
International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.1, July 2016

36

An Efficient Approach for Storing and Accessing Small

Files with Big Data Technology

Bharti Gupta

Research Scholar
Department of Computer
Science & Applications,
Kurukshetra University,

Kurukshetra,
 Haryana, India

Rajender Nath

Professor
Department of Computer
Science & Applications,
Kurukshetra University,

Kurukshetra,
Haryana, India

Girdhar Gopal

Assistant Professor
Department of Computer
Science & Applications,
Kurukshetra University,

Kurukshetra,
Haryana, India

Kartik

Student
Kurukshetra Institute of

Technology &
Management,

Kurukshetra, Haryana,
India

ABSTRACT

Hadoop is an open source Apache project and a software

framework for distributed processing of large datasets across

large clusters of computers with commodity hardware. Large

datasets include terabytes or petabytes of data where as large

clusters means hundreds or thousands of nodes. It supports

master slave architecture, which involves one master node and

thousands of slave nodes. NameNode acts as the master node

which stores all the metadata of files and various data nodes

are slave nodes which stores all the application data. It

becomes a bottleneck, when there is a need to process

numerous number of small files because the NameNode

utilizes the more memory to store the metadata of files and

data nodes consume more CPU time to process numerous

number of small files. This paper presents a novel technique

to handle small file problems with Hadoop technology based

on file merging, caching and correlation strategies. The

experimental results shows that the proposed technique

reduces the amount of data storage at NameNode, average

memory usage of DataNodes and improves the access

efficiency of small files in Hadoop Distributed File System up

to 88.57% as compared with the general solution Hadoop

Archive.

General Terms
Big Data Analytics, Small files in Hadoop.

Keywords

Hadoop, HDFS, Map Reduce, small files in Hadoop, small

files storage in Hadoop.

1. INTRODUCTION

In recent years, Hadoop has become one of the most popular

high performance distributed computing paradigm for large

scale data analytics. Hadoop is an open source software

framework developed for reliable, scalable, distributed

computing and storage. Hadoop architecture consists of two

main layers that are Hadoop Distributed File System (HDFS)

and MapReduce programming model. HDFS, the primary

storage system of Hadoop is a distributed file system designed

to run on commodity hardware and store extremely large files

suitable for streaming data access patterns. HDFS is highly

fault tolerant and is able to scale up from a single server to

thousands of machines, each offering the same functionality

that is local computation and storage. HDFS protects the data

by replicating data blocks into multiple nodes, with a default

replication factor of 3. HDFS has a master/slave architecture.

It consists of two types of nodes: NameNode which is known

as “master” and several DataNodes which are called as

“slaves” [1]. MapReduce is a programming model to process

large datasets and make use of computing resources of each

server's CPU. It comprises of two phases: Map phase and

Reduce phase. Every job must contain one map function

followed by optional reduce function, these steps need to

follow this certain order. MapReduce incorporates JobTracker

and TaskTrackers [2]. The storage system of Hadoop is not

physically separated from the processing system [3]. Hadoop

is excellent when it comes to handle large files of data. HDFS

divides the input data into data blocks of minimum 64 MB in

size. NameNode stores the metadata of these data blocks and

DataNodes store the actual data blocks. These data blocks are

processed by MapReduce. But with the increasing scale of

small files, Hadoop is inefficient in handling numerous

number of small files whose size ranges from 10 KB to 5 MB.

These small files are generated by word docs, pdf files, flash

files, power point, MP3 and so on [4].

These numerous small files can bring serious performance

issues with Hadoop because storing these many small files

into Hadoop becomes an overhead in memory usage of

metadata stored in NameNode, so it impacts on the size of

memory in the NameNode. Thus, a large number of small

files take significant amount of NameNode's main memory

[5]. To process these many small files more number of

MapReduce tasks are created, it creates an overhead between

MapReduce tasks and CPU time.

This research intends to make the use of Hadoop based file

merging and caching technique that has proven effective and

efficient experimentally. The technique reduces the memory

use of NameNode and DataNodes to store data blocks. The

research objective is to create effective number of MapReduce

tasks to process HDFS data blocks, which drastically reduces

MapReduce task overhead and the total CPU time. An

efficient approach for storing and accessing small files is

developed and implemented on Hadoop framework. This

approach reduces the memory utilization of NameNode to

store metadata files. This technique can be used for all type of

resources on file system which makes it more general in use.

The rest of the paper is organized as follows. Section 2

discusses the related work. Section 3 presents the problem

formulation. Section 4 proposes a novel technique to handle

small files problem. Section 5 presents the experimental

results and discussions. Conclusions and future work are

drawn in section 6.

