
International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.6, July 2016

16

 Optimized and Prioritized Test Paths Generation from

UML Activity Diagram using Firefly Algorithm

Wasiur Rhmann
Department of Computer Science

B. B. Ambedkar University
 (A Central University)
Lucknow, U.P., India

 Vipin Saxena
Department of Computer Science

B. B. Ambedkar University
(A Central University)
Lucknow, U.P., India

ABSTRACT

 Due to limited resources and challenging time schedule,

software testing is usually performed in pressure to assure the

fulfilment of the software requirements. Test case generation

is a crucial activity of the software testing phase. Testing of

all paths from Control Flow Graph is not feasible in software

testing, due to limited time and cost. Generation of optimized

test paths is a challenging part of the software testing process.

In this paper, a new technique to obtain the optimized test

paths from activity diagram designed through Unified

Modeling Language is demonstrated. A modified algorithm

called as Firefly algorithm is used to obtain the critical paths.

A case study of air flight check-in is taken as a case study to

explain the proposed approach. Paths are prioritized based on

Information Flow Metric and their cyclomatic complexity.

Obtained optimized paths have no redundancy and produced

the better results.

Keywords

Test Case, Information Flow Metric, Firefly algorithm, UML.

1. INTRODUCTION
Software testing, a software development activity is used

frequently to verify the quality of the software. It can often be

a complex and expensive process. With the increasing

demand of reliable software, software testing can add upto

50% of the total software cost. Software companies are

oftenly unable to complete testing process due to limited

resources and budget constraints which results in poor quality

software and unsatisfied users. Software testing is process of

executing software with the intent of finding errors [1].

Software testing can be done manually or automatically.

Automated software testing is found to be better than manual

testing. Sequence of conditions that satisfy certain coverage

criteria are called test cases. Test engineer uses test cases to

identify whether software system satisfy the predefined

requirements. Different models can be used to generate test

cases automatically. Test cases generated from these models

help to find ambiguities and inconsistencies in the

requirement and design of the system. Generated test cases

should exercise in such a way that it can provide maximum

throughput by uncovering defects. Due to inherent

complexity, large systems are difficult to test and large

numbers of test cases are required to test these types of the

systems. Generation of test cases is difficult step in software

testing. So for effective testing, the concept of test

prioritization is often applied to run the test cases in order

which may reveal faults earlier in the process of testing.

Improved fault detection will result in reduction of associated

cost and time of software testing. Selection of right test path

or test sequence is a challenging part in software testing [2].

The extent to which a property must be tested is determined

by test adequacy criteria [3]. Activity diagram describes

dynamic aspects of the system. Business and operational

workflows of the system can be easily modeled by UML

activity diagram. UML based testing has been used by

researchers for many years to produce test cases earlier in the

development cycle. While prioritization techniques based on

code are investigated by most researchers, prioritization of

test cases generated from UML diagrams has not been given

much attention by researchers so far. Li at et [4] generated test

cases from UML activity diagram using the theory of

Extenics. It is new discipline to solve contradictory problems.

Authors transformed UML activity diagram into directed

graph then converted this directed graph into Euler circuit.

From Euler circuit authors generated test sequences using

Euler circuit algorithm. Although generated test paths are

minimized still they contains redundant transitions. Srivastava

et al [5] used Cuckoo search for generation of optimized test

sequence. Authors used activity diagram for generation of test

sequences. They converted activity diagram into Control Flow

Graph (CFG). This graph is given as input to cuckoo search

algorithm. Static and dynamic weights are assigned to the

CFG. Sum of theses weights are calculated to form the value

of fitness function. In each iteration, value is optimized to

produce better test sequence. Lam et al [6] used artificial bee

colony method to generate optimized test suite and

independent paths are generated from CFG. Activity diagram

results in path explosion due to presence of loop and parallel

activities however it is not feasible to consider all paths

generated from activity diagram for testing. To address these,

few researches have contributed the research papers which are

available from literatures [7-9].

