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ABSTRACT 
Mining frequent subgraphs is a basic activity that plays an 

important role in mining graph data. In this paper an 

algorithm is proposed to find frequent subgraphs in a single 

large graph that has applications such as protein interactions, 

social networks, web interactions. One of the key operations 

required by any frequent subgraph discovery algorithm is to 

perform graph isomorphism.  The proposed algorithm offers 

mining frequent subgraphs by avoiding the subgraph 

isomorphism problem through exploiting the symmetry 

properties present in the given graph. 
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1.  INTRODUCTION 
Over the years, frequent subgraph discovery algorithms have 

been used to find interesting patterns in various application 

areas[1-7]. The frequent subgraph discovery problem can be 

defined as the process of finding subgraphs from a single 

large graph or from a set of graphs in a graph database which 

have frequency greater than the specified threshold. 

Developing algorithms that discover all frequently occurring 

subgraphs in a large graph is particularly challenging and 

computationally intensive, as candidate generation and 

subgraph isomorphisms play a key role throughout the 

computations. In recent years, several algorithms have been 

developed to find patterns in a large graph [8-14]. These 

algorithms start with a frequent edge or vertex and extend the 

graph by adding a new edge or by adding a new vertex to the 

existing graph recursively. These algorithms are complete in 

the sense that they are guaranteed to discover all frequent 

subgraphs and were shown to scale to very large graphs.  The 

difficulty in frequent subgraph mining algorithms is to 

calculate the support of subgraphs and to prune redundant 

candidate generation arises from the subgraph isomorphism 

which is itself NP-hard problem[15-17].  

In this paper, a new algorithm is proposed FSSG (Finding 

Frequent Subgraphs in a Single Graph based on Symmetry), 

which generates frequent subgraphs by avoiding the subgraph 

isomorphism cost in the mining process. The algorithm uses 

symmetries present in a graph to generate candidate 

subgraphs. Unlike most algorithms, this algorithm extends 

subgraph by adding another frequent subgraph determined by 

the symmetry mapping of subgraph. 

 

2.  PRELIMINARIES 
Definition1: A labelled graph is defined as G = (V, E, L, l), 

where V is a set of vertices, 𝐸 ⊆ 𝑉 × 𝑉is a set of edges, L is a 

set of labels, and l is a function that gives a unique label to 

each vertex of G.  

Definition2: Frequent Subgraph: Given a graph G and a 

frequency threshold T, a subgraph Gi, with an observed 

support f is frequent if and only if f ≥T 

Definition3: Partitioning: The vertices of a labelled graph G 

are partitioned into p disjoint non empty sub sets denoted by 

V, an ordered partition V(G) = {V1, V2,…, Vp} if, satisfies the 

following properties 

(1) For all vertex u, v ∈Vk(G), deg (u) = deg (v), 

∀𝑢, 𝑣 ∈ 𝑉𝑘(𝐺), 1 ≤ k ≤ p. 

(2) For all vertex u, v ∈Vk(G), lbl(u) = lbl(v), ∀𝑢, 𝑣 ∈
𝑉𝑘(𝐺), 1 ≤ k ≤ p. 

(3) For all vertex u ∈Vk(G) and v ∈Vl(G), deg (u) 

>deg           (v) if k< l. 

Definition 4: The symmetry group of G denoted by Sym(G) is 

a set of symmetries of G forms a group under functional 

composition. An automorphism (a symmetry) of graph G is a 

permutation of G's vertices that preserves G's edge relation, 

i.e., G = G. The automorphism group Aut(G) of a graph G is 

the set of all automorphisms of G with permutation 

composition as group operation. 

Lemma 1: A graph G is vertex-transitive if for every vertex 

pair u,v∈ 𝑉𝐺  there is an automorphism that maps u to v. 

Lemma 2: A graph G is edge-transitive if for every edge pair 

d,e ∈ 𝐸𝐺 , there is an automorphism that maps d to e. 

Vertex orbits are the equivalence classes of the vertices of a 

graph G identified by the automorphism. The equivalence 

classes of the edges are called edge orbits. All vertices in the 

same orbit have the exact same degree, label and neighbours. 

All edges in the same orbit have the same pair of degrees at 

their endpoints.  

A set of adjacent vertices of a vertex v of a graph g is denoted 

as adj(v). 

Definition 5: Vertex sign: For a vertex v with m adjacent 

vertices u1, u2,…, um,  vertex sign sig(v)is a string defined as: 

dsigv+lsigv+esigvwhere “+” is string concatenation, and which 

satisfies the following criteria: 

