
International Journal of Computer Applications (0975 – 8887) 

Volume 146 – No.1, July 2016 

10 

Fast and Efficient Conflict Identification and Resolution 

in Huge Streaming Data 

S. Charles Britto 
Research Scholar 

Bharathiyar University 
Coimbatore, TN, India 

S. P. Victor 
Associate Professor (CS)  

St. Xavier’s College 
Palayamkottai, TN, India 

 

 

ABSTRACT 

Increased data generation has led to an increase in the 

availability of rich information online. However, 

complications occur in the form of heterogeneity in the data 

storage. In order to have complete information, all the data 

sources must be utilized. Hence a data integration mechanism 

is required. However, integrating heterogeneous data leads to 

conflicting data in the system. This paper presents a fast and 

efficient mechanism to identify and resolve conflicts on huge 

streaming data using Spark. A wrapper based query 

formulation module constructs queries depending on the 

underlying data sources. The retrieved data is converted to a 

structured format and similarity between the data is identified, 

followed by distributed conflict identification and resolution. 

Experiments were conducted on streaming data. Effective 

conflict detections and a speed up from ~589 seconds to 10 

seconds was achieved.   

Keywords 

Conflict identification; conflict resolution; Spark; Streaming 

Data; Wrappers  

1. INTRODUCTION 
Data integration has become one of the major requirements 

for any knowledge extraction process since the beginning of 

the automation of systems. It could be observed that the data 

generated by systems tend to be in varied formats [1]. This is 

due to the ease of usage and storage constraints. Accessing or 

mining such data in isolation is quite simple, as the process 

can be fine-tuned to act directly on the type of data. However, 

it has been identified that integrating similar data and then 

accessing it will provide enhanced knowledge. The crucial 

stage is the integration mechanism itself. Since the data tends 

to be heterogeneous, a simple combination technique is not 

sufficient [2]. Further, extracting data from varied data 

sources relating to a single user query requires the use of 

varied querying techniques. Due to the usage of several data 

sources, the results have high probabilities of containing 

duplicates and conflicts [3]. Identifying them and eliminating 

them would provide a huge reduction in the storage 

requirements. This paper deals with techniques to retrieve 

data from heterogeneous data sources and combining them to 

eliminate duplicates and conflicts. 

2. RELATED WORKS 
Although data integration is a recent technique, several 

contributions were proposed in this area. Due to the generic 

nature of this technique, domain based integration and conflict 

resolution mechanisms could also be observed. 

An ontology based technique to resolve semantic conflicts is 

presented by Han et al. in [4]. Semantic conflict is caused by 

the varied representations of a single context in heterogeneous 

systems. This prevents information integration from achieving 

semantic coherence. The major and mostly used solution for 

coherence mismatch is ontology based techniques. The 

technique presented in [4] presents an ontology based schema 

mapping technique to eliminate sematic conflicts. A similar 

semantic aware data integration technique for heterogeneous 

data sources is presented by Leida et al. in [10]. This 

technique proposes a mapping model, which is an ontology. 

This makes the mapping model machine understandable. It 

also utilizes the concepts of semantic join and semantic 

identifiers to perform semantic data fusion on unrelated data 

sources. Other similar conflict identification and resolution 

techniques include [18,19,20]. 

Object orientation approaches are also used as baselines 

during the process of data integration. An adaptive approach 

to heterogeneous data integration using object oriented 

techniques is presented by Liu et al. in [5]. This paper 

presents a Distributed Interoperable Object Model (DIOM). 

DIOM promotes an adaptive approach for interoperation 

between data sources [6,7]. The major aim of DIOM is to 

improve the robustness and scalability of services. It uses the 

DIOM Interface Definition Language (DIOM IDL) [8] to 

describe models. This is based on the ODMG 93 object model 

[9] and the main idea of this technique is to incorporate 

scalability, heterogeneity and huge data volume. 