Due to easy to use notation and adherence to object-oriented

methodology, UML activity diagram has been used as input

model for test case generation. The proposed approach

generates optimized and prioritized test sequences from

activity diagram. This approach uses the Firefly algorithm

which is inspired by flashing behaviour of firefly and

developed by Yang [10]. Information Flow Metric [11] is

applied to the component of the system design. Here nodes of

CFG are considered as component. For each node IF value is

calculated. The IF value of each node is calculated from the

following equation

IF(A)=[FANIN(A) ×FANOUT(A)]2; (1)

where FANIN(A) is number of nodes that call or pass control

to node A and FANTOUT(A) is number of nodes called by

node A.

The Unified Modeling Language developed by Booch [12]

provides graphical tool for modeling and designing software

and hardware problems. It is defacto standard of modeling

language used for specifying, visualizing and documenting the

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.6, July 2016

17

software [13]. Latest UML specification and standard

representation are described by OMG [14-15]. Primarily

intention of UML is modeling for object-oriented software.

Activity diagram provides support for parallel and conditional

behaviour for complex sequential activities [16]. Sequences of

activities of the system are modeled by activity diagram to

describe dynamic behaviour of the system. Activity diagram

defined in [17] may contain six tuples

D=(W, JF, BM,T, F, C); (2)

where W represents the activity, W0 initial activity and Wf

final activity, Fork and Joining of activity are represented by

JF, T for transition between activity, BM represents branching

and merging, C stands for condition, then

F (W×T×C)×(T×C×W). (3)

Activity diagram can be used for control and object flow

modeling, business and operational modeling. In recent years,

use of activity diagram has gained attention of researchers for

generation of test cases.

2. FIREFLY ALGORITHM
Firefly algorithm is a nature inspired technique which is used

for solving optimization problems and it simulates the flash

pattern and characteristics of fireflies. It is inspired by

flashing behaviour of fireflies. Firefly algorithm developed by

Xin-She. There are three rules in Firefly algorithm which are

described below [18]:

1. Every Firefly can be attracted to other fireflies as

they are unisexual;

2. Attractiveness of Firefly is proportional to their

brightness. Less brighter Firefly will move toward

brighter Firefly and brightness will decrease as

distance increases;

3. Brightness of firefly is determined by objective

function.

Based on these rules, firefly algorithm can be summarized as

the pseudo-code shown in Fig. 1. Two essential components

of firefly algorithm are formulation of attractiveness of firefly

and variation of light intensity. Attractiveness decreases as

distance from source increases. Light intensity can be defined

as

I(rij)=I0e
-γr

ij
2; (4)

where γ is light absorption coefficient, rij is the distance

between fireflies i and j are for xi and xj respectively.

Probability of a Firefly i being attracted to another more

attractive Firefly j is calculated by

Δxi=βe-γr2
ij(x

t
j-x

t
i)+αei, xi

t+1=xt
i+Δxi; (5)

where t is generation number, ei is random vector, a is

randomization parameter. The pseudo code of the Firefly

algorithm [19] is given below:

Firefly_ algorithm()

objective function f(x), where x=(x1,….., xd)
T

initial population of firefly xi (i=1,2……..,n)

brightness of firefly xi is Ii determined by f(xi)

light absorption coefficient v is defined

while(t<MaxGeneration)

for i=1:n all n fireflies

 for j=1:n all n fireflies

if(Ii<Ij), move firefly i towards j;

end if

vary attractiveness with

distance r via exp[-γr]

evaluate new solutions and

update light intensity

end for j

end for i

rank the firefly and current

global best g is find

end while

result and visualization

3. PROPOSED METHODOLOGY
On the basis of above algorithm, the proposed steps are given

below for the generation of the test cases from activity

diagram:

1. Generate Activity diagram of the given project;

2. Draw Control Flow Graph(CFG) from the Activity

diagram;

Control flow graph from Activity diagram is designed

with each node represents an activity and control flows of

the activities are represented by edges connecting the

nodes [20];

3. Convert the Control Flow Graph into Adjacency Matrix;

4. Use Adjacency Matrix to calculate cyclomatic complexity

and Information Flow Metric at each node of the CFG

For a given directed graph G of n nodes Cyclomatic

Complexity is calculated using the following formula:

(G)=1+(Reduced Outdegree(i)
𝑛

𝑖=1); (6)

where reduced outdegree of a node is one less than the

outdegree of that node [21]. Cyclomatic complexity for

each node is calculated from adjacency matrix of the

CFG. For calculation of cyclomatic complexity of each

node, we counted reduced out degree of nodes above the

node for which cyclomatic complexity is being calculated

and added 1;

