecasts provided by the 

operational model as well as corrections for locations 

presenting complex arid terrain [36]. 

2.1.1.2. Total Sky Imagers 
The satellite and cloud imagery based model is a physical 

forecasting model that analyses clouds. The satellite imagery 

deals with the cloudiness with high spatial resolution. The 

high spatial resolution satellite has the potential to derive the 

required information on cloud motion. The cloud motion helps 

in locating the position of cloud and hence solar irradiance can 

be forecasted. The parameters which have the most influence 

on solar irradiance at the surface are cloud covers and cloud 

optical depth. The processing of satellite and cloud imageries 

are done in order to characterize clouds and detect their 

variability and then forecast the GHI up to 6 hours ahead. This 

model works by determining the cloud structures during 

earlier recorded time steps. The structure of the clouds and 

their positions helps in predicting solar irradiance [2][37] 

Successfully used Total Sky Imager (TSI) in predicting very 

short and short-term forecasting. 

Both NWPs and satellite imaging techniques lack the spatial 

and temporal resolution to provide information regarding high 

frequency fluctuations of solar irradiance. An alternative is 

provided through ground based imaging of local 

meteorological conditions. One instrument which has seen 

increased application lately is the Total Sky Imager (TSI) 

manufactured by Yankee Environmental Systems [38].  

Typically the methodology for ground based images is similar 

to satellite based techniques. Projections of observed solar 

radiation conditions based on immediate measured history 

while the position and impact of clouds is deduced from their 

motion. In the case of TSIs the CCD image is digitally 

processed in order to detect locations of the sky covered by 

clouds. The cloud image is then propagated forward in time 

resulting in a forecast. TSI images are useful for prediction of 

GHI on time horizons up to 15 minutes. 

TSI can be used to forecast both the Direct Normal Irradiance 

(DNI) [39-41] and GHI [37] [42-43]. In some researches 

researchers also use commercially available TSI such as TSI-

800 manufactured by Yankee Environmental Systems [44], 

while other researchers develop their own TSIs [45]. 

Sky images are taken sequentially in time; cloud information 

can be derived from the images through image processing. 

Template matching algorithms [46-48] are used for computing 

the motion vectors describing the movement of clouds based 

on consecutive images. Forecast can thus be obtained through 

persisting the motion vectors or more sophistically, by solving 

the advection-diffusion equation [49]. In recent reports it has 

been found that forecasting based on deterministic ray tracing 

method produces forecasts that are worse than persistence, at 

5, 10, 15 min forecast horizon [50]. In terms of normalized 

Root Mean Square Error (nRMSE), forecast error using TSI 

varies from 18 to 24% for forecast horizons ranging from 30 s 

to 15 min [45]. Nevertheless, due to its physical–based nature 

and its potential, TSI–based methods are quickly adopted by 

many other groups in the past two years not only for 

irradiance forecasting [51] but also used for general 

atmospheric research [52].   

For the purpose of determining and forecasting of local solar 

radiation conditions geostationary satellite images obtained 

from the METEOSAT satellite have been used. The basis of 

this method relies upon the determination of the cloud 

structures during the previous recorded time steps. For the 

forecast, cloud motion vector algorithms ([53]; [54]) can be 

used to obtain the cloud conditions at the next time step ([55], 

[56]), mapping is then performed on the forecast images to 

obtain the future irradiance. Extrapolation of their motion 

leads to a forecast of cloud positions and, as a consequence, to 

the local radiation situation. This method has the advantage of 

producing a spatial analysis of an area within certain 

resolution capabilities. The improvement over the persistent 

method is small, according to the authors.    

[54], [37] used satellite imagery and ground-based sky imager 

respectively for solar forecasting.      

It should be noted that while these TSI based provide local 

meteorological information enabling intra-hour forecasts, their 

time horizon is restricted to approximately 30 minutes do to 

their limited range of view. One possible approach to extend 

the time horizon of ground based measurements is to 

distribute an array of imagers so that more information 

regarding local cloud fields is obtained. However, the relative 

cost associated with the TSI (∼$2,000) and the dynamic 

nature of local cloud fields which may limit the correlation of 

successive images poses difficulties for current ground based 

imaging methodologies. In addition to an upper bound on the 

time horizon of the TSI, a lower band is also imposed. The 

lower bound is a result of circum-solar scattering of light as 

well as limitations introduced by the shadow-band which 

currently renders time horizons shorter than 2 minutes 

inaccessible [37, 57]. 

2.1.1.3. Wireless Sensor Network Systems 
Satellite and NWP models typically possess time horizons on 

the order of 30 minutes while stochastic and AI methods have 

not been widely applied to time horizons less than 15 minutes. 

TSIs are limited by the circum-solar scattering of light and the 

shadow-band to time horizons no longer than 3 minutes [37, 

57]. Semiconductor point sensors are capable of very high 

sampling frequencies but fail to correctly characterize the 

distributed nature of an operational scale PV plant [58]. An 

alternative has been suggested by Coimbra and coworkers at 

the University of California, Merced [156]. A 1MW PV array 

was outfitted with with 40 TelosB nodes equipped with low 

cost solar irradiance sensors. The authors in [59] proposed a 

forecasting algorithm which utilized multiple readings from 

the spatially distributed network of sensors to compute future 
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values of the distributed power output. The forecasting 

approach utilized spatial cross-correlations between sensor 

nodes which provided forecasts in the range of 20-50 seconds. 

Calculated velocities agreed with TSI calculated cloud 

velocity field over 70% of the time [59]. This work 

demonstrates the potential of wireless sensor networks as low 

cost and highly accurate approaches for intra-minute solar 

forecasting. 

2.1.2. Numerical Weather Prediction Models 
The numerical weather predictions purely rely upon the 

atmospheric physics. It is the study of how current 

observations of the weather are used and then processed to 

predict the future states of the weather. This is done with the 

help of super computers. A process called assimilation is done 

so as to process the current weather states and produce outputs 

of temperature, wind, irradiance and other hundreds of 

meteorological elements. The NWP is good for one day to 

multi-days ahead horizons. Thus, it is a useful tool for 

different variety of applications, such as the scheduling of 

solar power plants. NWP is also helpful in predicting the 

transient variations in clouds, which are considered the major 

obstacles for solar irradiance at the ground. After the 

assimilation of current observations, the NWP forecasts the 

future conditions and then the error is corrected based on the 

previous performance by a statistical post processing.      

NWP processes as follows: In the first step the initial states of 

atmosphere are collected with the help of different sources 

such as satellites and ground observations. The key source of 

the NWP error is ―data-assimilation‖, which is a complex 

process. This occurs because sources measure different 

quantities of current states over different volumes of a space 

and that creates an error in the measurement. In the second 

step, the main important equations of atmosphere, such as 

dynamics equations, Newton‘s second law for fluids flow, 

thermodynamics equations, and radiative transfer equations 

are integrated and solved [60]. In solar engineering, the 

physical laws of motion and thermodynamics are rarely 

scrutinized in detail. As NWP models output hundreds of 

parameters in each run, irradiance is but one of them, 

researchers simply run NWP models [61-63] and study the 

outputs. As most of the NWP models are not adapted 

specifically for irradiance forecasting purposes, biased 

forecasts commonly result. Finally, the statistical post-

processing step where the output of the NWP is manipulated 

using a trial and error after simulation, in order to compare the 

outputs with observations and find the statistical relation, and 

hence correct the error. Statistical post–processing such as the 

application of model output statistics and Kalman filtering are 

thus used to obtain useful results [64-65]. 

There are two models in which NWP models can be 

classified: Global models and Regional models. In global 

models, global or worldwide simulation of the behaviour of 

the atmosphere is carried out, where as in regional 

(mesoscale) models it is done on a continent or a country scale 

[66]. Well known NWP models include Global Forecast 

System (GFS), North American Mesoscale (NAM) model and 

Weather Research and Forecasting (WRF) model. The 

difference amongst the three occurs in terms of spatial 

resolution, input parameters and most importantly, the under 

lying physical models. It is therefore important to choose the 

forecasting domain, improve data collection and select an 

NWP system that uses suitable physical models when one 

attempts to forecast irradiance.  

