
International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.9, July 2016

33

Frequent Pattern Mining Algorithms Analysis

Ritesh Giri
Mumbai University

Rizvi Nagar,2-Dwing/301
Santacruz(West), Mumbai

Ananta Bhatt
Mumbai University

401, Royal Court ,Vijayanagar
Andheri(East), Mumbai

Aadhya Bhatt
 Mumbai University

 401, Royal Court ,Vijayanagar
Andheri(East), Mumbai

ABSTRACT

Frequent pattern mining is the most researched field in data

mining. This paper provides comparative study of

fundamental algorithms and performance analysis with

respect to both execution time and memory usage. It also

provides brief overview of current trends in frequent pattern

mining and it applications. There are two categories of

frequent pattern mining the algorithm, namely Apriori

algorithm and Tree structure algorithm. The Apriori based

algorithm uses generate and test strategy approach to find

frequent pattern by constructing candidate items and checking

their counts and frequency from transactional databases. The

Tree structure algorithm uses a text only approach. There is

no need to generate candidate item sets. Many tree based

structures have been proposed to represent the data for

efficient pattern discovery including FP-Tree, CAT-Tree,

CAN-Tree, CP-Tree, and etc. Most of the tree based structure

allows efficient mining with single scan over the database. In

this paper, we describe the formatting guidelines for IJCA

Journal Submission.

General Terms

Your general terms must be any term which can be used for

general classification of the submitted material such as Pattern

Recognition, Security, Algorithms et. al.

Keywords

Frequent Pattern, Data mining, Apriori, ECLAT, RElim, SaM,

FP-Tree, CATS-Tree, CAN-Tree, CP-Tree.

1. INTRODUCTION
Recently there is a huge growth in the size of database which

has led to a growing interest in the development of tool

capable in the automatic extraction of knowledge from data.

The term data mining or knowledge discovery in database has

been adopted for a field of research dealing with the automatic

discovery of implicit information or knowledge within the

databases. The implicit information within databases, mainly

the interesting association relationships among set of objects

that led to association rules may disclose useful pattern for

decision support, financial forecast, marketing policies, even

medical diagnosis and many other applications. Data mining

is the way of finding co-relation or patterns among dozens of

fields in large relational databases. The automated,

prospective analysis offered by data mining move beyond the

analyses of past events provided by retrospective tools typical

of decision support systems. Data mining is the tool that can

answer business questions that traditionally were too tim

consuming to resolve. We ask that authors follow some

simple guidelines. In essence, we ask you to make your paper

look exactly like this document. The easiest way to do this is

simply to download the template, and replace the content with

your own material.

2. RELATED WORK
Frequent pattern is defined as a pattern (A set of items,

subsequences, substructures etc) that occurs frequently in a

dataset. In association rule mining finding frequent patterns

from databases is time consuming process. Several effective

data structures such as two dimensional arrays, graphs, trees

and tries have been proposed to collect candidate item sets

and frequent item sets. But out of which the tree structure is

most extractive to storing item sets.

A number of research works have been published that

presenting new algorithm or improvements on existing

algorithms to solve data mining problem efficiently. In that

Apriori algorithm is the first algorithm proposed in this field.

By the time of change or improvement in Apriori algorithm,

the algorithms that compressed large database into small tree

data structure like FP-Tree, CAT-Tree, CAN-Tree, CP-Tree

have been discovered, These algorithms are partitioned based,

divide and conquer method used that decompose mining task

into smaller set of task for mining confined patterns in

conditional database, which dramatically reduce search space.

Hence there is a need of develop such a data structure which

construct compact prefix free structure from one database

scan and it provide same mining performance as FP- growth

technique by efficient tree restructuring process. It should also

support interactive and incremental mining without

rescanning the original database.

