
International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.11, July 2016

5

Finding Frequent Subgraphs in a Single Graph based on

Symmetry

D. Kavitha
Sr Assistant Professor,
PVPSIT, Vijayawada,

Andhra Pradesh, INDIA

V. Kamakshi Prasad
Professor & Head of the

Department of Computer Science
JNTUH College of Engineering,

Hyderabad

J. V. R. Murthy
Professor

Dept of Computer Science
JNTUK, Kakinada

ABSTRACT
Mining frequent subgraphs is a basic activity that plays an

important role in mining graph data. In this paper an

algorithm is proposed to find frequent subgraphs in a single

large graph that has applications such as protein interactions,

social networks, web interactions. One of the key operations

required by any frequent subgraph discovery algorithm is to

perform graph isomorphism. The proposed algorithm offers

mining frequent subgraphs by avoiding the subgraph

isomorphism problem through exploiting the symmetry

properties present in the given graph.

General Terms
Graph mining, frequent subgraph mining, data mining

Keywords
Frequent subgraph, single graph, graph isomorphism,

symmetry

1. INTRODUCTION
Over the years, frequent subgraph discovery algorithms have

been used to find interesting patterns in various application

areas[1-7]. The frequent subgraph discovery problem can be

defined as the process of finding subgraphs from a single

large graph or from a set of graphs in a graph database which

have frequency greater than the specified threshold.

Developing algorithms that discover all frequently occurring

subgraphs in a large graph is particularly challenging and

computationally intensive, as candidate generation and

subgraph isomorphisms play a key role throughout the

computations. In recent years, several algorithms have been

developed to find patterns in a large graph [8-14]. These

algorithms start with a frequent edge or vertex and extend the

graph by adding a new edge or by adding a new vertex to the

existing graph recursively. These algorithms are complete in

the sense that they are guaranteed to discover all frequent

subgraphs and were shown to scale to very large graphs. The

difficulty in frequent subgraph mining algorithms is to

calculate the support of subgraphs and to prune redundant

candidate generation arises from the subgraph isomorphism

which is itself NP-hard problem[15-17].

In this paper, a new algorithm is proposed FSSG (Finding

Frequent Subgraphs in a Single Graph based on Symmetry),

which generates frequent subgraphs by avoiding the subgraph

isomorphism cost in the mining process. The algorithm uses

symmetries present in a graph to generate candidate

subgraphs. Unlike most algorithms, this algorithm extends

subgraph by adding another frequent subgraph determined by

the symmetry mapping of subgraph.

2. PRELIMINARIES
Definition1: A labelled graph is defined as G = (V, E, L, l),

where V is a set of vertices, 𝐸 ⊆ 𝑉 × 𝑉is a set of edges, L is a

set of labels, and l is a function that gives a unique label to

each vertex of G.

Definition2: Frequent Subgraph: Given a graph G and a

frequency threshold T, a subgraph Gi, with an observed

support f is frequent if and only if f ≥T

Definition3: Partitioning: The vertices of a labelled graph G

are partitioned into p disjoint non empty sub sets denoted by

V, an ordered partition V(G) = {V1, V2,…, Vp} if, satisfies the

following properties

(1) For all vertex u, v ∈Vk(G), deg (u) = deg (v),

∀𝑢, 𝑣 ∈ 𝑉𝑘(𝐺), 1 ≤ k ≤ p.

(2) For all vertex u, v ∈Vk(G), lbl(u) = lbl(v), ∀𝑢, 𝑣 ∈
𝑉𝑘(𝐺), 1 ≤ k ≤ p.

(3) For all vertex u ∈Vk(G) and v ∈Vl(G), deg (u)

>deg (v) if k< l.

Definition 4: The symmetry group of G denoted by Sym(G) is

a set of symmetries of G forms a group under functional

composition. An automorphism (a symmetry) of graph G is a

permutation of G's vertices that preserves G's edge relation,

i.e., G = G. The automorphism group Aut(G) of a graph G is

the set of all automorphisms of G with permutation

composition as group operation.

Lemma 1: A graph G is vertex-transitive if for every vertex

pair u,v∈ 𝑉𝐺 there is an automorphism that maps u to v.

Lemma 2: A graph G is edge-transitive if for every edge pair

d,e ∈ 𝐸𝐺 , there is an automorphism that maps d to e.

Vertex orbits are the equivalence classes of the vertices of a

graph G identified by the automorphism. The equivalence

classes of the edges are called edge orbits. All vertices in the

same orbit have the exact same degree, label and neighbours.

All edges in the same orbit have the same pair of degrees at

their endpoints.

A set of adjacent vertices of a vertex v of a graph g is denoted

as adj(v).