In their current development, NWPs does not predict the exact 

position and extent of cloud fields. Their relatively coarse 

spatial resolution (typically on the order of 1 - 20km) renders 

NWP models unable to resolve the micro-scale physics that 

are associated with cloud formation. Therefore, NWP based 

solar forecast shows cloud prediction in accuracy which is 

considered as one of the largest sources of errors in NWP. The 

benefits given by NWP are, it works for long time horizons 

(15 to 240 hours). With the help of regional and global 

modelling of atmospheric physics it is possible to obtain 

information about the propagation of large scale weather 

patterns. As compared to satellite based methods NWPs 

shows more accurate results of forecast for time horizons 

exceeding 4 hours [67-68]. Accordingly, NWPs provide the 

most attractive option for medium to long term atmospheric 

forecasting.   

For time horizons exceeding 6 hours, up to several days 

ahead, it is advisable to use NWP for accurate results. NWP 

models predict GHI using columnar (ID) radiative transfer 

models. [69] Showed that the MM5 mesoscale model can 

predict GHI in clear skies without mean bias error (MBE). 

However, the bias was highly dependent on cloud conditions 

and becomes strong in overcast conditions.     

Many scientists [68], [70-72] evaluated different NWP based 

GHI forecast at different locations. For all the locations 

various RMSE percentage are calculated. .    

 NWP and satellite forecasts are inadequate for achieving high 

temporal and spatial resolution for intra hour forecasts. This 

gap can be filled by ground observation using a sky imager 

and delivers a sub-kilometre view of cloud shadows over a 

large scale PV power plant or an urban distribution feeder.    

Model Output Statistics (MOS) is a post-processing technique 

which is used for interpreting numerical model output and 

producing site-specific forecasts. A statistical approach is used 

by MOS for relating observed weather elements with 

appropriate variables (predictors). These predictors can be 

NWP model forecast, prior observations, or geo-climatic data.     

Consistent error patterns allow for MOS to be used to produce 

a bias reduction function for future forecasts. [73] Used MOS 

and calculated 24.5% RMSE for averaged daily forecasts. 

Similarly other authors [68], [65] used MOS correction 

function for eliminating bias and reduced RMSE.    

2.1.2.1. Global Forecast System (GFS)  
One of the most well-known global NWP models is the 

Global Forecast System (GFS). The GFS model is run by 

NOAA (National Oceanic and Atmospheric Administration) 

every six hours and produces forecasts up to 384 hours (16 

days) in advance on a 28km x 28km grid for the global 

domain [74]. The GFS loop time steps are 6 hours out to 180 

hours (7.5 days), then change to 12-hour time steps out to 384 

hours (16 days). In addition to the 28km x 28km horizontal 

discretization, the GFS models 64 vertical layers of the 

atmosphere. The RTM of the GFS accepts as inputs: predicted 

values of a fully three dimensional aerosol concentration field, 

predicted values of a two dimensional (horizontal) H2O, O2 

and O3 concentration field as well as a constant two 

dimensional (horizontal) CO2 field. The GFS model also 

calculates wavelength specific attenuation of both upwelling 

and downwelling diffuse irradiances through a sophisticated 

scattering/absorbing scheme [75]. It should be noted that the 

radiant flux attenuation is dependent on H2O phase, 

temperature and particle size which makes the GFS sensitive 

to temperature errors. 



International Journal of Computer Applications (0975 – 8887) 

Volume 145 – No.6, July 2016 

34 

 

The European Centre for Medium-Range Weather 

Forecasts (ECMWF) 

The ECMWF provides weather forecasts up to 15 days 

ahead, including solar surface irradiance and different cloud 

parameters as model output. ECMWF forecasts have shown 

their high quality as a basis for both wind and solar power 

forecasts. These forecasts are described here as an example of 

global NWP model forecasts. The evaluations of ECMWF-

based irradiance in Lorenz et al. [61, 76, 77] are based on the 

T799 version with a spatial resolution of 25 km x 25 km. The 

current version T1279 was implemented in January 2010 and 

shows a horizontal resolution of 16 km x 16 km. Ninety-one 

hybrid vertical levels resolve the atmosphere up to 0.01 hPa 

corresponding to approximately 80 km. The temporal 

resolution of the forecasts is 3 h for the first 3 forecast days 

that are most relevant for PV power prediction. Temporally, 

ECMWF forecasts have a time-step size of 3 hr. and are 

published twice daily up to 10 days in advance.  

2.1.2.2. Regional NWP Model 

Unlike global NWP models, regional NWP model only a a 

sub-domain of the global space. Regional models in the U.S. 

include the Rapid Update Cycle (RUC), RAPid refresh 

(RAP), North American Mesoscale (NAM) model, High 

Resolution Rapid Refresh (HRRR) and the Weather Research 

and Forecasting (WRF) model [155].  

Rapid Update Cycle (RUC)/ RAPid refresh (RAP) 

Models 

The RUC was a NOAA/NCEP (National Centers for 

Environmental Prediction) operational NWP model until May, 

2012. RUC produced hourly updated 13km x 13km 

horizontally resolved forecasts with 50 atmospheric layers out 

to a time horizon of 18 hours. The RUC loop time steps are 1 

hour from time of analysis out to 18 hours. The RUC 

possessed a wavelength independent model for the 

absorption/scattering of radiation by water vapour only. Other 

atmospheric gasses and aerosols were neglected. The RUC 

also assumed Rayleigh scattering which failed to capture the 

inversely proportional relationship between intensity of 

scattering and wavelength of radiation. In addition, only down 

welling irradiances were attenuated which sometimes lead to 

the underestimation of diff use irradiance due to 

backscattering [78].  

 As of May 1, 2012 the RUC was replaced with the 

Rapid Refresh (RAP) model as the next-generation version of 

the NCEP hourly cycle system. The RAP model possess the 

same spatial and atmospheric resolution (12km x 12km, 50 

layers) but it based on a new rapid update configuration of the 

WRF model. As a result, the RAP benefited from the ongoing 

community improvements to the WRF. The domain of the 

RAP is also significantly larger than the previous RUC and 

was expanded from the Continental United States (CONUS) 

region to include Alaska as well. 

 

 

 

 

North American Mesoscaale (NAM) Model 

The North American Mesoscale (NAM) model is the NCEP‘s 

primary mesoscale environmental modelling tool. NAM 

produces 12km x 12km horizontally resolved forecasts with 

60 atmospheric layers out to a time horizon of 96 hours over 

North America and is updated four times daily. The NAM 

model loop time steps are 6 hours from the time of analysis 

out to 84 hours (3.5 days). The NAM model used predicted 

water vapor concentrations, seasonally varying but zonally 

constant O3 concentrations and constant CO2 concentrations. 

Aerosols are not explicitly considered except for a top of the 

atmoshpere adjustment, which is not particularly troublesome 

with the exception of regions with high levels of time varying 

aerosol concentrations. Wavelength specific attenuation of 

both upwelling and downwelling fluxes is accounted for. 

High Resolution Rapid Refresh (HRRR) Model 

The High Resolution Rapid Refresh (HRRR) model is an 

NOAA operated, experimental, hourly updated, 3km x 3km 

resolution atmospheric model. The HRRR was previously 

only nested over the eastern 2/3 of the continental United 

States, however as of June 2009 coverage was expanded to the 

CONUS region similar to the former RUC. The RHHH 

models uses the 13km resolution RUC/RAP for its initial 

conditions and is updated hourly. Benefits of the HRRR 

include the increased resolution and frequent updates which 

allow for shorter timescale predictions [155]. 