2. RELATED WORK
As the applications of the HDFS increases, the pitfalls of the

HDFS are also being discovered. Among them is the poor

performance when the HDFS handles small and frequently

interacted files. They pointed out that HDFS is designed for

processing big data transmission rather than transferring a

large number of files [6]. Shvachko from Yahoo! described

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.1, July 2016

37

the detailed design and implementation of HDFS. They

realized that their asumption that applications would mainly

create large files was flawed, and the new applications for

HDFS would need to store a large number of smaller files [1].

They described as there is only one NameNode in Hadoop

which keeps all the metadata in main memory, a large number

of small files produce significant impact on metadata

performance of HDFS [7] [8].

Research on small file problem of HDFS has attracted the

significant attention and it is believed that there are three

issues that need to be solved in a more appropriate way. The

first issue is the identification of 'how small is small'. Liu et

al. treated the files smaller than 16 MB are small files, no

proof or justification was provided for the same. The second

issue is the classification of small files. He discussed the small

files into two types: (i) files that are pieces of a large logical

file (ii) files that are inherently small. The third issue is the

solutions to the small file problem. Solutions are classified

into two categories: general solutions and special solutions

[3]. Hadoop Archive (HAR) [7], SequenceFile [3] and

MapFile [1] are typical general solutions to small files

optimization for Hadoop used by various researchers.

HAR is a file archiving facility that packs a number of small

files into large HDFS blocks so that the original files can be

accessed in parallel transparently and efficiently. It contains

metadata (in the form of _index and _masterindex) and data

(part-*) files. Part files contain the content of files which are

part of the archives [4].

A SequenceFile is a flat file and provides a persistent data

structure for binary key- value pairs. It uses the file name as

the key and file contents as the value, and supports the

compressing and decompressing at record level or block level.

Small files can be put into a single sequence file that is

processed using MapReduce operating on sequence file [3].

A MapFile is a type of sorted SequenceFiles with an index to

lookup operation by key. It consists of two files, a data file

and a smaller index file. All of the sorted key-value pairs are

stored in the data file and the key location information is

stored in index file. MapFile does not search for entire file

when looking for a specific key [1].

Researchers merged the page files into a large one and built

an index for each book to store book pages for digital

libraries. There was no detailed scheme to improve the access

efficiency [9].

They discussed a special solution which combined the small

files into a large one and built a hash index for each small file

which stores the small data of Geographic Information System

on HDFS. Merging of neighboring files and reserving several

versions of data were considered [10].

3. PROBLEM FORMULATION

As it is evident from the related work discussed in section 2,

when small files are stored on HDFS, disk utilization is not a

bottleneck. In general, small file problem occurs when

memory of NameNode is highly consumed by the metadata

and BlockMap of huge numbers of files. NameNode stores

file system metadata in main memory and the metadata of one

file takes about 250 bytes of memory. For each block by

default three replicas are created and its metadata takes about

368 bytes [11]. Let the number of memory bytes that

NameNode consumed by itself be denoted as α. Let the

number of memory bytes that are consumed by the BlockMap

be denoted as β. The size of an HDFS block is denoted as S.

Further assume that there are N files, whose lengths are

denoted as L1, L2, …., LN, then the memory consumed by the

NameNode is given by

N

=i

i

NN +α
S

L
β++N=M

1

368250 (1)

In order to reduce the memory consumption of NameNode,

the number of small files that NameNode manages and

number of blocks need to be reduced [13]. The various

techniques [1] [3], [7], [10] to handle the small files problem

have been proposed in the literature but they still suffer from

many limitations such as (i) In HAR, creating an archive

generates a copy of original files, which puts extra pressure on

disk space as once a .har is created it takes as much space as

the original files. Don’t mistake .har files for compressed

files. (ii) Reading through files in a HAR is no more efficient

than reading through files in

HDFS, and in fact may be slower since each HAR file access

requires two index file reads as well as the data file read as

shown in diagram.

Figure 1: Layout of the HAR File

(iii) When a .har file is given as an input to MapReduce job,

the small files inside the .har file will be processed

individually by separate mappers which is inefficient and no

mechanism is provided to improve access efficiency. (iv)

SequenceFile does not support update/delete method for a

specified key; it only supports append method whereas

MapFile only supports append method for a specified key. (v)

The existing techniques such as HAR, SequenceFile, and

MapFile do not consider file correlations while storing files.