5. Use Firefly Algorithm for generation of optimized test

paths. For generation of optimized paths, introduced a

new matrix decision matrix. Decision matrix is also

adjacency matrix whose each node contains a value

decided by the formula

DFi=1/ [10× {CCi× (N-i)-0.1)}] (7)

where CCi is cyclomatic complexity of node i, N is total

number of nodes,

Brightness value is proportional to the decision factor of

the nodes;

6. For prioritization of generated test paths, five fireflies are

generated at each node of the CFG of the Activity

diagram. The brightness of each firefly is determined by

the following formula:

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.6, July 2016

18

 Ai=A0/ (1+γd) (8)

where A0 is brightness of firefly at node 1 γ=IFi+CCi

IFi and CCi are values of Information Flow Metric and

cyclomatic complexity at node i

d is maximum random distance from end node to that

node of CFG at which fierflies are deployed and node at

the same level have same distances;

7. Mean of brightness of firefly at each node is calculated.

Mean of brightness corresponding to each path is

calculated. Path with highest mean brightness value will

be of high priority.

Now, let us consider a case study of check-in time of Flight

whose activity diagram is designed and represented in

following Fig 1. In the Fig 1, we have shown different

activities of flight check-in process. First passenger goes for

obtaining boarding pass. Boarding pass can be obtained either

from counter or self-kiosks. If passenger goes on counter and

submits Identity and ticket then receives boarding pass

otherwise passenger can opt for self-kiosk to receive boarding

pass. Here passenger can also select their seat option. After

receiving boarding pass, passenger moves for security

screening. In the first step of security screening, passenger

passes through x-rays counter. If this step is cleared

successfully then passenger passes from metal detector. If

metal detector screening is also cleared then passenger is

authenticated with their biometric identity using Fingerprint.

If Fingerprint is also verified then passenger drops baggage at

baggage drop counter and goes for their assigned gate [22].

The CFG is created from the activity diagram which is shown

below in Fig. 2.

Fig. 1 Activity Diagram for Flight Check-in by Passenger

Fig. 2 Control Flow Graph for Flight Check-in Process

Equations (1) and (6) are used to compute Information Flow

Metric and Cyclomatic Complexity for each node

respectively. From equation (7) decision factor for each node

is also computed. The cyclomatic complexity, information

flow metric and decision factor of each node are computed

and recorded in the table 1:

Table 1. Cyclomatic Complexity, Information Flow metric

and Decision Factor

Adjacency matrix from CFG is drawn and for each node its

outdegree is calculated from sum of number of 1’s in each

row. 1 is used to represent edge between nodes and 0 for

others. It is recorded in the table 2. Decision matrix is used by

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.6, July 2016

19

Firefly to select optimal path based on decision factor. At

predicate node Firefly selects the node based on the decision

factor. Since Brightness Value=Decision factor, Therefore

Firefly at predicate node follows with the high decision factor.

The decision matrix is computed below in the table 3:

Let us generate now the optimal test paths and block of

pseudo code which are given below:

do

{

for i=0 to n

 {for j=0 to n

{t=t+ad[i][j];}

}

 calculate sum of 1's in each row of

adjacency matrix;

 for i=0 to n

{

 for j=0 to n

{if(ad[i][j]==1 && sum[i]==1)

 {temp=i;temp=j; l1.add(i); l1.add(j); }

 if(ad[i][j]==1 && sum[i]==2)

 {v=ad1[i][j];

temp=i;temp1=j;

 for j=0 to n

 if(ad1[i][j]>v)

 v=ad1[i][j];

temp=i;temp=j;

 l1.add(temp);

l1.add(temp1);

 }

 }

}

 for(i=0;i<l1.size()-

3;i=i+2)

if(l1.get(i+1)!=l1.get(i+2))

 {

l1.subList(i+2,l1.size()).clear(); break; }

 linkedList1.add(l1);

 for

j=0;j<l1.size();j=j+2

{ad(l1.get(j)(l1.get(j+1)))=0; ad1(l1.get(j)(l1.get(j+1)))=0; }

 for i=0 to n

 sum[i]=0;