A reverse cleaning technique optimized for integrating 

heterogeneous multimedia data is presented by Chen et al. in 

[11]. This technique uses a two phase quality improvement 

algorithm for data integration. The first phase uses threads to 

refresh the data as and when modifications are done on the 

data source. This keeps the data up to date and hence 

improves the data quality. The second phase performs data 

reverse cleaning such that the original data is easily accessible 

even after the cleaning process. Accuracy assessment is 

performed by using the data accuracy assessment algorithm.  

A specialized data integration scheme that operates on Entity-

Relationship based data is presented by Lee et al. in [12]. This 

technique integrates ER schemas and focuses on the 

resolution of structural conflicts. The major resolution focus is 

on resolving conflicts between an entity type in one schema 

and attribute in another schema. It has been observed that 

performing this process automatically resolves other structural 

conflicts.  

Specific application based data integration techniques include 

[13,14,22,23]. These techniques are focused on integrating 

data for knowledge processing in specific application 

scenarios. Several data structures [15,16,17] were proposed 

for the integrating schema. They propose flexible structures to 

efficiently store, retrieve and process data. A deep kernel 

dimensionality reduction technique was proposed in [21]. This 

technique has a scalability advantage, hence has the ability to 

adapt depending on the data size.  



International Journal of Computer Applications (0975 – 8887) 

Volume 146 – No.1, July 2016 

11 

3. FAST AND EFFICIENT CONFLICT 

IDENTIFICATION AND 

RESOLUTION IN HUGE 

STREAMING DATA  
Identifying and resolving conflicts is a major part of any data 

integration system utilizing several homogeneous or 

heterogeneous data sources. Requirements for such systems 

include faster processing on streamed data in-order to enable 

quick access for the user. This approach for conflict 

identification and resolution operates on huge streaming data 

to provide quick and accurate results (Figure 1).  

 

Figure 1: Conflict Identification and Resolution in Huge Streaming Data 

The entire process is broadly divided into three major phases; 

query construction and application, result formulation and 

similarity identification and rank based filtration to remove 

duplicates and conflicts. 

3.1 Query Construction and Application  
User query is obtained in a raw format requiring only the 

mandatory identifying component representing their 

requirements. This method of user input reduces the 

complexity for the user component and provides the raw 

framework on which the query could be built upon. As the 



International Journal of Computer Applications (0975 – 8887) 

Volume 146 – No.1, July 2016 

12 

data integration process requires retrieving and aggregating 

data from several heterogeneous data sources, obtaining the 

query in its most basic form proves to be a huge advantage.  

Source based query is constructed on the basis of the data 

sources being used. This phase uses the technique of wrapper 

based query building. A wrapper builds the query on the basis 

of its underlying data source. A single wrapper is used for 

every data source being used. The number of wrappers used in 

the application depends upon the number or type of data 

sources that are to be queried for results (Figure 2). A data 

source can be heterogeneous varying from a database, a web 

page, an XML document or even an unstructured text 

document.  

 

Figure 2: Query Construction and Application 

The constructed query is applied on the corresponding data 

sources and the results are retrieved. The results retrieved 

from the heterogeneous data sources also vary in their 

formats. They cannot be directly processed. Converting the 

retrieved results to a unified format is necessary, which is 

performed by the next phase. 

3.2 Result Formulation and Similarity 

Identification 
The result formulation phase aggregates all the results and 

converts them to a unified format. The formatted results 

contain the retrieved results and also the metadata associated 

with the results. The metadata includes data source, timestamp 

associated with the data, query association level, title etc. The 

data is associated with several other related information, 

hence JSON is used as the base format. Some data sources 

might not contain all the required metadata fields. Such fields 

are added with NULL values and during processing, default 

values replaces the NULL strings.  

The structured records are then paired in combinations of two 

and similarity levels between them are identified. A 

directional similarity score referred to as simd (Ti, Tj)  is 

computed between two texts Ti to  Tj using the following 

equation 

𝑠𝑖𝑚𝑑 𝑇𝑖 , 𝑇𝑗  =
 𝑚𝑎𝑥𝑆𝑖𝑚 𝑤𝑖 , 𝑇𝑗  . 𝑖𝑑𝑓(𝑤𝑖)𝑤 𝑖

 𝑖𝑑𝑓(𝑤𝑖)𝑤 𝑖

 

Therefore, for each word Wi in Ti, its best-matching 

counterpart in Tj is required (maxSim(Wi, Tj)). The similarity 

scores of all these matches are summed up and weighted 

according to their inverse document frequency, and then they 

are normalized.  

