
International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.1, July 2016

1

Exploring AspectJ Refactorings

Geeta Bagade(Mete)
Ph.D. Scholar,

YMC, Bharati Vidyapeeth,
Pune, India

Shashank Joshi, PhD
Professor/ Ph.D Guide,

COE, Bharati Vidyapeeth,
Pune, India

ABSTRACT

Refactoring is nothing but a change that you make to the

software. It is a series of steps that are carried out on the piece

of software. After the refactoring is applied on the code it is

important to note down the changes that have been done to the

software. Care should be taken such that the behvaiour of the

software does not change even if the refactoring is applied but

its execution time, performance increases. This paper is in

continuation with the other refactorings that have been already

presented. Here we present three more refactorings that have

been identified. The refactorings are applied on the projects

and the results are compared before the refactoring is applied

and after the refactoring is applied.

General Terms

Aspect Oriented Programming, AspectJ.

Keywords

Refactoring, AspectJ, abstract, extends, pointcut, Inheritance,

aspect, Joinpoint, crosscutting concern, Refactoring

Mechanism

1. INTRODUCTION
Refactoring is a process where the code in the software is

changed. A simple refactoring could be changing the name of

the variable. Refactoring is generally applied when you want

to make some changes to the software. The process of

refactoring can be done manually or it can be automated.

There are various techniques that are used for refactoring.

Some of them are Graph Transformations, Program

Refinement, Formal concept Analysis, Assertions, Software

Metrics and Program Slicing. Each of this technique

guarantees that the behaviour of the software is preserved

after the refactoring is applied to the software. The process of

refactoring consists of various steps. The process starts with

identification of the place in the code where the refactoring

should be applied. One of the ways of identifying the place

where the refactoring should be applied is a “bad smell” in

the software. In this paper we present three more refactorings.

Each of the refactoring will be explained in terms of what it

is; mechanism used to apply it, comparison of the code before

and after the refactoring is applied. The systems that have

been used and the software metrics that is used for calculation

is already explained in [3]

2. NEW REFACTORINGS IDENTIFIED

2.1 Name of the Refactoring: Remove

Aspect Inheritance (One Aspect Extends

Another Aspect)
An aspect that is declared as “abstract” can be extended by

another aspect. A “concrete” aspect cannot be

inherited. An abstract aspect can declare abstract methods and

abstract pointcuts. The inheriting aspect should provide the

code for the abstract methods and abstract pointcut.

Refactoring Mechanics:

1. Select the aspect that is to be refactored

2. If the abstract aspect contains static fields, then simply

prefix the names of the fields with the name of the aspect

else go to step3 E.g.: AspectName.FieldName

3. Create an Inner aspect inside the aspect which is the “sub

aspect”

4. Declare the Inner aspect as static

5. Move the methods and the pointcuts from the “sub

aspect” to the inner aspect

6. Create object of the newly created “inner aspect” inside

the “sub aspect” which is now an “outer aspect”

7. In the “outer aspect” provide appropriate references to

the methods of the “inner aspect”

8. Leave the “super aspect” as it is

9. Test the refactoring after each method is moved and

references are provided

2.2 Name of the Refactoring: MAKE

Abstract Pointcut as Non Abstract in

Abstract Aspect
We can declare an aspect as abstract if it has abstract method

or abstract pointcut. The word “abstract” is prefixed before

the name of the method or the name of the pointcut. A

pointcut that is declared as abstract should end with a

semicolon and should not have any body of code. The abstract

pointcuts also have advices defined on them. The abstract

pointcut is made concrete in the sub aspect in which it is

inherited. Here we are making the abstract pointcut non

abstract. So the concrete aspect will have two pointcuts : one

that is already present within itself and the other which it has

inherited from the abstract aspect.

Refactoring Mechanics 1:

1. Identify the pointcut that should be made non abstract

2. Delete the word “abstract” from the pointcut declaration

3. Provide appropriate code or do nothing code for the

pointcut inside the aspect.

4. Test the code that has been refactored for behaviour

preservation

Note: If the abstract pointcut is deleted from the abstract

aspect, errors are introduced in the aspect. So we have another

mechanics as described under

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.1, July 2016

2

Refactoring Mechanics 2

1. Identify the pointcut that should be made non abstract

2. Delete the “abstract” pointcut

3. Move the advices code from the abstract aspect to the

concrete aspect appropriately

4. Test the code that has been refactored for behaviour

preservation

2.3 Name of the Refactoring: Remove The

“Extends” Keyword From The Aspect

Declaration
One concrete aspect cannot inherit another concrete aspect in

AspectJ. It can only extend an abstract aspect. In case of a

concrete aspect that extends another aspect which is abstract,

the keyword “extends” tells the AspectJ compiler that the

concrete aspect should provide the definition for each abstract

method and abstract pointcut. Also if the aspect is extending

another aspect that the advices that are written in the

subaspect get higher precedence as compared to the advices in

the superaspect. So in this case the subaspect overrides the

behaviour of the superaspect.