Weather Research and Forecasting (WRF) Model 

Many of the NWPs discussed are based on a version of the 

WRF which was created thought a partnership between 

NOAA and the National Center for Atmospheric Research 

(NCAR) in 2004. The WRF has, since its introduction, seen 

increased applicability in both research and operational 

communities. WRF software is supported ongoing efforts 

including workshops and on-line documentation. One of the 

main goals of the WRF model is to advance mesoscale 

atmospheric prediction by promoting closer ties between 

research and operational forecasting communities. The WRF 

is flexible by design and intended for a wide variety of 

forecasting applications with a priority on spatial resolutions 

ranging from 1 to 10 km [155]. 

2.2. Statistical Methods 
Forecasting methods based on historical data of solar 

irradiance are categorized into two categories: statistical and 

learning methods. Seasonality analysis, Box–Jenkins or Auto 

Regressive Integrated Moving Average (ARIMA), Multiple 

Regressions and Exponential Smoothing are examples of 

statistical methods, whilst AI paradigms include fuzzy 

inference systems, genetic algorithm, neural networks, 

machine learning, etc.\ 

2.2.1. Time Series Models 

As said earlier time series models gives the result based on the 

historical data. Time series can be defined as a sequence of 

observations measured over time, such as the hourly, daily or 

weekly. Since the observation could be random it is also 

known as stochastic process. A time series technique mainly 

focuses at the patterns of the data. These patterns should be 

identifiable and predictable for the time-series based forecast. 
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Table 1 Comparison of various NWP models 

 Model Resolution No. of 

layers 

Time 

Horizon 

Time Step Agency 

Global 

Models 

GFS 28 km 64 
180 hr, 384 

hr 

6 hr, 12 hr 
NOAA 

ECMWF 25 km 91 360 hr 3 hr - 

Regional 

Models 

RUC/RAP 13 km 50 18 hr 1 hr NOAA/NCEP 

NAM 12 km 60 96 hr 6 hr NCEP 

HRRR 3 km 50 15 hr 15 min NOAA 

WRF  1 km 
As per the 

user 

As per the 

user 

As per the 

user 
NOAA/NCAR 

 
2.2.1.1. Linear Stationary Models 

Observational series that describe a changing physical 

phenomenon with time can be classified into two main 

categories; stationary and non-stationary. If the sequence of 

weights in Equation (12) below is finite, or infinite and 

convergent, the linear filter is said to be stable and the process 

zt (stochastic process) to be stationary [155]. Stationary time 

series are static with respect to their general shape. The 

fluctuations may appear ordered or completely random, 

nonetheless the character of the series is, on the whole, the 

same in different segments. In this case, the parameter µ may 

be interpreted as the average value about which the series 

fluctuates. Stationary time series find applications in many 

areas of the physical sciences, for instance, observational time  

series and series involving deviations from a trend are often 

stationary [79]. In fact, the stochastic portion a solar radiation 

data set is often framed as a stationary process [80]. 

𝑮 𝒒 =  𝒈𝒌𝒒 
𝒌 = 𝟏 + 𝒈𝟏𝒒 + 𝒈𝟐𝒒 

𝟐    ∞
𝒌=𝟎 (12) 

Where q is the forward shift or advance operator and G(q) is 

the transfer function of the filter. 

Auto-Regressive (AR) Models 

The so-called auto-regressive models get their name from the 

fact that the current value of the process can be expressed as a 

finite, linear combination of the previous values of the process 

and a single shock 𝜔𝑡 . Thus, the process is said to be 

regressed on the previous values. If  

 

we define the stochastic portion of the time series 

𝑧 𝑡 , 𝑧 𝑡−1, 𝑧 𝑡−2,…… as deviations from the mean value  as 

𝑧 𝑡 = 𝑧𝑡 − 𝜇   (13)  
then the Auto-Regressive process of order m can be written as 

𝜔𝑡 = 𝑧 𝑡 + 
1
𝑧 𝑡−1 + 

2
𝑧 𝑡−2 + ⋯+


𝑚
𝑧 𝑡−𝑚 (14)  

We can simplify the previous expression by defining the 

Auto-Regressive operator of order m, AR(m), as 

𝒎 𝒒 =  
𝒌
𝒒 𝒌 = 𝟏 + 

𝟏
𝒒 + 

𝟐
𝒒 𝟐 + ⋯+ 

𝒎
𝒒 𝒎𝒎

𝒌=𝟎

 (15) 

then the AR(m) model may be written conveniently as 

𝒎 𝒒 𝒛 𝒕 = 𝝎𝒕   (16) 

where it is clear that the process is regressed on the previous 

values of 𝑧 . In order to implement this model one must 

determine the m+2 unknown parameters 


1

, 
2

,… 
𝑚

,𝜇 and 𝜔
2 . It is illustrative to note that Equation 

(16) implies 

𝒛 𝒕 = 𝒎
−𝟏(𝒒)𝝎𝒕  (17) 

Therefore, it is helpful to think of the AR(m) process as the 

output of a linear filter with transfer function 𝑚
−1(𝑞) and 

white noise 𝜔𝑡as the input. 

In order for the AR(m) process to be stationary a set of 

conditions must be satisfied. In [81] the authors point out that 

the general AR(m) process has the inverse transfer function 

𝒎 𝒒 =  𝟏 − 𝟏𝒒   𝟏 − 𝟐𝒒  … (𝟏 − 𝒎𝒒 )(18) 

which allows expansion of the process in partial fractions, 

𝒛 𝒕 = 𝒎
−𝟏 𝒒 𝝎𝒕 =  

𝒌𝒊

(𝟏−𝒊𝒒 )

𝒎
𝒌=𝟏 𝝎𝒕 (19) 

where it is clear that if 𝑚
−1 𝑞  is to be a convergent series for 

 𝑞  ≤ 1, then we must have    < 1, where k =1,2,3,…m. 

This is equivalent to saying that the roots of the equation 

𝑚 𝑞 = 0  must lie outside the unit circle. For a discussion 

of stationary conditions of AR(m) processes see [79, 81, 82]. 

 

Moving Average (MA) Models 

While the AR techniques model the stochastic portion of the 

time series 𝑧 𝑡  as a weighted sum of previous values 

𝑧 𝑡−1, 𝑧 𝑡−2,…𝑧 𝑡−𝑚  , Moving Average (MA) methods model 𝑧 𝑡  
as a finite sum of n previous shocks 𝜔𝑡 ,𝜔𝑡−1,𝜔𝑡−2,…𝜔𝑡−𝑛 . 

The Moving Average process of order n, MA(n), is defined as 

𝑧 𝑡 = 𝜔𝑡 + 𝜃1𝜔𝑡−1 + 𝜃2𝜔𝑡−2 + ⋯+ 𝜃𝑛𝜔𝑡−𝑛  

 (20)  

Let us pause here and note that the terminology moving 

average can be a bit mis-leading due to the fact that the 

weights in Equation (20) do not, in general, need to be 

positive nor does their sum necessarily equal unity [81]. 

Nonetheless, the name is used for historic convention. The 

MA(n) operator is defined 

𝑛 𝑞 =  𝑘𝑞 
𝑘 = 1 + 1𝑞 + 2𝑞 

2 + ⋯+𝑛
𝑘=0

𝑛𝑞 
𝑛  (21) 

and as a result we can write the MA model in an economic 

fashion 
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𝑧 𝑡 = 𝑛(𝑞)𝜔𝑡    (22) 
 Hence, the MA process can be thought of as the 

output 𝑧 𝑡  of a linear filter whose transfer function is 𝑛 𝑞 ,  
with white noise 𝜔𝑡  as the input. 

Like its counterpart, the MA model contains n + 2 

undetermined parameters 𝜃1,…𝜃𝑛 , 𝜇,𝜎𝜔  
2  which must be 

determined from the data using the techniques described in the 

next section. Unlike AR (m) processes, MA(n) processes do 

not have a stability condition and, as a result, are 

unconditionally stable [79]. 