The final document-level similarity is the average of applying 

this strategy in both directions, from Ti to Tj and vice versa  

𝑠𝑖𝑚 𝑇𝑖 , 𝑇𝑗  =
1

2
(𝑠𝑖𝑚𝑑 𝑇𝑖 , 𝑇𝑗  + 𝑠𝑖𝑚𝑑 𝑇𝐽 , 𝑇𝑖 ) 

Every pair (Ti, Tj) is examined and in pairs exhibiting 

similarity scores > 0.9, the document Tj is eliminated from the 

corpus. This process is carried out for each similarity pair and 

the final corpus contains elements that are eliminated of all 

the duplicates. 

3.3 Rank based Conflict Resolution 
The corpus is now void of duplicates, however the presence of 

conflicting documents cannot be avoided when integrating 

data from several sources. Conflicts usually occur when a 

context presented by a document provides a contradicting 

view of the same context in another document. In real time, 

this occurrence is inevitable. All documents with similarity > 

0.4 are considered to be in conflict. All other documents have 

very low similarity, hence are considered to have contents that 

have no similarities.  

The documents are initially ranked to identify their 

importance levels in the corpus. Rank of a document is 

identified using the weighted sum method. It has been 

discussed in the earlier section that the structured JSON 

format contains metadata of the retrieved content. Every 



International Journal of Computer Applications (0975 – 8887) 

Volume 146 – No.1, July 2016 

13 

property is provided an importance value called its weight 

(w). Weights are assigned by the user depending on their 

priority. The actual value of the property is multiplied with its 

weight and are added to obtain the rank of the data.  

𝑅𝑑 = 𝑤𝑖 × 𝑣𝑖

𝑛

𝑖=1

 

Where Rd is the rank of the document with n properties, wi 

and vi are the weight and value of the property i respectively. 

If two documents (Ti,Tj) were identified to be in conflict, the 

document with higher rank is retained and the one with a 

lower rank is eliminated from the corpus. However this is not 

carried out as a rule of thumb. If the two documents have very 

close ranks, both considered of almost equal importance, 

hence are retained. The closeness level is defined by the 

threshold (Threshcl) set by the user. The resultant documents 

are considered to correspond to the user’s query and hence are 

provided to the user.  

4. RESULT AND DISCUSSION 
The process of conflict identification and resolution is 

performed by retrieving results using API’s and also using the 

available data sources, and is coded in Python and executed 

on PySpark. The experimental setup consists of Hadoop 1 

deployed in a cluster containing 10 data nodes, 1 name node, 

1 secondary name node and 1 client. Results obtained from 

these varied data sources are passed to the wrappers and the 

final dictionary is created for processing. The process of 

identifying conflicts is carried out on heterogeneous data, 

hence have a variety of data. This property requires the use of 

an architecture that can operate on structured, as well as 

unstructured data, hence HDFS is used as the base for storing 

files. Since the operations are carried out on data obtained 

from API’s, the operations tend to require stream processing, 

hence Spark is used for operating on the data. Queries were 

passed through the APIs and the results were passed to the 

pySpark code for conflict resolution. The entire process is 

carried out in a single pipeline. Varying queries were passed 

and 15 different set of executions were carried out. 

 

Fig 3: Retrieved Vs. Used Records 

The ratio between the number of records retrieved and the 

number of records that have been finally used is presented in 

figure 3. An inverse of this process, representing eliminated 

records are presented in figure 4. Due to the usage of API’s, 

the retrieval levels remained the same (50 records). However 

it could be noted that the final record count levels went low 

for some queries, while remained high for others. The higher 

data levels represent queries for latest information, while the 

others represent queries on information that are old. This 

depicts that the algorithm operates on all the types of data, 

providing only the required eliminations. 