Refactoring Mechanics

1. Identify the aspect for which you want to remove the

“extends” keyword

2. Remove the “extends” keyword from the subaspect

3. Move the constructor code from the “super aspect” to the

“sub aspect”

4. Copy the code that is written for the advices from the

superaspect to the subaspect appropriately

5. Delete the aspect if required

6. Test whether the code preserves the behaviour

3. RESULTS OF THE RESEARCH

3.1 Name of the Refactoring:Remove

Aspect Inheritance (One Aspect Extends

Another Aspect)

Fig. 1. Refactorng 2.1 Comparison Table

Fig. 2. Refactorng 2.1 Comparison Chart

Fig. 3. Refactorng 2.1 Execution Tme Comparison Chart

0

200

400

600

800

1000

1200

1400

1600

1800

B
ef

o
re

A
ft

er

B
ef

o
re

A
ft

er

B
ef

o
re

A
ft

er

B
ef

o
re

A
ft

er

FS SOP SW TE

VS

NA

NO

WOC

NS

LC

DIT

NC

4
0

.3
3

3
7 3
2

9
.3

3

3
2

1

2
3

9
3

2

1
8

4
9

1

2
8

8

2
6

1

0

5000

10000

15000

20000

25000

30000

B
ef

o
re

A
ft

er

B
ef

o
re

A
ft

er

B
ef

o
re

A
ft

er

B
ef

o
re

A
ft

er

FS SOP SW TE

Execution Time
Comparison

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.1, July 2016

3

3.2 Name of the Refactoring: Make

Abstract Pointcut As Non Abstract In

Abstract Aspect

Fig. 4. Refactorng 2.2 Comparison Table

Fig. 5. Refactorng 2.2 Comparison Chart

Fig. 6. Refactorng 2.2 Execution Tme Comparison Chart

3.3. Name of the Refactoring: Remove The

“Extends” Keyword From The Aspect

Declaration

Fig. 7. Refactorng 2.3 Comparison Table

Fig. 8. Refactorng 2.3 Comparison Chart

Fig. 9. Refactorng 2.3 Execution Tme Comparison Chart

4. CONCLUSION
As seen in refactoring 2.1, the values for vocabulary size and

number of children shows no change, but other parameters

like number of attributes, number of operations, weighted

operations per component, lines of code, depth of inheritance

0
200
400
600
800

1000
1200
1400
1600

Before After Before After

SOP SW

VS

NA

NO

WOC

NS

LC

DIT

NC

329.33 321

23932

10533

0

5000

10000

15000

20000

25000

30000

Before After Before After

SOP SW

Execution Time

0

200

400

600

800

1000

1200

1400

1600
VS

NA

NO

WOC

NS

LC

DIT

NC

4
0

.3
3

3
6 3
2

9
.3

3

3
2

1

2
3

9
3

2

2
1

0
1

0

2
8

8

1
4

4

0

5000

10000

15000

20000

25000

30000

B
ef

o
re

A
ft

er

B
ef

o
re

A
ft

er

B
ef

o
re

A
ft

er

B
ef

o
re

A
ft

er

FS SOP SW TE

Execution Time

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.1, July 2016

4

tree either show an increase or decrease in their values.

However the parameter execution time shows a decrease after

the refactoring is applied. In case of refactoring 2.2, all the

parameters remain same except execution time. The execution

time has decreased after the refactoring is applied. In case of

refactoring 2.3, all the parameters show an increase or

decrease in the values. But again the execution time has

reduced after the proposed refactoring is applied. This is true

in case of all refactorings. It can therefore be concluded that

the applied refactorings will help the code in executing faster

and therefore give good performance.

5. REFERENCES
[1] Adams B, Meuter W.D., Tromp H, Hassan A. "Can we

refactor conditional compilation into Aspects?"

Proceedings of the 8th ACM international conference on

Aspect-oriented software development. ACM New York,

NY, USA, 2009. 243-254.

[2] Geeta B, Shashank J, More refactorings for Aspect

Oriented Systems using AspectJ, International Journal of

Innovative Research in Computer and Communication

Engineering ,(An ISO 3297: 2007 Certified

Organization), Vol. 4, Issue 4, April 2016

[3] Geeta B, Shashank J, Analysis of Aspect Oriented

Systems: Refactorings using AspectJ, International

Journal of Computer Sciences and Engineering

[4] Geeta B, Shashank J, Some thoughts on Refactoring for

Aspect Oriented Programming using AspectJ,

International Journal of Scientific & Engineering

Research, Volume 5, Issue 6, June-2014 , pp 561-564

[5] Gustavo Soares, Melina Mongiovi, and Rohit Gheyi.

"Identifying Overly Strong Conditions in Refactoring

Implementations,." 27th IEEE Internationall Conference

on Software Maintenance. 2011.

[6] Fabiano C. Ferrari, Bruno B. P. Cafeo, Thiago G. Levin,

Jésus T. S. Lacerda, Otávio A. L. Lemos, José C.

Maldonado and Paulo C. Masiero. "Testing of aspect-

oriented programs: difficulties and lessons learned based

on theoretical and practical experience." Journal of the

Brazilian Computer Society (2015): DOI:

10.1186/s13173-015-0040-1.

[7] Khine Zar Ne Winn. "Quantifying and Validation of

Changeability and Extensibility for Aspect-Oriented

Software." International Conference on Advances in

Engineering and Technology (ICAET'2014). Singapore,

March 29-30,2014 .

[8] Melina Mongiovia, Rohit Gheyia,Gustavo

Soares,Leopoldo Teixeirab,Paulo Borba. "Making

Refactoring Safer through Impact Analysis." Science of

Computer Programming. 2013.

[9] Michael Mortensen, Sudipto Ghosh. "Aspect-Oriented

Refactoring of Legacy Applications: An Evaluation."

IEEE Transactions on Software Engineering . 2012.

[10] M. Badri, A. Kout and L. Badri. "On the effect of aspect-

oriented refactoring on testability of classes: A case

study." Computer Systems and Industrial Informatics

(ICCSII), 2012 International Conference on, Sharjah.

doi: 10.1109/ICCSII.2012.6454577, 2012. 1-7.

[11] Melina Mongiovia, Rohit Gheyia,Gustavo

Soares,Leopoldo Teixeirab,Paulo Borba. "Making

Refactoring Safer through Impact Analysis." Science of

Computer Programming. 2013.

IJCATM : www.ijcaonline.org