}while(t!=0);

do

{

 for i=0 to linketList1.size()-1

 a=get the last element of the List(i);

 for j=i+1 to j<linkedListsize();

 if(a==b)

 {

 counter1=1;

 linketList1.get(i).addAll(linkedList1.get(j));

 LinketList1.remove(j);

 }

 else

 {

 counter2=0;

 }

counter=counter1+counter2;

} while(counter==1);

Fig. 3. Pseudo code for Test paths generation

In the Fig. 3 pseudo code, we have taken two matrixes as

input one of them is adjacency matrix of the control flow

graph and other is decision matrix of the control flow graph.

Then traverse the adjacency matrix with two for loop, if an

element is found 1 and corresponding sum of row is 1 then

add the value of i and j into a linkedlist. If sum is 2 we search

the position of these two 1’s in adjacency matrix and

corresponding values in the decision matrix are searched and

add the values of larger decision factor in the linkedlist. Then

we checked if two adjacent elements of the linkedlist are not

equal. If two adjacent nodes are not equal then we clear the

element from the linkedlist from where adjacent elements are

not equal. Then add this linkedlist into a new linkedlist and

this process continues till all elements are removed from the

adjacency matrix. Then we add the linkedlist which have last

element same as the first element of the any other linkedlist

and get the minimized number of linkedList. These linkedlist

are then printed as test paths.

Optimized paths from traversal are as follows:

Test Path 1: 1246789101718

Test Path 2: 2357

Test Path 3: 10111217

Test Path 4: 12131417

Test Path 5: 14151618

4. TEST PATHS PRIORITIZATION
Five Fireflies are deployed at each node. In the table 4,

authors recorded nodes from 1 to 17 and values of di’s at each

node is taken from CFG value of γ and Ai for each node is

calculated using the equation (8). Mean of brightness is

calculated at every end activity of the path for the generated

test paths. The following test paths have been generated:

In the table 5 test paths generated from our technique are

recorded and mean of the brightness value is calculated for

each generated optimized test path. The test path which will

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.6, July 2016

20

have highest mean brightness value will have highest priority

and will be tested first. Similarly other paths will be tested

based on their mean of brightness value. From the table it is

observed that optimized test path 5 has the highest brightness

value and hence having high priority.

Let us compare this with existing research paper written by

Jena et al [23]. They presented an approach of test paths

generation from UML Activity diagram and generated test

cases from Activity flow graph of the activity diagram by

traversing the diagram in Depth First Search manner.

Table 5. Test Paths Prioritization

The test paths generated using their approaches for the above

example are as follows:

Path 1: 1-2-4-6-7-8-9-10-17-18

Path 2: 1-2-3-5-7-8-9-10-11-12-13-14-15-16-18

Path 3: 1-2-4-6-7-8-9-10-11-12-17-18

Path 4: 1-2-4-6-7-8-9-10-11-12-13-14-17-18

Path 5: 1-2-4-6-7-8-9-10-11-12-13-14-15-16-18

The test paths generated from their approach have

redundancies. Redundant path will cost more time and efforts.

The path 1 is same as path generated from our approach but

other paths contains redundancies like 1-2-4-6-7 is repeated in

path 3, 4 and 5. Their approach covers activity path coverage

criteria however presented our technique also covers activity

path coverage criteria while removing the redundant edges. It

is shown in figure 6.

Fig. 6. Firefly approach vs Jena [23] approach

5. CONCLUSIONS
In software testing, testing all paths of the system are not

feasible to test due to resource and time constraints. This

paper presents an approach of test path optimization and

prioritization generated from UML Activity diagram based on

Firefly approach. While most of the test case prioritization

techniques [24-25] are code based. The proposed approach is

UML model based and suitable for earlier identification of the

faults in the software. Test paths generated from Activity

diagram have no redundant edges which will reduce the cost

and time of software testing by reducing testing efforts. Our

approach is based on the complexity of different constructs of

the Activity diagram. In the present work, we used cyclomatic

complexity and Information flow metric for prioritization of

generated test paths. Cyclomatic complexity and information

flow metric can be calculated from adjacency metric of the

flow graph of Activity graph. In future, research work may

include other UML diagrams for prioritization and generation

of test cases.