 

Fig 4: Retrieved Vs. Duplicate Records 

Figure 5 represents the elimination levels. The elimination 

levels are presented in percentages. It could be observed that 

the elimination levels as high as 95% were obtained on aged 

data, whereas low elimination levels could also be observed 

on latest data preserving the information. The low and high 

fluctuations can be attributed to the recency of the query being 

used. Recent information tends to contain many articles 

representing the same entity. Hence it leads to a high 

probability of occurrence of duplicates, whereas old 

information tends to get consolidated, hence probability of 

duplication occurrence tends to get minimized. 

 

0

50

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ec

o
rd

s

Query No

Retrieved Vs. Used Records

Total Retrieved Final Set

0

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
ec

o
rd

s

Query No

Retrieved Vs. Duplicate Records

Total Retrieved Duplicate Count



International Journal of Computer Applications (0975 – 8887) 

Volume 146 – No.1, July 2016 

14 

 

Fig 5: Elimination % 

 

Fig 6: Time Comparison (Spark Vs. Sequential) 

A time comparison between Spark based operations and 

sequential conflict identification and resolution techniques is 

presented in figure 6. Sequential conflict identification and 

resolution is carried out by using the python implementation 

of the architecture, without including the Spark based 

operations. It could be observed that the sequential operations 

required huge time, whereas the time taken for Spark based 

operations is very low. An average time comparison chart is 

presented in figure 7 along with the data table to better 

comprehend the time difference. It could be observed that the 

time taken for sequential python is 589 seconds (approx. 9.8 

minutes), while spark based operations requires only 10.9 

seconds.  

 

Fig 7: Average Time Comparison 

5. CONCLUSION 
This paper presents an effective conflict identification and 

resolution technique using a distributed and stream processing 

architecture, Spark based on HDFS. It was observed that the 

Spark architecture performed efficiently in identifying and 

resolving conflicts with low time latencies. The major 

advantage of this approach is that wrappers utilized for query 

formulation are designed as independent components. Hence 

it is possible to dynamically add or remove wrappers. Hence 

the proposed architecture has the flexibility to dynamically 

add or remove data sources. The query provided by the user 

and the retrieval architecture operates on the content 

contained in the document. Several other factors such as query 

context, polarity and several other factors play a crucial role 

in identifying the appropriate result. The future contributions 

will be based on identifying and utilizing such factors during 

the retrieval and the elimination process for more accurate 

results. 

6. REFERENCES 
[1] Ohm, J. 2015. Transmission and Storage of Multimedia 

Data. In Multimedia Signal Coding and Transmission 

(pp. 491-520). Springer Berlin Heidelberg. 

[2] Park, J., 1999. Facilitating interoperability among 

heterogeneous geographic database systems: a theoretical 

framework, a prototype system, and evaluation. 

[3] Chen, H., Ouyang, Y. and Jiang, W., 2015. An optimized 

data integration model based on reverse cleaning for 

heterogeneous multi-media data. Multimedia Tools and 

Applications, pp.1-16. 

0

50

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
R

ec
o

rd
s

Query No

Elimination %

Elimination %

01000000

1 2 3 4 5 6 7 8 9 101112131415

Ti
m

e 
(m

s)

Query No

Time Comparison (Spark Vs. 
Sequential)

Spark Sequential

Spark Sequential

Series1 10974.13333 589620.9333

0

500000

1000000

Ti
m

e 
(m

s)

Technique

Average Time Comparison



International Journal of Computer Applications (0975 – 8887) 

Volume 146 – No.1, July 2016 

15 

[4] Han, L. and Qing-zhong, L., 2004. Ontology based 

resolution of semantic conflicts in information 

integration. Wuhan University Journal of Natural 

Sciences, 9(5), pp.606-610. 

[5] Liu, L. and Pu, C., 1997. An adaptive object-oriented 

approach to integration and access of heterogeneous 

information sources. Distributed and Parallel Databases, 

5(2), pp.167-205. 

[6] Wiederhold, G. 1993. Intelligent integration of 

information, in Proceedings ofACM/SIGMODAnnual 

Conference on Management of Data.  

[7] Wiederhold,G. 1994. Interoperation, mediation, and 

ontologies, in Proc. Int. Symp. on Fifth Generation Comp 

Systems, ICOT, Tokyo, Japan,  pp. 33–48. 