(vi) The special solution provided by the Liu et al. uses the

index technique only, which further needs improvement.

4. PROPOSED APPROACH

To address the problems mentioned in the last section a novel

technique to handle the small files is proposed based on file

merging and caching techniques. The proposed technique is

composed of five phases: (i) File merging strategy (ii) Local

index file strategy (iii) Fragmentation of files (iv) Uploading

of files to HDFS (v) File caching. These phases are discussed

in detail below.

Phase 1: File merging strategy: In this phase, merging

operation is carried out at client side. The merging strategy

merges all the small files into a single big file and does not

perceive the existence of original small files, thus to reduce

the consumption of NameNode memory.

Figure 1: Layout of HAR File

Figure 2: Layout of the HAR file

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.1, July 2016

38

Phase 2: Local index file strategy: A local index file is

created for each original file to indicate its offset and length in

the merged file. It consists of four parameters “Location of

small file”, “Starting Page No.”, “End Page No.”, “Merged

File Name”.

Phase 3: Fragmentation of files: Files will be fragmented

when merged, so that no internal fragmentation of files occur

in HDFS blocks.

Phase 4: Uploading of files to HDFS: Both of the files, local

index file and merged file are written to HDFS which avoid

overhead involved in keeping the information at NameNode.

NameNode keeps the information of merged file and index

file only. File correlations are considered when storing the

files to improve the access efficiency.

Phase 5: File caching strategy: The caching strategy is used to

cache local index file and correlated files. Based on the

strategy, communications with HDFS are drastically reduced

thus to improve the access efficiency, when downloading

files. When a requested file misses in cache, the client needs

to query NameNode for file metadata. According to the

metadata, the client connects with appropriate DataNodes

where blocks locate. When the local index file is firstly read,

based on the offset and length, the requested file is split from

the block, and is returned to the client [13].

5. EXPERIMENTAL RESULTS AND

DISCUSSIONS

The experiment is conducted on a cluster with 3 machines.

One machine acts as the NameNode and the other two

machine acts as the DataNodes. Each of these machine has

Intel i7 processor, 4 GB RAM, 500 GB hard disk and

operating system is Ubuntu 12.04. Hadoop version is 2.0.6

and the java version is 1.8. The number of replicas is set to 3

and the HDFS block size is 64 MB. The workload consists of

246 small files in the range of 10 KB to 5 MB. These are of

size 260 MB. The performance of the proposed technique is

compared with the existing general solution HAR to analyze

the memory usage of the NameNode, average memory usage

of DataNodes and time taken to process files. The following

parameters are considered to measure the performance of

proposed technique and existing general solution HAR:

 Memory Usage of the NameNode to store metadata.

 Average Memory Usage of DataNodes to store data

blocks.

 Time taken in the MapReduce phases to process

files. Total time taken by CPU to process files.

Table 1. Memory Usage of the NameNode

Approach Memory Usage

(MegaBytes)

Existing HAR

Approach

624

Proposed Approach 331

Memory Usage of NameNode has reduced upto a great extent

from 624 MegaBytes to 331 MegaBytes as compared between

existing approach HAR and the proposed approach as shown

in table 1 and figure 2.

HAR

Approach

Proposed

Approach

0

100

200

300

400

500

600

700

624

331 Memory

Usage in

Mega

Bytes

M
em

o
ry

 i
n

 M
eg

a
B

y
te

s

 Figure 2: Memory Usage of the NameNode

Table 2. Average Memory Usage of the DataNodes

Approach Memory Usage

(MegaBytes)

Existing HAR

Approach

1711

Proposed

Approach

1129

Table 2 and figure 3 shows that Average Memory Usage of

the DataNodes has reduced upto a great extent from 1711

MegaBytes to 1129 MegaBytes as compared between existing

approach HAR and the proposed approach.

HAR

Approach

Proposed

Approach

0

200

400

600

800

1000

1200

1400

1600

1800 1711

1129

 Memory

Usage in

Mega

Bytes

M
em

or
y

in
 M

eg
aB

yt
es

Figure 3: Average Memory Usage of the DataNodes

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.1, July 2016

39

Table 3. Map, Reduce and Total CPU Time Comparison

Approach Map Time

(sec)

Reduce Time

(sec)

Total CPU

Time (sec)

Existing HAR

Approach

64 18 70

Proposed

Approach

33 9 8

The experiments has improved the efficiency of storing and

accessing small files in HDFS. The processing time of small

files has drastically reduced upto 88.57% as compared with

existing approach HAR as shown in table 3 and figure 4.