(1) For each v ∈ S, dsigv=(d(u1), d(u2),… d(um)) where 

deg(uk) ≥ deg(u(k+1)), for all k, 1 ≤ k ≤ m – 1 

(2) For each v ∈ S, lsigv=(l(u1)|| l(u2)||… ||l(um)).,where ui 

is the in the order of dsigv 
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(3) For each v ∈ S,  a sequence esigv=(l(u1, v)|| l(u2, v)||… 

||l(um, v)) where ui is the in the order of dsigv 

Therefore, the sign of vertex v with m adjacent vertices is 

composed in the order of adjacent vertices degree (dsigv), 

adjacent vertices label (lsigv) and adjacent vertices edge label 

(esigv). These are ordered by vertices degree first, then by 

vertices labels and then by edge labels. Notice that the vertex 

sign is not obtained by calculating all possible permutations; it 

is attained by sorting the degrees of adjacent vertices as 

described in the above definition 5 rule1. And then adjacent 

vertices label and adjacent vertices edge label are obtained 

just by concatenating the labels in the order of vertices 

obtained with Rule 1.The intention behind the design of 

vertex sign is to combine the degree, label and the edge label 

of adjacent vertices information of a vertex into a string-based 

representation. Therefore, the lexicographic order of vertex 

sign is totally ordered as normal strings. 

Lemma 1. Given two vertex signatures sig(v1) and sig(v2) of  

vertices v1 and v2of a labelled graph G, respectively, v1  is not 

symmetric to v2 if sig(v1) ≠ sig(v2). 

Proof: This lemma was proved by showing that if v1is 

symmetric to v2 then sig(v1) = sig(v2). Since, v1 v2, there 

exists a bijection f that maps each adjacent vertex vi of v1 to a 

vertex f(vi), namely wi, of v2.  Otherwise the adjacency 

relations preservations such as adjacent vertex degrees, vertex 

labels and edge labels must be violated between these two 

vertices. Since the lexicographic order of adjacent vertices 

relationships are totally ordered, and the signature of a vertex 

is the string obtained by concatenation, these two vertex 

signatures must be equal. Notice that Lemma 1states a 

necessary condition to identify symmetry between two 

vertices.  

As these vertices are symmetrical, the subgraph of a vertex 

with its adjacent vertices is also symmetrical. This symmetry 

property of vertices can be used to enumerate subgraphs just 

by connecting an edge between subgraphs of vertices. 

3.  THE APPROACH 
The proposed FSSG  -Finding Frequent Subgraphs in a Single 

Graph based on Symmetry-  algorithm presents a novel 

technique that addresses the frequent subgraph mining 

problem without subgraph isomorphism checking. It employs 

a novel method to enumerate candidate subgraphs. Able to 

mine in large graphs and at low frequency thresholds. 

3.1  Mining Frequent Subgraphs 
The overall flow of finding frequent subgraphs algorithm is as 

follows: The algorithm starts by partitioning the graph G into 

p parts according to the definition 3 so that the vertices in 

each part contain same degree and same label. Compute the 

vertex signature for each vertex of Vi if the size of the part is 

greater than the frequency threshold. These parts are further 

refined into classes based on the definition 4. Now the 

vertices in a class become the starting subgraphs. These 

subgraphs are further extended by checking the symmetry of 

their children. 

3.2  Storage Structure of a Graph 
Graph representation is an important aspect as it has direct 

and significant influence on memory usage and execution 

time of the algorithm. The most commonly used 

representations of graph are Adjacency Matrix, Adjacency 

List, Hash Tables, Incidence Matrix and Incidence List. The 

choice of the graph representation is situation specific. A 

more space-efficient way to implement a sparsely connected 

graph is to use an adjacency list. An adjacency list 

representation for a graph associates each vertex in the graph 

with the collection of its neighbouring vertices or edges.  

3.2.1Adjacency List 
An array of linked lists is used. Size of the array is equal to 

number of vertices. Let the array be array[]. An entry array[i] 

represents the linked list of vertices adjacent to the ith vertex. 

This representation can also be used to represent a labelled 

graph. The labels of edges can be stored in nodes of linked 

lists. This algorithm uses an ordered adjacency list 

representation to store graph. Adjacency list representation of 

the graph G(figure1) is shown in figure 2. The adjacent 

vertices of a vertex are ordered by the definition 3 when 

constructing the adjacency list itself making it 

computationally efficient. 

      

Fig1: Graph G                               

 

Fig 2: Adjacency list representation 

3.3 Algorithm: Frequent Subgraph Mining 
Input: A graph G and frequency threshold f 

Output: The frequent subgraphs F of G 

Begin 

1. S ← makepartition() 

2. for each vertex orbit Sk  ∈ S do 

3.             if |Sk|>f then 

4.  result ←Sk 

5. result  ←result U subgextnsn(Sk) 

End 

Frequent subgraph mining starts by partitioning the vertices of 

graph G into vertex orbits by executing makepartition() 

algorithm. This algorithm takes set of vertices V of graph G as 

input and makes partitioning based on the signature of 

vertices that creates vertex orbits which have vertex transitive 

property. This algorithm is further explained. Subgextnsn() 

algorithm is executed for a vertex orbit Sk that supports 

frequency threshold to enumerate frequent subgraphs  emerge 

from that orbit. Finally subgraph extension algorithm 

Subgextnsn() is recursively executed to find all the frequent 

subgraphs.  
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3.4  Making Partitioning 
Algorithm: makepartition() 