 

Mixed Auto-Regressive Moving Average (ARMA) 

Models 

Linear processes represented by an infinite or an extraneous 

number of parameters are clearly not practical. However, it is 

possible to introduce parsimony and still obtain useful models. 

A well-known result in time series analysis is the relationship 

between the  weights and  weights [81]. Operating on both 

sides of Equation (16) by Θ(q) and making use of Equation 

(22), yield 

 𝑞  𝑞 𝑧 𝑡 =  𝑞 𝜔𝑡 = 𝑧 𝑡              (23) 

which implies                                       𝑞  𝑞 =

1     (24)  

that  is                                                   −1(𝑞) =

(𝑞)     (25)  
Equation (25) indicates that the Φ weights may be arrived at 

from knowledge of the Θ weights, and vice-versa. Thus the 

finite MA process 𝑧 𝑡 = (𝑞)𝜔𝑡  can be written as an infinite 

AR process 

𝑧 𝑡 =  −1𝑧 𝑡−1 − 1
2𝑧 𝑡−2 −⋯+ 𝜔𝑡  (26) 

However, if the process were really MA(n), we would arrive 

at a non-parsimonious representation in terms of an AR(m) 

method. By the same reasoning, an AR(m) method could not 

be parsimoniously represented using a MA(n) process. 

Therefore, in practice, in order to realize a parameterization 

which is parsimonious, both AR and MA terms are often used 

in the model development. Hence, 

𝑧 𝑡 + 
1
𝑧 𝑡−1 + ⋯+ 

𝑚
𝑧 𝑡−𝑚 = 𝜔𝑡 + 1𝜔𝑡−1 + ⋯+

𝑛𝜔𝑡−𝑛  (27) 
or  

𝑚 𝑞 𝑧 𝑡 = 𝑛(𝑞)𝜔𝑡  (28) 
Equation (28) is referred to as the mixed Auto-Regressive 

Moving Average (ARMA) process of order (m, n). It is 

illustrative to note that the ARMA(m, n) process can be 

written 

𝑧 𝑡 =
𝑛 (𝑞)

𝑚 (𝑞)
𝜔𝑡 =

1+1𝑞 +⋯+𝑛𝑞 
𝑛

1+1𝑞 +⋯+𝑚 𝑞 𝑚
𝜔𝑡  (29) 

and as a result can be thought of as the output 𝑧 𝑡  from a linear 

filter, whose transfer function is the ratio of two polynomials 

Θn(q) and Φm(B), with white noise 𝜔𝑡  as the input. 

In practice, it is frequently true that adequate representation of 

actually occurring stationary time series can be obtained from 

models in which n and m are not greater than two and often 

less than two [81, 80]. The order of the model, that is the 

values of m and n, is determined using the sample auto-

correlation function and partial auto-correlation function of 

the time series [83]. The model parameters are estimated by 

least squares methods and the resulting model is said to 

adequately  contained in the series in a parsimonious manner. 

  

  Mixed Auto-Regressive Moving Average Models 

with Exogenous Variables (ARMAX) 

All of the linear stationary stochastic techniques discusses so 

far have been univariate; meaning the technique uses previous 

values of only the time series it is attempting to model. 

However, the accuracy of ARMA(m, n) models may be 

improved by including information external to the time series 

under analysis. For example, in the case of solar forecasting, 

the error of a forecasting model may be reduced by including 

information about the evolution of the local temperature, 

relative humidity, cloud cover, wind speed, wind direction, 

etc. Variables such as these, which are independent of the 

models but aff ect its value, are referred to as exogenous 

variables. We can include into the ARMA(m, n) models p 

exogenous input terms which allows us to write the 

ARMAX(m, n, p) process as 

𝑧 𝑡 + 
1
𝑧 𝑡−1 + ⋯+ 

𝑚
𝑧 𝑡−𝑚 = 𝜔𝑡 + 1𝜔𝑡−1 + ⋯+

𝑛𝜔𝑡−𝑛 + 1𝑒𝑡−1 + ⋯+ 𝑝𝑒𝑡−𝑝  (30)  

The above model contains AR(m) and MA(n) models as well 

as the last p values of an exogenous time series et. Defining 

the exogenous input operator of order p as 

𝑝 𝑞 =  𝑘𝑞 
𝑘 = 1 + 1𝑞 + 2𝑞 

2 + ⋯+
𝑝
𝑘=0

𝑝𝑞 
𝑝  (31) 

The ARMAX (m, n, p) model conveniently be written as 

𝑚 𝑞 𝑧 𝑡 = 𝑛 𝑞 𝜔𝑡 + 𝑝(𝑞)𝑒𝑡  (32) 

The careful reader might already be aware of the fact that all 

of the linear stationary models discussed so far have a similar 

structure. In fact, many models in linear system analysis can 

be considered a special case of the general discrete time model 

structure 

 𝑞 𝑧 𝑡 =
(𝑞)

(𝑞)
𝜔𝑡 +

(𝑞)

(𝑞)
𝑒𝑡   (33) 

where 𝑞 , (𝑞), (𝑞),  𝑞  and (𝑞) are polynomials of 

the shift operator q [82, 84]. 

2.2.1.2. Non-Linear Stationary Models 
So far we have only considered general classes of linear 

stationary models. However, non-linear methods would enable 

powerful structures with the ability to accurately describe 

complex nonlinear behaviour such as: chaos, hysteresis and 

saturation eff ects or a combination of several non-linear 

problems [84]. A step towards nonlinear modelling is made by 

introducing the Non-linear AR-exogenous (NARX) model as 

𝑧 𝑡 = 𝑓 𝑧 𝑡−1, 𝑧 𝑡−2,… , 𝑧 𝑡−𝑚 , 𝑒𝑡−1, 𝑒𝑡−2,… , 𝑒𝑡−𝑛 + 𝜔𝑡

 (34) 

In much the same way one can also convert the ARMAX 

model into a Non-linear ARMAX model (NARMAX) as 

follows 

𝑧 𝑡 =

𝑓 𝑧 𝑡−1, 𝑧 𝑡−2,… , 𝑧 𝑡−𝑚 , 𝑒𝑡−1, 𝑒𝑡−2,… , 𝑒𝑡−𝑛 ,𝜔𝑡−1,𝜔𝑡−2 ,  … ,𝜔𝑡−𝑝 +

𝜔𝑡  (35) 

These non-linear input-output models find many applications 

in the field of engineering, especially in the parameterization 

of Artificial Networks. 

2.2.1.3. Linear Non-Stationary Models 
If the sequence of weights in Equation (12) is infinite but not 

convergent, the linear filter‘s transfer function G(q) is said to 

be unstable and the process zt to be non-stationary. In this 

case, µ has no physical meaning except as a reference to the 

level of the process. Non-stationary processes are diff erent in 

one or more respects throughout the time series due to the 
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time dependent nature of the level. As a result, in the analysis 

of non-stationary time series, time must play a fundamental 

role, for example, as the independent variable in a progression 

function, or as a normalization factor in the analysis of the 

evolution of a phenomenon from an initial state [79]. Several 

observed time series behave as if they has no specified mean 

about which they fluctuate, for example, daily stock prices or 

hourly readings from a chemical process [81]. 

Auto-Regressive Integrated Moving Average 

Models (ARIMA) 

While non-stationary processes do not fluctuate about a static 

mean, they still display some level of homogeneity to the 

extent that, besides a diff erence in local level or trend, 

diff erent sections of the time series behave in a quite similar 

way. These non-stationary processes may be modelled by 

particularizing an appropriate diff erence, for example, the 

value of the level or slope, as stationary. What follows is a 

description of an important class of models for which it is 

assumed that the dth diff erene is a stationary ARMA(m, n) 

process. 