2.1 Application of Frequent pattern

Mining
Frequent patterns reflecting strong associations among

multiple items or object, capture the underlying semantics in

data. They were successfully applied to inter-disciplinary

domains beyond data mining. Frequent pattern mining has

huge application such as :

 Indexing and similarity search of complex

structured data

 Spatiotemporal and multimedia datamining

 Stream data mining

 Web mining

 Software Bug mining and page-fetch

3. DATA MINING ALGORITHMS
Comparative study includes depth analysis algorithms and

discusses some problems of generating frequent item sets

from the algorithm. The comparative study of algorithm

includes aspects like different support values, size of

transactions and different data sets. One major function of

association rules is to analyze large amounts of market basket

transaction. Association rules have been applied to many

areas including outlier detection, classification, clustering etc.

The mining process can be broken down into the frequent

item sets and the generation association rules.

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.9, July 2016

34

3.1 Frequent Item Set Mining Methods
 Apriori: A candidate generation and test approach

 Improving the efficiency of Apriori algorithm

 FP-Growth: without candidate generation approach

 ECLAT: Frequent pattern mining with vertical data

format

 Mining close frequent patterns and max-patterns.

3.2 Apriori Algorithm
The first algorithm used to determine the frequent item sets

and to generate the Boolean association rules was the AIS

algorithm introduces by Agrawal and Srikant. The Apriori

algorithm introduced by the same author adds a major

improvement to the history of determining the association

rules. The Apriori algorithm tries to reduce the high number

of database scans in order to determine the support , by

significantly reducing the number of candidate item set. The

basis for this reduction is the following property (Apriori

property).

3.2.1 Performance
The Apriori algorithm is an important algorithm for historical

reasons and also because it is simple algorithm that is easy to

learn. However, faster and more memory efficient algorithms

have been proposed. If efficiency is required, it is

recommended to use a more efficient algorithm like FP-

Growth

3.3 FP-Growth Algorithm
FP-Growth is an algorithm for discovering frequent item sets

in a transaction database. It was proposed by Han et al.(2000).

FP-Growth is a very fast and memory efficient algorithm. It

uses a special internal structure called an FP-Tree. It allows

frequent item set discovery without candidate item set

generation, it is a two-step approach

1. Build a compact data structure called FP-Tree.

2. Extracts frequent item sets from the FP-Tree

FP-Tree is constructed by using two passes over

data set.

3. Pass1

 Scan the data and find support for each

item.

 Discard infrequent items

 Sort frequent items in decreasing order

based on their support

4. Pass2

 Construct the FP Tree by reading the

transactions.

3.3.1 Performance
FP-Growth is generally the fastest and the most memory

efficient algorithm. FP-Growth algorithm is efficient and

scalable for mining both long and short frequent patterns. It is

faster than the Apriori algorithm.

3.4 Eclat Algorithm
Eclat (equivalence class transformation) is an algorithm for

discovering frequent item sets in a transaction database. It was

proposed by Zaki in 2001. Contrarily to algorithm such as

Apriori, Eclat uses a depth first search for discovering

frequent item sets instead of a breadth-first search. Eclat

algorithm is basically a depth first search algorithm using set

intersection. It uses a vertical database layout i.e. instead of

explicitly listing all transactions; each item is stored together

with its cover (also called tid-list) and uses the intersection

based approach to compute the support of an item set. In this

way, the support of an item set X can be easily computed by

simply intersecting the covers of any two subsets Y,Z,Y U

Z=X. It states that, when the database is stored in the vertical

layout, the support of a set can be counted much easier by

imply intersecting the covers of two of its subset that together

give the set itself.

3.4.1 Advantages

 There is no need to scan the database to find the

support of k+1 item set. This is because of TID set

of each k- item set carries the complete information

required for counting such support.

 It is possible to significantly reduce this total size by

generating collections of candidate item sets in a

depth first strategy.

 This is always not possible since the total size of all

covers at a certain iteration of the local item set

generation procedure could exceed main memory

limits.

3.4.2 Disadvantages

 Its fails to manage main memory at time of high

candidate item sets.

 The merge routine contains a large amount of

conditional branches, which are extremely badly

predictable.