Input:       A set of vertices V of graph G 

Output:    Refined partition S 

Begin 

1. Let V ← V1, V2 ... Vn be the initial partition 

according to definition 3 

2. repeat 

3.    for each cell Vi ∈ V do s.t |Vi| >f 

4.           for each v ∈ Vi  do   

5.       compute sigv 

6.   let Vik be the sub partition of Vi 

7.                   refine Vi  into  Vi← Vi1, Vi2 ... Vij s.t  ∀u, v 

∈ Vi sig(u) = sig(v) 

8.          for each  Vij do s.t |Vij| >f 

9.              S ← S ∪ Vij 

End 

Initially, the algorithm starts by forming an equitable ordered 

partition of vertices according to the definition 3, thereby 

extracting all the label and degree information. In order to 

find symmetrical vertices other graph theoretical information 

such as degree of adjacent vertices and labels of adjacent 

vertices and edges are exploited. For each vertex v in the cell 

Vi signature is calculated. These vertices are then split into 

groups of equal signatures, forming vertex orbits Vij. The 

process is iterated for each cell Vi of the initial partition V.  

Makepartition() algorithm eliminates the cells that do not 

support the frequency threshold since according to the anti-

monotone property, their extensions are also infrequent. 

Finally, the partition S, returned by this refinement procedure 

contains the resultant vertex orbits that will become basic 

subgraphs and can be further extendible. At this position a 

subgraph of a vertex i.e a vertex along with its adjacent 

vertices in each orbit will return a kind of subgraph. 

3.5  Enumeration of Subgraphs 
Algorithm: subgextnsn(Si) 

Input:    A refined partition set Si 

Output:  The frequent subgraphs of G 

1. while (Si ≠ Ø ) 

2.     for each vertex orbit Si do 

3.        repeat 

4.          ext ← sg(v)  //a subgraph of vertex v in the 

vertex orbit Si 

5.          for each vertex  v ∈ Si do 

6.              let adj(v)and  adj(u) are set of adjacent 

vertices of u, v ∈ Si  

7.              compute sig adj(vi) for the Ith adjacent vertex       

8.              ext ← ext <> sg(v)  if  sig adj(vi) = sig adj(ui).    

9.              mark vertex v and u visited       

10.         until no more vertices to visit 

11.     return ext 

Subgraph enumeration is the one of the important aspect in 

the process of frequent subgraph discovery. The mechanism 

used in this algorithm is a new approach. In this approach, the 

subgraph enumeration is carried out by extending the 

previously enumerated subgraph with newly identified 

extendible frequent subgraph. The input to this algorithm set 

Si contains only the vertices which are symmetrical according 

to the definition 6 and frequent. So each vertex v of the set Si 

(i.e the element of frequent set) can be associated to a small 

subgraph with its adjacent vertices. To extend the subgraph, 

now check the signature of its first adjacent vertex with other 

vertices first adjacent vertex. If they are same then connect the 

vertex v to the subgraph of first adjacent vertex v1. Repeat this 

procedure until no more matching’s found or all the vertices 

are visited. Execute this procedure recursively for the next 

level adjacent vertices also if the extensions are possible to 

further extend the subgraphs. This algorithm will return the 

frequent subgraphs that can be enumerated from each vertex 

orbit.  

4. EXPERIMENTAL EVALUATION 
Experiments are carried out on a Intel® Pentium® Dual CPU 

T3400 @2.17 GHz with 4GB RAM. To evaluate the 

performance of the algorithm, the following real graph data 

sets are used.  

Aviation (ailab.wsu.edu/subdue). This dataset contains a list 

of records extracted from the aviation safety reporting system 

database [18]. Each record corresponds to an event and nodes 

represents the events(and are labelled with the ids of the 

event) while the information regarding event. Aviation 

consists of 100K nodes and 133K edges.  The Aviation graph 

has on average one edge per node, thus, it is very sparse.  

protein-protein interaction data of Saccharomyces cerevisiae 

obtained by Database of Interacting Protein (DIP) [19] for the  

experimental analysis. They provide a set of data that is 

experimentally determined protein interaction. It contains 

1274 protein nodes and 3222 interactions between proteins. 

The efficiency of the algorithm against frequency and time is 

shown in figure 3. It can be observed that the number of 

frequent subgraphs grows exponentially as the threshold 

decreases. So that the time required to execute also increases. 

The algorithm shows linear increase in execution time against 

threshold as it identifies the frequency at the time of 

partitioning. 

   

 

Fig 3: Performance evaluation for aviation data and 

protein interaction 
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5. CONCLUSION 
The emphasis of proposed algorithm is to provide an efficient 

and fast computational approach to mine frequent subgraphs 

in a large graph without isomorphism testing by exploiting the 

symmetries present in a graph. The proposed partitioning 

based on signature identifies the symmetries present in a 

graph and make available to enumerate frequent subgraphs 

faster than existing techniques. The results obtained in the 

preliminary tests confirmed the effectiveness of the proposed 

algorithm.  The proposed algorithm can also be applied to 

search structures in graph data sets for general applications. 

The algorithm can also be extended to find frequent subgraphs 

for unlabelled graphs. 
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