We have seen that the stationary condition of an ARMA(m, n) 

process is that all roots of Φm(q) = 0 lie outside the unit circle, 

and when the roots lie inside the unit circle, the model exhibits 

non-stationary behaviour. However, we have not discussed the 

situation for which the roots of Φm(q) = 0 lie on the unit circle. 

Let us examine the following ARMA (m, n) model 

𝑚 𝑞 𝑧 𝑡 = 𝑛(𝑞)𝜔𝑡   (36) 
and specify that d of the roots of 𝑚 𝑞 = 0 lie on the unit 

circle and the residuum lie outside. We can then express the 

model as 

𝑚 𝑞 𝑧 𝑡 = 𝑛(𝑞)(1 − 𝑞 )𝑑𝑧 𝑡 = 𝑛(𝑞)𝜔𝑡  (37) 

where  𝑚  𝑞   is a stationary and invertible AR(m) operator. 

Seeing that ∇ 𝑑𝑧 𝑡 = ∇ 𝑑𝑧𝑡  when d ≥ 1, we can write 

𝑚 𝑞 ∇ 𝑑𝑧 𝑡 = 𝑛(𝑞)𝜔𝑡   (38) 

Defining 𝑦𝑡=∇ 
𝑑𝑧𝑡  allows one to express the model in a more 

illustrative way 

𝑚 𝑞 𝑦𝑡 = 𝑛(𝑞)𝜔𝑡    (39) 

Where it is clear that the model is in agreement with the 

assumption that the dth diff erence of the time series can be 

regarded as a stationary ARMA (p, q) process. If we not invert 

Equation (39) we see that 

𝑧𝑡 = 𝑆𝑑𝑦𝑡     (40) 

Which implies that the process can be arrived at by summing, 

or integrating, the stationary process d times. Thus, we refer to 

(38) as the Auto-Regressive Integrated Moving Average 

(ARIMA) process. Because the AR operator 𝑚 𝑞  is of 

order m, the dth diff erence is taken and the MA operator 

𝑛(𝑞) is of order n in (38) we refer to the process as ARIMA 

(m, d, n). In practice, d is typically 0, 1 or at most 2 [81]. As 

mentioned above, the ARIMA (m, d, n) model is equivalent to 

representing the process 𝑧𝑡  as the output of a linear filter with 

transfer function 𝑛
−1∇ −𝑑𝑛  and takes white noise 𝜔𝑡as an 

input. 

 

 

 

Auto-Regressive Integrated Moving Average 

Models with Exogenous Variables (ARIMAX) 

In a similar way to the ARMAX(m, d, n) model, the previous 

p values of an exogenous time series et may also be included 

into the ARIMA(m, d, n) model to yield the ARIMAX process 

of order (m, d, n, p) 

𝑧 𝑡 = 
1
∇ 𝑑𝑧𝑡−1 + ⋯+ 

𝑚
∇ 𝑑𝑧𝑡−𝑚 + 𝜔𝑡 +

1𝜔𝑡−1 + ⋯+ 𝑛𝜔𝑡−𝑛 + 1𝑒𝑡−1 + ⋯+

𝑝𝑒𝑡−𝑝  (41)  

As we did before, defining 𝑦𝑡=∇ 
𝑑𝑧𝑡  in terms of the backwards 

shift operator allows us to express the model in a more 

compact form 

 

𝑚 𝑞 𝑦𝑡 = 𝑛 𝑞 𝜔𝑡 + 𝑝(𝑞)𝑒𝑡  (42) 

which again looks very similar to Equation (33). 

2.2.2. Persistence Model 
The persistence model is considered as one of the simplest 

way for forecasting. It basically predicts the future value, 

assuming it is same as the previous value.   

 

𝑡+1 = 𝑡     (43) 
  

It is also known as the naive predictor. It can be used to give a 

clue to compare with other methods. The persistence model 

gives good results when the changes in the weather patterns 

are very little. These models give high error results for 

forecasting more than one hour. 

2.2.3. Artificial Neural Networks 
The artificial neural network (ANN) is a sub–domain of 

artificial intelligence (AI).There are many architectures in 

ANN including multilayer perceptron (MLP), radial basis 

network, self–organized map, support vector machine and 

Hopfield networks, and others [149]. These architectures 

differ from one another greatly. ANNs are however used to 

perform two types of tasks, which are, regression and pattern 

recognition. Both these are applied in solar irradiance 

forecasting.   

To define the regression applications, in this inputs are 

mapped to outputs in a non-linear manner. In this the 

historical data are used as ANN inputs and irradiance of the 

immediate time steps is outputs. Therefore, ANN takes two 

steps, the training and the forecast. In the training phase the 

weights of the artificial neurons are determined and the 

forecasts are computed based on the trained weights. Same as 

regression applications, pattern recognition applications 

involve training and testing. In this instead of outputting the 

forecast irradiance, the ANN gives a natural number as output 

which represents 

the object classification.    

The irradiance forecasting accuracy is improved by 

meteorological and climatological inputs such as temperature 

and humidity. [85] used climatological variables as inputs to 

an ANN to predict monthly values of global horizontal 

irradiance (GHI) over a year. Other examples include [86, 87, 

88].   
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Fig 2: Classification of different models 

 

ANN also showed some developments in its fields so as to 

predict solar irradiance forecasting. Some examples are [89] 

applied time delayed neural network; [90] applied wavelet 

neural network. Other similar work includes [69][91-96].  

Many researchers publish forecasting results with new data 

from various regions in the world for archive purpose [97] 

used MLPs for forecasts for six cities in Iran [98]. Forecast 

solar irradiance of a grid connected PV plants in Italy. [99] 

Forecast global radiation in Australia and compared to a few 

other techniques.   

Some work by [100-103] and [98] developed ANN using 

training data to reduce relative RMSE (rRMSE) of daily 

average GHI.      

2.3.  Hybrid Methods 
Hybrid models are the combination of two or more forecasting 

techniques so as to improve the accuracy of the forecast. 

Therefore, they are also known as combined models. The idea 

behind using the hybrid models is to overcome the 

deficiencies of the individual models and to utilize the 

advantages of individual models, merge them together and 

provide a new hybrid model to reduce forecast errors. For 

instance, the NWP model can be combined with the ANN by 

feeding the outputs from the NWP as input to the ANN 

models. Hybrid models can combine linear models, nonlinear 

models, or both linear and nonlinear models. Many studies 

have showed that integrated forecast methods outperform 

individual forecast [2].   

In some studies it is founded that ANN is combined with 

wavelet to develop a new forecasting method. Cao and Cao 

[104-108] they all combined wavelet with ANN. Other 

authors like [109-123] used other soft computing techniques 

like GA, fuzzy logic, Quantum based GA, adaptive neuro-

fuzzy, etc. to develop hybrid models. In all these models 

combinations like (fuzzy + ANN), (adaptive neuro fuzzy + 

ANN), (fuzzy + adaptive neuro-fuzzy + ANN + GNN), 

(wavelet + fuzzy), etc. are developed. Time series methods are 

also combined with ANN like in [89] [124-129]. Some other 

hybrid models include [130] which combined self organized 

map with exponential smoothing. [131] combined MLP with 

model output statistics for improving NWP model. 

3. SOLAR FORECASTING 

EVALUATION METRICS 
For evaluating the performance of a forecast model, the error 

needs to be calculated. Understanding the forecast error tells 

us how much to trust the forecast, and re-evaluate the 

forecasting methods in case of a high error forecast. Solar 

power metrics can be broadly classified into four categories: 

[132] 

3.1 Statistical Metrics 
Statistical error measurement differs on the fact whether solar 

irradiance or solar power forecast is done on daylight hours or 

on all hours of a day. 