Definition 5: Vertex sign: For a vertex v with m adjacent

vertices u1, u2,…, um, vertex sign sig(v)is a string defined as:

dsigv+lsigv+esigvwhere “+” is string concatenation, and which

satisfies the following criteria:

(1) For each v ∈ S, dsigv=(d(u1), d(u2),… d(um)) where

deg(uk) ≥ deg(u(k+1)), for all k, 1 ≤ k ≤ m – 1

(2) For each v ∈ S, lsigv=(l(u1)|| l(u2)||… ||l(um)).,where ui

is the in the order of dsigv

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.11, July 2016

6

(3) For each v ∈ S, a sequence esigv=(l(u1, v)|| l(u2, v)||…

||l(um, v)) where ui is the in the order of dsigv

Therefore, the sign of vertex v with m adjacent vertices is

composed in the order of adjacent vertices degree (dsigv),

adjacent vertices label (lsigv) and adjacent vertices edge label

(esigv). These are ordered by vertices degree first, then by

vertices labels and then by edge labels. Notice that the vertex

sign is not obtained by calculating all possible permutations; it

is attained by sorting the degrees of adjacent vertices as

described in the above definition 5 rule1. And then adjacent

vertices label and adjacent vertices edge label are obtained

just by concatenating the labels in the order of vertices

obtained with Rule 1.The intention behind the design of

vertex sign is to combine the degree, label and the edge label

of adjacent vertices information of a vertex into a string-based

representation. Therefore, the lexicographic order of vertex

sign is totally ordered as normal strings.

Lemma 1. Given two vertex signatures sig(v1) and sig(v2) of

vertices v1 and v2of a labelled graph G, respectively, v1 is not

symmetric to v2 if sig(v1) ≠ sig(v2).

Proof: This lemma was proved by showing that if v1is

symmetric to v2 then sig(v1) = sig(v2). Since, v1 v2, there

exists a bijection f that maps each adjacent vertex vi of v1 to a

vertex f(vi), namely wi, of v2. Otherwise the adjacency

relations preservations such as adjacent vertex degrees, vertex

labels and edge labels must be violated between these two

vertices. Since the lexicographic order of adjacent vertices

relationships are totally ordered, and the signature of a vertex

is the string obtained by concatenation, these two vertex

signatures must be equal. Notice that Lemma 1states a

necessary condition to identify symmetry between two

vertices.

As these vertices are symmetrical, the subgraph of a vertex

with its adjacent vertices is also symmetrical. This symmetry

property of vertices can be used to enumerate subgraphs just

by connecting an edge between subgraphs of vertices.

3. THE APPROACH
The proposed FSSG -Finding Frequent Subgraphs in a Single

Graph based on Symmetry- algorithm presents a novel

technique that addresses the frequent subgraph mining

problem without subgraph isomorphism checking. It employs

a novel method to enumerate candidate subgraphs. Able to

mine in large graphs and at low frequency thresholds.

3.1 Mining Frequent Subgraphs
The overall flow of finding frequent subgraphs algorithm is as

follows: The algorithm starts by partitioning the graph G into

p parts according to the definition 3 so that the vertices in

each part contain same degree and same label. Compute the

vertex signature for each vertex of Vi if the size of the part is

greater than the frequency threshold. These parts are further

refined into classes based on the definition 4. Now the

vertices in a class become the starting subgraphs. These

subgraphs are further extended by checking the symmetry of

their children.

3.2 Storage Structure of a Graph
Graph representation is an important aspect as it has direct

and significant influence on memory usage and execution

time of the algorithm. The most commonly used

representations of graph are Adjacency Matrix, Adjacency

List, Hash Tables, Incidence Matrix and Incidence List. The

choice of the graph representation is situation specific. A

more space-efficient way to implement a sparsely connected

graph is to use an adjacency list. An adjacency list

representation for a graph associates each vertex in the graph

with the collection of its neighbouring vertices or edges.

3.2.1Adjacency List
An array of linked lists is used. Size of the array is equal to

number of vertices. Let the array be array[]. An entry array[i]

represents the linked list of vertices adjacent to the ith vertex.

This representation can also be used to represent a labelled

graph. The labels of edges can be stored in nodes of linked

lists. This algorithm uses an ordered adjacency list

representation to store graph. Adjacency list representation of

the graph G(figure1) is shown in figure 2. The adjacent

vertices of a vertex are ordered by the definition 3 when

constructing the adjacency list itself making it

computationally efficient.

Fig1: Graph G

Fig 2: Adjacency list representation

3.3 Algorithm: Frequent Subgraph Mining
Input: A graph G and frequency threshold f

Output: The frequent subgraphs F of G

Begin

1. S ← makepartition()

2. for each vertex orbit Sk ∈ S do

3. if |Sk|>f then

4. result ←Sk

5. result ←result U subgextnsn(Sk)

End

Frequent subgraph mining starts by partitioning the vertices of

graph G into vertex orbits by executing makepartition()

algorithm. This algorithm takes set of vertices V of graph G as

input and makes partitioning based on the signature of

vertices that creates vertex orbits which have vertex transitive

property. This algorithm is further explained. Subgextnsn()

algorithm is executed for a vertex orbit Sk that supports

frequency threshold to enumerate frequent subgraphs emerge

from that orbit. Finally subgraph extension algorithm

Subgextnsn() is recursively executed to find all the frequent

subgraphs.