3.4.3 Performance
EClat is one of the interesting algorithm because it uses a

depth-first search. In case of mining high utility item sets, the

search procedure of EClat works very well.

3.5 Relim Algorithm
Relim (Recursive Elimination) is an algorithm for discovering

frequent item sets in a transaction database. RElim was

proposed by Borgelt (2005). RElim algorithm employs a

basically horizontal transaction representation, but separates

the transaction (or transaction suffixes) according to their

leading items, thus introducing vertical representation aspect.

The transaction database to mine is preprocessed. It does its

work without prefix trees or another complicated data

structures, processing the transactions directly. Due to simple

structure of Relim; all the work is done in one simple

recursive function, which can be written with relatively few

lines of code.

3.5.1 Performance
RElim is based on deleting items, recursive processing, and

reassigning transactions. It is very simple and works without

complicated data structures. If a quick and straight forward

implementation is desired, it could be the method of choice.

3.6 SaM Algorithm
The SaM (Split and Merge) algorithm established by Christian

Borgelt. It is simplification of the already fairly simple RElim

algorithm. While RElim represents a (conditional) database by

storing one transaction list for each item (partially vertical

representation), the split and merge algorithm employs only a

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.9, July 2016

35

single transaction list (purely horizontal representation),

stored as an array. This array is processed with a simple split

and merge scheme, which computes a conditional database,

processes this conditional database recursively and finally

eliminates the split item from the original (conditional)

database.

3.6.1 Advantages
 Simple data structure and processing scheme, easy

to implement.

 Convenient to execute on external storage, thus

rendering it a highly useful method if the transaction

database to mine cannot be loaded into main

memory.

3.6.2 Performance
SaM (Split and Merge) algorithm is an improved version of

the Relim algorithm, both of which distinguish themselves

from the other algorithms for frequent item sets mining by

their simple processing scheme and data structure. SaM

algorithm is well suited for an implementation that works on

external storage, since it employs a simple array that can

easily be represented a s a table in a relational database

system.

4. DATA STRUCTURES USED

4.1 FP-Tree
To improve the efficiency of mining process, Han et. Al

proposed an alternative framework, namely a tree based on

the framework which is used to construct an extended prefix-

tree-structure, called frequent pattern tree (FR-Tree) to

capture the content of the transactional database rather than

employing the generate-and-test strategy of Apriori algorithm,

such tree based algorithm focus on frequent pattern growth-

which is restricted test-only approach (i.e. doesn’t generate

candidate, and only test for the frequency). Improvement in

Apriori algorithm, which compressed a large database into

small tree data structure like FP-Tree. Times Roman font, or

other Roman font with serifs, as close as possible in

4.2 CATS-Tree
CATS Tree (compressed and arranged transaction sequences)

extends the idea of FP-Tree to improve storage compression

and allow frequent pattern mining without generation of

candidate item set. It allows mining only through a single pass

over the database. CATS – Tree has several common

properties of FP-Tree.

4.3 CAN-Tree
CAN-Tree (Canonical-order tree), that captures the complete

information in a canonical order of terms from database into a

prefix-tree structure in order to facilitate for incremental and

interactive mining using FP-growth mining technique. CAN-

Tree capture he contents of the transaction database and

orders tree nodes according to some canonical order. The

construction of the CAN Tree only requires one database scan

as compared to an FP-Tree which require two database scans.

4.4 CP-Tree

CP-Tree (Compact pattern tree) captures database information

with one scan (insertion phase) and provides the performance

as the FP-growth method (restructuring phase) by dynamic

tree restructuring process. Moreover, CP-Tree can give full

functionality for interactive and incremental mining. CP-Tree

is efficient for frequent pattern mining, interactive, and

incremental mining with single database scan. Roman in

which these guidelines have been set. The goal is to have a 9-

point text, as you see here. Please use sans-serif or non-

proportional fonts only for special purposes, such as

distinguishing source code.