 

 

  
  
  
  
  

  
  
  

  
  
  

  
  
  

  
  
  

  
 T

S
I 

Satellite 

Persistence 

ARIMA, 

                         ARMA 

                            ANN 

    

           WRF & MM5 

              GFS & ECMWF 

Statistical area 

NWP area 

S
p

a
ti

a
l 

R
es

o
lu

ti
o

n
 

Temporal resolution 

1
0
0

 k
m

 
1

0
 k

m
 

1
 k

m
 

0
.1

 k
m

 
0

.0
1

 k
m

 

0.1 hr 1 hr 10 hr 100 hr 1000 hr 



International Journal of Computer Applications (0975 – 8887) 

Volume 145 – No.6, July 2016 

39 

Pearson’s correlation coefficient 

Pearson‘s correlation coefficient is a measure of the 

correlation between two variables (or sets of data). The 

Pearson‘s correlation coefficient, ρ, is defined as the 

covariance of actual and forecast solar power variables 

divided by the product of their standard deviations, which is 

mathematically expressed as: 

 =
𝑐𝑜𝑣 (𝑝, 𝑝 )

𝑝  𝑝 
 

where p and 𝑝  represents the actual and forecast solar power 

output, respectively. A larger value of Pearson‘s correlation 

coefficient indicates an improved solar forecasting skill.   

Root mean squared error (RMSE) and normalized 

root mean squared error (nRMSE) 

The RMSE also provides a global error measure during the 

entire forecasting period, which is given by: 

𝑅𝑀𝑆𝐸 =  
1

𝑁
 (𝑝𝑖 − 𝑝𝑖)

2

𝑁

𝑖=1

 

where pi  represents the actual solar power generation at the 

ith  time step, 𝑝𝑖  is the  corresponding solar power generation 

estimated by a forecasting model, and N is the number of 

points estimated in the forecasting period. To compare the 

results from different spatial and temporal scales of forecast 

errors, we normalized the RMSE using the capacity value of 

the analyzed solar plants. 

Maximum absolute error (MaxAE), Mean absolute 

error (MAE), mean absolute percentage error 

(MAPE), and mean bias error (MBE) 

The MaxAE is an indicative of local deviations of forecast 

errors, which is given by: 

𝑀𝑎𝑥𝐴𝐸 =  max
𝑖=1,2,…𝑁

𝑝𝑖 − 𝑝𝑖 

The MaxAE metric is useful to evaluate the forecasting of 

short-term extreme events in the power system. 

The MAE has been widely used in regression problems and by 

the renewable energy industry to evaluate forecast 

performance, which is given by: 

𝑀𝐴𝐸 =  
1

𝑁
 𝑝𝑖 − 𝑝𝑖

𝑁

𝑖=1

 

The MAE metric is also a global error measure metric, which, 

unlike the RMSE metric, does not excessively account for 

extreme forecast events. 

The MAPE and MBE are expressed as: 

𝑀𝐴𝑃𝐸 =
1

𝑁
 

𝑝𝑖 − 𝑝𝑖
𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑁

𝑖=1

 

𝑀𝐵𝐸 =
1

𝑁
 (𝑝𝑖 − 𝑝𝑖)

𝑁

𝑖=1

 

The MBE metric intends to indicate average forecast bias. 

Understanding the overall forecast bias (over- or under- 

forecasting) would allow power system operators to better 

allocate resources for compensating forecast errors in the 

dispatch process. 

Kolmogorov–Smirnov test integral (KSI) and 

OVER metrics 

The KSI and OVER metrics were proposed by [133]. The 

Kolmogorov–Smirnov (KS) test is a nonparametric test to 

determine if two data sets are significantly different. The KS 

statistic D is defined as the maximum value of the absolute 

difference between two cumulative distribution functions 

(CDFs), expressed as 

𝐷 = 𝑚𝑎𝑥𝐹(𝑝𝑖) − 𝐹(𝑝𝑖)
   

Where F and 𝐹  represents the CDFs of actual and forecast 

solar power generation data sets, respectively. The associated 

null hypothesis is elaborated as follows: if the D statistic 

characterizing the difference between one distribution and the 

reference distribution is lower than the threshold value Vc , the 

two data sets have a very similar distribution and could 

statistically be the same. The critical value Vc depends on the 

number of points in the forecast time series, which is 

calculated for a 99% level of confidence [133]. 

𝑉𝐶 =
1.63

 𝑁
  N  35 

The difference between the CDFs of actual and forecast power 

is defined for each interval as  

 𝐷𝑗 = 𝑚𝑎𝑥𝐹(𝑝𝑖) − 𝐹(𝑝𝑖)
  ,      j = 1, 2, 3,.m 

where    𝑝𝑖 [𝑝𝑚𝑖𝑛 +  𝑗 − 1 𝑑, 𝑝𝑚𝑖𝑛 + 𝑗𝑑] 

Here the value of m is chosen as 100, and the interval distance 

d is defined as  

𝑑 =  
𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛

𝑚
 

Where 𝑝𝑚𝑎𝑥   and 𝑝𝑚𝑖𝑛  are the maximum and minimum values 

of the solar power generation, respectively. The KSI 

parameter is defined as the integrated difference between the 

two CDFs, expressed as  

𝐾𝑆𝐼 =   𝐷𝑛𝑑𝑝
𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛

 

A smaller value of KSI indicates a better performance of solar 

power forecasting. A zero KSI index means that the CDFs of 

two sets are equal. A relative value of KSI is calculated by 

normalizing the KSI value by  

𝑎𝑐 = 𝑉𝐶 ∗  𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛   

𝐾𝑆𝐼𝑃𝑒𝑟 % =
𝐾𝑆𝐼

𝑎𝑐
∗ 100 

The OVER metric also characterizes the integrated difference 

between the CDFs of actual and forecast solar power. The 
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OVER metric considers only the points at which the critical 

value Vc is exceeded. The OVER metric and its relative value 

are given by 

𝑂𝑉𝐸𝑅 =  𝑡
𝑝𝑚𝑎𝑥

𝑝𝑚𝑖𝑛

𝑑𝑝 

𝑂𝑉𝐸𝑅𝑃𝑒𝑟 % =
𝑂𝑉𝐸𝑅

𝑎𝑐
∗ 100 

The parameter t is defined by  

𝑡 =  
𝐷𝑗 − 𝑉𝑐         𝑖𝑓 𝐷𝑗 > 𝑉𝑐

0           𝑖𝑓 𝐷𝑗 ≤ 𝑉𝑐
  

As with the KSIPer metric, a smaller value of OVERPer 

indicates a better performance of the solar power forecasting. 

Skewness and kurtosis 

Skewness is a measure of the asymmetry of the probability 

distribution, and is the third standardized moment, given by: 

𝛾 = 𝐸   
𝑒 − 𝜇𝑒
𝑒

 
2

  

Where  is the skewness; e is the solar power forecast error, 

which is equal to the forecast minus the actual solar power 

value; and 𝜇𝑒  and 𝜎𝑒  are the mean and standard deviation of 

forecast errors, respectively. Assuming that forecast errors are 

equal to forecast power minus actual power, a positive 

skewness of the forecast errors leads to an over-forecasting 

tail, and a negative skewness leads to an under-forecasting 

tail. 

Kurtosis is a measure of the magnitude of the peak of the 

distribution, or, conversely, how fat-tailed the distribution is, 

and is the fourth standardized moment, expressed as: 

𝐾 = 𝜇4 𝜎𝑒
4 − 3 

Where K is the kurtosis, 𝜇4 is the fourth moment about the 

mean, and  is the standard deviation of forecast errors. The 

difference between the kurtosis of a sample distribution and 

that of the normal distribution is known as the excess kurtosis. 

3.2 Metrics for Uncertainty Quantification 

and Propagation 
Two metrics are proposed to quantify the uncertainty in solar 

forecasting, which are: (i) standard deviation of solar power 

forecast errors; and (ii) Rényi entropy of solar power forecast 

errors. 

Information entropy of forecast errors 

An information entropy approach was proposed in the 

literature [134-135] for assessing wind forecasting methods. 