6. REFERENCES
[1] Pressman, R. S. 2010. Software Engineering: A

Practitioner’s Approach, 7th Edition, McGraw-Hill.

[2] Srivastava P. R., Baby, K. and Raghurama, G. 2009. “An

approach of optimal path generation using ant colony

optimization”, In: Proceedings of the TENCON IEEE

Region 10 Conference, Singapore, pp.1–6.

[3] Gosh, S., France, R. Braganza, C. and Kawane, N. 2003,

A Andrews and O Pilskalns, “Test adequacy assessment

for UML design model testing”, In: Proceeding of the

international symposium on the software reliabilty

engineering, Denver, CO., pp. 332-343.

[4] Li, L., Li, X., He, T. and Xiong, J. 2013. “Extenics based

test case generation from UML Activity diagram”,

Information Technology and Quantitative Management,

pp. 1186-1193.

[5] Srivastava, P. R., Sravya, C., Ashima, Kamisetti, S. and

Lakshmi, M. 2012. “Test sequence optimization: an

intelligent approach via cuckoo search”, International

Journal of Bio-Inspired Computation, Vol. 4, No. 3.

[6] Lam, S. S. B., Raju, M. L. P., Kiran, U., Ch, S., and

Srivastava, P. R. 2012. “Automated Generation of

Independent Paths and Test suite Optimization using

Artificial Bee Colony”, International Conference on

Communication Technology and System Design, pp.

191-200.

[7] Mingsong, C., Xiaokang, Q. and Xuandong, L.,

Mingsong, Q. Xiaokang, and Xuandong, L. 2006

“Automatic test case generation for UML activity

diagrams”, In 2006 international workshop on

Automation of software test, pp. 2-8.

[8] Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H. and

Xuandong, L., and Z. Guoliang, Z. 2004. “Generating

test cases from UML activity diagram based on gray-box

method”. In 11th Asia-Pacific Software Engineering

Conference (APSEC04), pp. 284-291.

[9] Kumar, D., and Samanta, D. 2009. “A Novel Approach

to Generate Test Cases from UML Activity Diagrams”,

Journal of Object Technology, Vol. 8, No. 3.

[10] Yang, X. Y. 2009. “Firefly algorithms for multimodal

optimization, Stochastic Algorithm: Foundations and

Applications”, SAGA, Lecture Notes in Computer

Science, pp. 169-178.

0

2

4

DFS FA

Redundant
Transition

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.6, July 2016

21

[11] Jalote, P. 2005. An Integrated Approach to Software

Engineering, 3rd edition, Springer, 2005.

[12] Booch, G. 1994. Object Oriented Analysis and Design

with Applications, 2nd edition, Addison Wesley.

[13] Booch, G., Rambaugh, J., and Jacobson, I. 1998. “The

Unified Modeling Language User Guide”, Object

Technology Series, Addison-Wesley Longman, Inc,

1998.

[14] OMG, Unified Modeling Language Specification, 2011,

available online via http://www.omg.org.

[15] OMG, OMG XML Metadata Interchange (XMI)

Specification, available online via http://omg.org.

[16] Kansomkeat, S., and Thiket, P. 2010. “Generating Test

Cases from UML Activity Diagram using Condition-

Classification Tree Method”, International Conference

on Software Technology and Engineering, IEEE.

[17] Mu, K., and Gu, M. 2006. “Research on automatic

generating test case method based on UML Activity

diagram”, Journal of Computer Applications, Beijing,

Vol. 26, pp. 844-846.

[18] Yang, X. S. 2010. “Firefly algorithms, Levy Flight and

Global Optimization”, Research and Development in

Intelligent System, Springer, pp. 209-218.

[19] Yang, X. S. 2010. ”Engineering Optimization: An

Introduction with Metaheuristic Applications”, John

Wiley & Sons, Inc.

[20] Sabhrawal, S. and Sibal, R., and Sharma, C. 2010.

“Prioirtization of Test Case Scenarios Derived from

Activity Diagram using Genetic algorithm”, International

Conference on Computer and Communication

Technology.