5. RESULT

Experiments are performed on the five datasets namely adult,

census, accident, retail, and mushroom. Machine with

configuration of windows Vista operating system and 2-GB of

RAM is used. The results were compared to experiments with

Borgelt’s implementations of APriori, FP-Growth, EClat,

RELim and SaM. All experiments were re-run to ensure that

the results are comparable.

Table 1. Dataset description

Database #Itemset Avg.

Length

#Transactions

Adult 48842 3.79 45223

Census 48842 49.5 199523

Mushroom 119 23 8124

Retail 16469 10.3 88162

Accident 468 33.8 340183

Table 2. Execution of Adult Dataset

Support Apriori FP-

Growth

Eclat Relim SaM

30 0.58 0.56 0.54 0.49 0.47

40 0.54 0.50 0.49 0.44 0.44

50 0.50 0.49 0.45 0.42 0.41

60 0.48 0.48 0.44 0.40 0.40

70 0.45 0.42 0.40 0.39 0.37

Table 3. Execution of Census Dataset

Support Apriori FP-

Growth

Eclat Relim SaM

30 0.87 1.21 0.76 0.74 0.74

40 0.86 1.16 0.75 0.72 0.71

50 0.79 0.86 0.72 0.70 0.69

60 0.75 0.73 0.69 0.67 0.67

70 0.73 0.68 0.65 0.65 0.64

Table 4. Execution of Mushroom Dataset

Support Apriori FP-

Growth

Eclat Relim SaM

30 0.14 0.13 0.11 0.11 0.11

40 0.13 0.11 0.11 0.09 0.11

50 0.17 0.19 0.09 0.09 0.08

60 0.10 0.08 0.09 0.08 0.07

70 0.09 0.08 0.08 0.07 0.06

International Journal of Computer Applications (0975 – 8887)

Volume 145 – No.9, July 2016

36

Table 5. Execution of Retail Dataset

Support Apriori FP-

Growth

Eclat Relim SaM

30 0.88 0.89 0.86 0.85 0.85

40 0.85 0.87 0.85 0.84 0.83

50 0.81 0.82 0.80 0.78 0.78

60 0.79 0.78 0.76 0.74 0.73

70 0.74 0.72 0.68 0.66 0.65

Table 6. Execution of Accident Dataset

Support Apriori FP-

Growth

Eclat Relim SaM

30 1.22 1.16 1.14 1.14 1.12

40 1.18 1.13 1.10 1.10 1.07

50 1.10 1.08 1.06 1.04 1.02

60 1.05 1.02 0.98 0.96 0.94

70 0.98 0.95 0.93 0.93 0.91

6. CONCLUSION
The study is carried out to analyze the performance of

different frequent pattern mining algorithms when applied to

real world datasets. After obtaining results, it is observed that

behavior of frequent pattern mining algorithms varies

differently for each dataset. There is need to propose a novel

tree data structure to extract all frequent patterns from

transactional database with single database scan and without

rescan the original database. A new tree data structure should

save search space by storing only frequent items. It should

support interactive mining like CAN-Tree and CP-Tree,

means if users specified minimum support is changed then

also it can extract frequent patterns without the need to rescan

the database. It should also support incremental mining like

CAN-Tree and CP-Tree, means later if transaction is added or

old transactions are deleted then also it can extract frequent

patterns without the need to rescan the original database.

7. REFERENCES
[1] Syed Khairuzzaman Tanbeer, Chowdhary Farhan

Ahmed, Byeong-Soo Jeong and Y.W.Lee, CP-Tree: A

Tree Structure for Single-Pass Frequent Pattern Mining

,In proceedings of 12th Pacific Asia Conference,2008.

[2] C. Borgelt. An Implementation of the FP- growth

Algorithm. Proc. Workshop Open Software for Data

Mining (OSDM’05 at KDD’05, Chicago,IL),1–

5.ACMPress, New York, NY, USA 2005.

IJCATM : www.ijcaonline.org