This information entropy approach based on Rényi entropy is 

adopted here to quantify the uncertainty in solar forecasting. 

The Rényi entropy is defined as: 

𝐻𝛼 𝑋 =
1

1 − 𝛼
log2  𝑝𝑖

𝛼

𝑛

𝑖=1

 

where α is a parameter that allows the creation of a spectrum 

of Rényi entropies, and pi is the probability density of the ith 

discrete section of the distribution. Large values of α favor 

higher probability events; whereas smaller values of α weight 

all of the instances more evenly. A larger value of Rényi 

entropy indicates a high uncertainty in the forecasting. 

3.3 Metrics for Ramps Characterization 
One of the biggest concerns associated with integrating a large 

amount of solar power into the grid is the ability to handle 

large ramps in solar power output, often caused by cloud 

events and extreme weather events [136]. Different time and 

geographic scales influence solar ramps, and they can be 

either up-ramps or down-ramps, with varying levels of 

severity. The forecasting of solar power can help reduce the 

uncertainty involved with the power supply. 

Swinging door algorithm signal compression 

The swinging door algorithm extracts ramp periods in a series 

of power signals, by identifying the start and end points of 

each ramp. The algorithm allows for consideration of a 

threshold parameter influencing its sensitivity to ramp 

variations. 

Heat Maps 

In addition to the ramp periods identified by the swinging 

door algorithm, heat maps are adopted to illustrate variations 

of solar power forecast errors. Heat maps allow for power 

system operators to observe the timing, duration, and 

magnitude of ramps together. 

3.4 Economic and Reliability Metrics 
Flexibility reserves have been proposed as a way to 

compensate for the variability and short-term uncertainty of 

solar output. Flexibility reserves are the amount of power (in 

MW) needed to compensate for most hourly or intra-hourly 

deviations between solar forecasts and actual solar generation 

values. Improving solar forecasting accuracy is expected to 

decrease the amount of flexibility reserves that need to be 

procured with a high penetration of solar power in the system. 

Flexibility reserves are primarily determined by net load 

forecast error characteristics [137]. 

 

Table 2: Summary of 10 years publications in solar forecasting 

Author Method Horizon Performance 

Metric 

Location Variables Data Center 

Perez et al. 

(2007) 

 

[70] 

Physical 

(Satellite Based 

Model) 

Less 

than 4 

hr, 4-8 

hr, 8-26 

hr, 26-

Relative 

Mean Bias 

Error, 

Relative 

Mean Square 

Albany, 

New York 

Ambient 

Temp., dew 

point temp., 

precipitation, 

weather 

National 

Digital 

Forecast 

Database 
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76 hr Error   type, sky 

cover, wind 

speed and 

direction, 

wave height, 

snow amount 

Lorenz et 

al. (2007) 

[67] 

Physical 3 days 

ahead 

Root Mean 

Square Error, 

BIAS 

Germany  ECMWF 

Cao and 

Lin (2008) 

 

[90] 

Statistical 

(ANN) 

Hourly 

and 

daily 

Root Mean 

Square Error, 

Mean relative 

error 

Shanghai 

and Macau 

Cloud cover Data from 

Baoshan 

Meteorological 

Observatory, 

Shanghai  

Hacaoglu et 

al. (2008) 

[138] 

Statistical 

(ANN) 

Hourly Root Mean 

Square Error 

Eylul, 

Turkey 
 1 yr data from 

Iki Eylul, 

Turkey 

Remund et 

al. (2008) 

[71] 

Physical 3 hours Mean Bias 

Error and 

Root Mean 

Square Error 

USA, 

Germany, 

Switzerland 

 National 

Digital 

Forecast 

Database 

Bacher et 

al. (2009) 

[139] 

Statistical (Time 

Series Model) 

Hourly Root Mean 

Square Error 

Denmark  Danish 

Meteorological 

Institute 

Lorenz et 

al. (2009) 

[61] 

Physical 1 hr to 

3days 

Relative Root 

Mean Square 

Error 

Germany   ECMWF 

Reikard 

(2009) 

 

[125] 

Hybrid (Time 

Series + ANN) 

5, 15, 30 

min and 

1-4 hr 

 USA Humidity, 

cloud cover, 

atmospheric 

turbulence 

National Solar 

Radiation 

Database , 

Solar 

Radiation 

Research 

Laboratory, 

National Wind 

Technology 

Laboratory 

Azadeh et 

al. (2009) 

 

[97] 

Statistical 

(ANN) 
 Mean 

Absolute 

Percentage 

Error 

Iran Wind speed, 

vapour 

pressure, 

humidity, 

temp., 

location, 

month 

Data from six 

cities in Iran 

Mellit and 

Pavan 

(2010) 

[98] 

Statistical 

(ANN) 

24 hr Mean Bias 

Error, Root 

Mean Square 

Error 

Trieste, 

Italy 
 Data from 

municipality 

of Trieste 

Perez et al. 

(2010) 

 

[72] 

Physical 1-6 hr 

and 1-7 

-days  

KSI, OVER, 

Mean Bias 

Error, Root 

Mean Square 

Error 

USA Cloud cover 1 yr of hourly 

data from the 

SURFRAD 

network 

Martin et 

al. (2010) 

 

[140] 

Statistical (AR, 

ANN, Fuzzy) 

Out to 3 

days 

Relative Root 

Mean Square 

Deviation 

Spain  Spanish 

National 

Weather 

Service, Spain 

Mellit et al. 

(2010) 

[141] 

Statistical (AR 

and ANN) 

Hourly Correlation 

coefficient, 

Mean Bias 

Error 

Saudi 

Arabia 

Sunshine 

duration, air 

temp., 

humidity 

5yr data from 

Jeddah site, 

Saudi Arabia 

Paoli et al. 

(2010) 

 

[142] 

Hybrid (kNN, 

ANN, AR, 

Markov Chain, 

Bayesian 

Inference) 

1 day Root Mean 

Square Error, 

normalized 

Root Mean 

Square Error 

France  19 yrs of data 

from 

meteorological 

station of 

Ajaccio, 
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France 

Marquez 

and 

Coimbra 

(2011) 

[143] 

Statistical 

(ANN) 

1 hr Mean Bias 

Error, Root 

Mean Square 

Error 

US Sky cover, 

precipitation, 

temperatures 

Data from US 

National 

Weather 

Service 

Chen et al. 

(2011) 

 

[127] 

Hybrid (NWP+ 

ANN) 

 

24 hr Mean 

Absolute 

Percentage 

Error,  

China Relative 

humidity, 

temperature, 

wind speed, 

wind 

direction, 

cloud, 

sunshine 

duration, air 

pressure 

Data from 

Renewable 

Energy 

Research 

Center of 

Huazhong 

University of 

Science and 

Technology 

Chow et al. 

(2011) 

[37] 

Physical 30 sec 

to 5 min 

Mean, 

Standard 

Deviation 

San Diego  University of 

California, San 

Diego 

Mathiesen 

and Kleissl 

(2011) 

[65] 

Physical 1 hr to 1 

day 

Mean Bias 

Error, Root 

Mean Square 

Error 

USA  Hourly data 

from 

SURFRAD 

network, USA 

Voyant et 

al. (2011) 

 

[126] 

Hybrid (Time 

Series + ANN) 

1 day Normalized 

Root Mean 

Square Error 

France Pressure, 

nebulosity, 

humidity, 

wind speed 

9 yrs data from 

the French 

Meteorological 

Organization 

Corsica, 

France 

Wu and 

Chee 

(2011) 

 

[89] 

Hybrid (ARMA 

+ANN) 

1 hour Normalized 

Root Mean 

Square Error, 

Root Mean 

Square Error  

Singapore  1 yr data from 

Nanyang 

Technological 

University, 

Singapore 

Capizzi et 

al. (2012) 

[86] 

Statistical 

(ANN) 

1 day Mean Square 

Error, Root 

Mean Square 

Error 

Italy Wind speed, 

humidity and 

temp. 