[21] Jorgensen, P. C. 2014. Software Testing: A Craftsman’s

Approach, 4th edition, CRC Press, Taylor and Fransis

Group.

[22] https://en.wikipedia.org/wiki/Airport_check-in.

[23] Jena, A. K., Swain, S. K., and Mohapatra, D. P. 2014. “A

Novel Approach of test case generation from UML

Activity diagram”, International Conference on Issues

and Challenges in Intelligent Computing Techniques, pp.

621-629.

[24] Srikanth, H., 2004. “Requirement based test case

prioritization”. In: Student research forum at the 12th

ACM SIGSOFT international symposium on the

foundation of software engineering.

[25] Srikanth, H. and Williams, L. 2005. “On the economics

of requirements based test case prioritization”. In:

Proceeding of the seventh international workshop on

economics-driven software engineering research.

7. APPENDIX
Table 2. Adjacency Matrix for CFG

Table 3. Decision Matrix for flight Check-in Process

Activ

ity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 .001

57

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 .00

167

.002

39

0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 .002

58

0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 .002

80

0 0 0 0 0 0 0 0 0 0 0 0

5 0 0 0 0 0 0 .003

05

0 0 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 .003

05

0 0 0 0 0 0 0 0 0 0 0

7 0 0 0 0 0 0 0 .003

36

0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 .003

74

0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 .004

21

0 0 0 0 0 0 0 0

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.6, July 2016

22

10 0 0 0 0 0 0 0 0 0 0 .004

83

0 0 0 0 0 .111

11

0

11 0 0 0 0 0 0 0 0 0 0 0 .008

47

0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0 0 0 0 .01

02

0 0 0 .111

11

0

13 0 0 0 0 0 0 0 0 0 0 0 0 0 .025

64

0 0 0 0

14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .034

482

0 .111

11

0

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .052

63

0 .0

01

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .0

01

18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4. Calculation of brightness values of fireflies at

different node of CFG

Nod

e

γ=IFi+CC

i
 A0=100

 1 5 di

14.5

14.4 14.3 14.2 14.1

Ai 1.32

1

1.36 1.37 1.38 1.39

2 8 di 13.5 13.4 13.3 13.2 13.1

Ai 0.92

5

0.93

2

0.93

9

0.93

8

0.94

5

3 5

di 12.5 12.4 12.3 12.2 12.1

Ai 1.57 1.58 1.6 1.61 1.62

4 5

di 12.5 12.4 12.3 12.2 12.1

Ai 1.57 1.58 1.6 1.61 1.62

5 5

di 11.5 11.4 11.3 11.2 11.1

Ai 1.71 1.72 1.73 1.75 1.76

6 5

di 11.5 11.4 11.3 11.2 11.1

Ai 1.71 1.72 1.73 1.75 1.76

7 8 di 10.5 10.4 10.3 10.2 10.1

Ai 1.17 1.87 1.19 1.21 1.22

8 8 di 9.5 9.4 9.3 9.2 9.1

Ai 2.06 2.08 2.10

5

2.12 2.15

9 5 di 8.5 8.4 8.3 8.2 8.1

Ai 2.29 2.32 2.35 2.38 2.41

10 7 di 7.5 7.4 7.3 7.2 7.1

Ai 1.86 1.89 1.91 1.94 1.97

11 7 di 6.5 6.4 6.3 6.2 6.1

Ai 3.7 3.75

3

3.81 3.87 3.93

12 6 di 5.5 5.4 5.3 5.2 5.1

Ai 2.94 2.99 3.04 3.10

5

3.16

13 3 di 4.5 4.4 4.3 4.2 4.1

Ai 6.89 7.04 7.19 7.35 7.51

14 5 di 3.5 3.4 3.3 3.2 3.1

A

i

5.4 5.55 5.71 5.88 6.06

15 2 di 2.5 2.4 2.3 2.2 2.1

Ai 16.6

6

17.2

4

17.8

5

18.5

1

19.2

3

16 2 di 1.5 1.4 1.3 1.2 1.1

Ai 25 26.3

1

27.7

7

29.4

1

31.2

5

17 10 di 6.5 6.4 6.3 6.2 6.1

Ai 1.51 1.53 1.56 1.58 1.61

IJCATM : www.ijcaonline.org