6. CONCLUSION AND FUTURE WORK

This paper presents a solution to handle small files problem in

Hadoop based on file merging and caching techniques. The

possibility of making the searching faster with the help of

prefetching and index file has been exploited in this work.

The experimental evaluation has demonstrated that the

proposed technique has reduced the NameNode memory

consumption and has improved the efficiency of storing and

accessing small files in HDFS. It has been observed from the

experimental results that the memory usage of the NameNode

to store metadata has reduced from 624 MegaBytes to 331

MegaBytes and average memory usage of the DataNodes to

store data blocks has reduced from 1711 MegaBytes to 1129

MegaBytes. It is further observed that the processing

performance of small files has been improved up to 88.57 %

by the proposed approach, which is very promising. As for

future work, small file storage solutions on HDFS will be

mainly studied for other types of files which will include

structurally related files and logically related files. Based on

the file correlation analysis, small files are classified as

multiple types and customized approaches will be supplied to

different types to further improvement of efficiency. In the

future work, the cut-off point between large and small files

will be further studied.

7. REFERENCES
[1] Shvachko, K., Hairong, K., Radia, S., Chansler, R. 2010.

The Hadoop Distributed File System. In proceedings of

IEEE 26th Symposium in Mass Storage Systems and

Technologies (MSST). 1-10.

[2] Yuan, Yu, Cui, C., Wu, Y., and Chen, Z. 2013.

Performance analysis of Hadoop for handling small files

in single node. Computer Engineering and Application.

Vol. 49, no. 3. 57-60.

[3] White T. 2009. The Small Files Problem.

http://www.cloudera.com/blog/2009/02/the small files

problem.

[4] Dong, B., Qiu J., and Zheng Q. 2010. A Novel Approach

to improving the Efficiency of Storing and Accessing

Small Files on Hadoop: a Case Study by PowerPoint

Files. IEEE International Conference on Services

Computing, 978-0-7695-4126-6/10. 65-72.

[5] White, T. 2010. Hadoop: The Definitive Guide. 2nd ed.

O'Reilly Media, Sebastopol, CA. 41-45.

[6] Jiang, L., Li, B., and Song, M. 2010. The optimization of

hdfs based on small files. In 3rd IEEE International

Conference on Broadband Network and Multimedia

Technology, IC-BNMT. 912-915.

[7] Mackey, G., Sehrish, S., and Wang, J. Aug 31- Sep 4,

2009. Improving metadata management for small files in

HDFS. In proceedings of IEEE International Conference

on Cluster Computing and Workshops. New Orleans,

USA. 1-4.

[8] Min, L., and Yokata, H. 2010. Comapring hadoop and

fat-btree based access method for small file I/o

applications. Web-age information management, Lecture

notes in computer science. Vol. 6184, Springer. 182-193.

[9] Shen, C., Lu, W., Wu, J., and Wei, B. 2010. A digital

library architecture supporting massive small files and

efficient replica maintenance. In Proceedings of the 10th

annual joint conference on digital libraries. ACM. 391-2.

[10] Liu, X., Han, J., Zhong, Y., Han, C., and He, X. 2009.

Implementing webgis on hadoop: a case study of

improving small file i/o performance on HDFS. In IEEE

international conference on cluster computing and

workshops, CLUSTER'09. 1-8.

[11] Shvachko, K. 2007. Name-node memory size estimates

and optimization proposal.

https://issues.apache.org/jira/browse/HADOOP-17S.

[12] Dong, B., Zheng, Q., Tian, F., Chao, K.M., Ma, R.,

Anane, R. July 2012. An optimized approach for storing

and accessing small files on cloud storage. In

Proceedings of Journal of Network and Computer

Applications 35. 1847-1862.

[13] Gupta, B., Nath, R., Gopal, G. April, 2016. A Novel

Techniques to Handle Small Files with Big Data

Technology. In Proceedings of Vivechana : A National

Conference on Advances in Computer Science and

Engineering (ACSE) held at Department of Computer

Science & Applications, Kurukshetra University,

Kurukshetra, Haryana, India on 29-30 April 2016.

M
ap

 T
im

e

R
ed

u
ce

 T
im

e

T
ot

al
 C

P
U

 T
im

e

0

10

20

30

40

50

60

70

80

64

18

70

33

9 8

HAR

Approach

Proposed

Approach

T
im

e
in

 S
ec

on
d

s

Figure 4: Map, Reduce and Total CPU Time Comparison

IJCATM : www.ijcaonline.org