1 yr data from 

Catania, Italy 

Boata and 

Gravila 

(2012) 

Statistical 

(Fuzzy) 

Daily Mean 

Absolute 

Error, Root 

Mean Square 

Error, Mean 

Bias Error 

Europe  World 

Radiation Data 

Center, Russia 

Mandal et 

al. (2012) 

 

[106] 

Hybrid 

(Wavelet+ANN) 

1 hour Mean 

Absolute 

Percentage 

Error, Mean 

Absolute 

Error, Root 

Mean Square 

Error  

USA Temperature 1 yr data from 

Oregon, USA 

Yap and 

Karri 

(2012) 

[99] 

Statistical 1 month Root Mean 

Square Error 

Australia Temperature, 

Rainfall, 

evaporation, 

sunshine 

hours 

12 yrs 

meteorological 

data for 

Darwin, 

Australia 

Pedro and 

Coimbra 

(2012) 

[128] 

Hybrid 1 and 2 

hr 

Mean 

Absolute 

Error, Mean 

Bias Error, 

Coefficient 

of correlation 

USA  1 yr data from 

farm in 

Merced, USA 

Voyant et 

al. (2012) 

[144] 

Hybrid 

(ARMA+ANN) 

1 hr Normalized 

Root Mean 

Square Error 

France  6 yrs data from 

Mediterranean, 

France 
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Marquez et 

al. (2013) 

 

[40] 

Hybrid 

(Satellite+ANN) 

30, 60, 

90, 120 

min 

Root Mean 

Square Error, 

Mean Bias 

Error 

USA  1 yr data for 

Davis and 

Merced and 

hourly 

NOAA‘s 

GOES West 

satellite 

images, USA 

Marquez et 

al. (2013) 

 

[145] 

Hybrid 

(ANN+Sky 

images) 

1 hr Mean Bias 

Error, Root 

Mean Square 

Error,  

USA Cloud cover, 

infrared 

radiation, 

sky-images 

2 months 

infrared 

radiation and 

sky-images 

data for 

Merced, USA 

Marquez 

and 

Coimbra 

(2013) 

[146] 

Physical 3-15 

min 

Root Mean 

Square Error 

USA Cloud cover Several days 

sky-images 

data for 

Merced, USA 

Bosch et al. 

(2013) 

[147] 

Statistical 

(Sensor 

Network) 

  USA  Several days 

data for San 

Diego, USA 

Voyant et 

al. (2013) 

[148] 

Hybrid (ANN+ 

ARMA) 

1 hr Normalized 

Root Mean 

Square Error 

France Nebulosity, 

pressure, 

precipitation 

10 yrs data 

from 

Mediterranean, 

France 

Mathiesen 

et al. (2013) 

 

[62] 

Physical Hourly Relative 

Mean Bias 

Error, 

Relative 

Mean 

Absolute 

Error, 

Relative Root 

Mean Square 

Error, 

Relative 

Standard 

Error 

San Diego Wind speed, 

wind 

direction, 

temperature, 

precipitation 

Data from 

University of 

California, San 

Diego 

Bernecker 

et al. (2014) 

[42] 

Physical 10 min Root Mean 

Square Error 

Germany Cloud speed  15 days data 

collected in 

Kitzingen, 

Bavaria, 

Germany 

Chu et al. 

(2014) 

 

[39] 

Hybrid (Sky 

Imagery+ ANN) 

5, 10, 15 

min 

Mean Bias 

Error, Root 

Mean Square 

Error 

US Cloud cover Satellite 

images from 

National 

Oceanic and 

Atmospheric 

Administration 

Cros et al. 

(2014) 

 

[53] 

Physical 4 hr Relative Root 

Mean Square 

Error 

France, 

Spain 

Cloudiness Satellite 

images from 

European 

Organisation 

for the 

Exploitation of 

Meteorological 

Satellites 

Amrouche 

and Pivert 

(2014) 

 

[150] 

Statistical 

(ANN) 

1 day Mean Square 

Error, Root 

Mean Square 

Error 

France Temperature US National 

Oceanic and 

Atmospheric 

Administration 

Chaturvedi 

(2015) 

 

Hybrid 

(Quantum+ GA) 

1 min Root Mean 

Square Error 

India  Data from 

Faculty of 

Engineering, 
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[109] Dayal Bagh 

Educational 

Institute, Agra, 

India  

Chu et al. 

(2015) 

 

[50] 

Statistical 

(ANN) 

5, 10, 15 

min 

Mean Bias 

Error, Mean 

Absolute 

Error, Root 

Mean Square 

Error, 

Standard 

Deviation, 

Skewness, 

Kurtosis 

Nevada  Data from the 

Sempra 

Generation 

Copper 

Mountain 

Solar Power 

Plant  

Ghayekhloo 

et al. (2015) 

 

[151] 

Hybrid 1 hr Mean 

Absolute 

error, relative 

Mean 

Absolute 

Error, Root 

Mean Square 

Error, 

relative Mean 

Absolute 

Error 

United 

States 

Temperature, 

wind speed, 

wind 

direction 

Hourly data of 

Ames Station, 

United States 

Akarslan 

and 

Hocaoghu 

(2016) 

[152] 

Hybrid 1 hr Root Mean 

Square Error, 

Mean Bias 

Error 

Turkey  Data from 

Turkish State 

Meteorological 

Service 

Sharma et 

al. (2016) 

 

[154] 

Hybrid (sensor+ 

wavelet+ ANN) 

1 hr, 15 

min 

Mean Bias 

Error, 

Normalized 

Root Mean 

Square Error 

Singapore  1 hr data from 

National 

University of 

Singapore 

Gala et al. 

(2016) 

 

[153] 

Hybrid (NWP+ 

Machine 

Learning) 

3 hr Mean 

Absolute 

Error 

Spain  Data from 

Departamento 

de 

Aplicaciones 

para la 

Operacion of 

Red Electrica 

de Espana. 
 

 

4. CONCLUSION 
Various solar forecasting methods and evaluation metrics are 

discussed in this work. From the study it is found that a 

variety of work has been performed by various authors for a 

number of different spatial and temporal resolutions. 

The study here is done according to various forecasting 

methods. In case of physical methods different cloud imagery 

and satellite based models are studied. Apart from these two 

total sky imagers and NWP models are also the part of 

physical methods. Satellite imaging based methods is used as 

alternatives to expensive ground based pyrometer networks. 

These are best for forecasting of irradiance in environments 

where no other data is available. The only disadvantage of 

these methods is that they suffer from temporal and spatial 

limitations due to satellite sampling frequency and limits on 

spatial resolution of the satellite images. NWP is also used for 

locations without extensive ground networks. These are best 

option for long term forecasting with horizon from few hours 

to couple of days or more. 

In case of statistical methods different time series and learning 

methods are studied. In time series methods sequence of 

observations are measured over time. These methods have 

models like AR, MA, ARMA, ARMAX, ARIMA etc. And in 

learning methods various artificial techniques are considered 

like neural networks, genetic algorithm etc. Artificial Neural 

Network is discussed which provides good performance for 

irradiance data when enough historical data is available. These 

are used for forecasting intra-hour to yearly time horizons. 

ANNs are generic non-linear approximators that deliver 

compact solutions for several non-linear, stochastic and 

multivariate problems. 

Nowadays, the most used method is the hybrid method which 

incorporates two or more techniques and produces a new 

forecasting method with improved accuracy. In this method 

the deficiencies of the individual model are overcome and 

advantages of individual models are utilized. These methods 

also reduce the forecast errors. For evaluating the forecast 

errors solar forecasting evaluation metrics are also studied. 

Forecasting evaluation metrics allow to understand how much 

to trust the forecast and re-evaluate it in case of high errors. 
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