[8] Liu, L. and Pu, C., 1995. Customizable information 

gathering across heterogeneous information sources. 

Technical report, Department of Computer Science, 

University of Alberta. 

[9]  Cattell, R. et al. 1994.The Object Database Standard: 

ODMG-93 (Release 1.1). Morgan Kaufmann. 

[10] Leida, M., Gusmini, A. and Davies, J., 2013. Semantics-

aware data integration for heterogeneous data sources. 

Journal of Ambient Intelligence and Humanized 

Computing, 4(4), pp.471-491. 

[11] Chen, H., Ouyang, Y. and Jiang, W., 2015. An optimized 

data integration model based on reverse cleaning for 

heterogeneous multi-media data. Multimedia Tools and 

Applications, pp.1-16. 

[12] Lee, M.L. and Ling, T.W., 2003. A methodology for 

structural conflict resolution in the integration of entity-

relationship schemas. Knowledge and information 

systems, 5(2), pp.225-247. 

[13] Sandhya, H. and Roy, M.M., 2016. Data Integration of 

Heterogeneous Data Sources Using QR Decomposition. 

In Intelligent Systems Technologies and Applications 

(pp. 333-344). Springer International Publishing. 

[14] Bao, J.M., Hu, T.T., Pan, L., Xu, H. and Hu, H.F., 2014, 

December. Heterogeneous Data Integration and Fusion 

System Based on Metadata Conflict Algorithms in 

USPIOT. In Wireless Communication and Sensor 

Network (WCSN), 2014 International Conference on 

(pp. 95-100). IEEE. 

[15] Isnard, E., Perez, E., Bercaru, R., Galatescu, A., Florian, 

V., Conescu, D., Costea, L. and Stanciu, A., 2004. 

Integration and maintenance of heterogeneous 

applications and data structures. In Advances in 

Information Systems (pp. 181-191). Springer Berlin 

Heidelberg. 

[16] Chromiak, M. and Stencel, K., 2012. The linkup data 

structure for heterogeneous data integration platform. In 

Future Generation Information Technology (pp. 263-

274). Springer Berlin Heidelberg. 

[17] Comito, C. and Talia, D., 2006. Grid data integration 

based on schema mapping. In Applied Parallel 

Computing. State of the Art in Scientific Computing (pp. 

319-328). Springer Berlin Heidelberg. 

[18] Boufares, F. and Ben Salem, A., 2012, March. 

Heterogeneous data-integration and data quality: 

Overview of conflicts. In Sciences of Electronics, 

Technologies of Information and Telecommunications 

(SETIT), 2012 6th International Conference on (pp. 867-

874). IEEE. 

[19] Mirza, G.A., 2015, December. Null Value Conflict: 

Formal Definition and Resolution. In 2015 13th 

International Conference on Frontiers of Information 

Technology (FIT) (pp. 132-137). IEEE. 

[20] Chirathamjaree, C. and Mukviboonchai, S., 2002, 

October. The mediated integration architecture for 

heterogeneous data integration. In TENCON'02. 

Proceedings. 2002 IEEE Region 10 Conference on 

Computers, Communications, Control and Power 

Engineering (Vol. 1, pp. 77-80). IEEE. 

[21] Sokolovska, N., Clément, K. and Zucker, J.D., 2016. 

Deep kernel dimensionality reduction for scalable data 

integration. International Journal of Approximate 

Reasoning, 74, pp.121-132. 

[22] Calvanese, D., Liuzzo, P., Mosca, A., Remesal, J., Rezk, 

M. and Rull, G., 2016. Ontology-based data integration 

in EPNet: Production and distribution of food during the 

Roman Empire. Engineering Applications of Artificial 

Intelligence, 51, pp.212-229. 

[23] Laraichi, S., Hammani, A. and Bouignane, A., 2016. 

Data Integration As The Key To Building A Decision 

Support System For Groundwater Management: Case Of 

Saiss Aquifers, Morocco. Groundwater for Sustainable 

Development. 

 

IJCATM : www.ijcaonline.org 