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.11, July 2016

7

3.4 Making Partitioning
Algorithm: makepartition()

Input: A set of vertices V of graph G

Output: Refined partition S

Begin

1. Let V ← V1, V2 ... Vn be the initial partition

according to definition 3

2. repeat

3. for each cell Vi ∈ V do s.t |Vi| >f

4. for each v ∈ Vi do

5. compute sigv

6. let Vik be the sub partition of Vi

7. refine Vi into Vi← Vi1, Vi2 ... Vij s.t ∀u, v

∈ Vi sig(u) = sig(v)

8. for each Vij do s.t |Vij| >f

9. S ← S ∪ Vij

End

Initially, the algorithm starts by forming an equitable ordered

partition of vertices according to the definition 3, thereby

extracting all the label and degree information. In order to

find symmetrical vertices other graph theoretical information

such as degree of adjacent vertices and labels of adjacent

vertices and edges are exploited. For each vertex v in the cell

Vi signature is calculated. These vertices are then split into

groups of equal signatures, forming vertex orbits Vij. The

process is iterated for each cell Vi of the initial partition V.

Makepartition() algorithm eliminates the cells that do not

support the frequency threshold since according to the anti-

monotone property, their extensions are also infrequent.

Finally, the partition S, returned by this refinement procedure

contains the resultant vertex orbits that will become basic

subgraphs and can be further extendible. At this position a

subgraph of a vertex i.e a vertex along with its adjacent

vertices in each orbit will return a kind of subgraph.

3.5 Enumeration of Subgraphs
Algorithm: subgextnsn(Si)

Input: A refined partition set Si

Output: The frequent subgraphs of G

1. while (Si ≠ Ø)

2. for each vertex orbit Si do

3. repeat

4. ext ← sg(v) //a subgraph of vertex v in the

vertex orbit Si

5. for each vertex v ∈ Si do

6. let adj(v)and adj(u) are set of adjacent

vertices of u, v ∈ Si

7. compute sig adj(vi) for the Ith adjacent vertex

8. ext ← ext <> sg(v) if sig adj(vi) = sig adj(ui).

9. mark vertex v and u visited

10. until no more vertices to visit

11. return ext

Subgraph enumeration is the one of the important aspect in

the process of frequent subgraph discovery. The mechanism

used in this algorithm is a new approach. In this approach, the

subgraph enumeration is carried out by extending the

previously enumerated subgraph with newly identified

extendible frequent subgraph. The input to this algorithm set

Si contains only the vertices which are symmetrical according

to the definition 6 and frequent. So each vertex v of the set Si

(i.e the element of frequent set) can be associated to a small

subgraph with its adjacent vertices. To extend the subgraph,

now check the signature of its first adjacent vertex with other

vertices first adjacent vertex. If they are same then connect the

vertex v to the subgraph of first adjacent vertex v1. Repeat this

procedure until no more matching’s found or all the vertices

are visited. Execute this procedure recursively for the next

level adjacent vertices also if the extensions are possible to

further extend the subgraphs. This algorithm will return the

frequent subgraphs that can be enumerated from each vertex

orbit.

4. EXPERIMENTAL EVALUATION
Experiments are carried out on a Intel® Pentium® Dual CPU

T3400 @2.17 GHz with 4GB RAM. To evaluate the

performance of the algorithm, the following real graph data

sets are used.

Aviation (ailab.wsu.edu/subdue). This dataset contains a list

of records extracted from the aviation safety reporting system

database [18]. Each record corresponds to an event and nodes

represents the events(and are labelled with the ids of the

event) while the information regarding event. Aviation

consists of 100K nodes and 133K edges. The Aviation graph

has on average one edge per node, thus, it is very sparse.

protein-protein interaction data of Saccharomyces cerevisiae

obtained by Database of Interacting Protein (DIP) [19] for the

experimental analysis. They provide a set of data that is

experimentally determined protein interaction. It contains

1274 protein nodes and 3222 interactions between proteins.

The efficiency of the algorithm against frequency and time is

shown in figure 3. It can be observed that the number of

frequent subgraphs grows exponentially as the threshold

decreases. So that the time required to execute also increases.

The algorithm shows linear increase in execution time against

threshold as it identifies the frequency at the time of

partitioning.

Fig 3: Performance evaluation for aviation data and

protein interaction

0

200

400

0 400 800 1200 1600 2000

ti
m

e
(i

n
 s

e
c)

frequency

0

50

100

150

0 200 400 600

ti
m

e
(i

n
 s

e
c)

frequency

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.11, July 2016

8

5. CONCLUSION
The emphasis of proposed algorithm is to provide an efficient

and fast computational approach to mine frequent subgraphs

in a large graph without isomorphism testing by exploiting the

symmetries present in a graph. The proposed partitioning

based on signature identifies the symmetries present in a

graph and make available to enumerate frequent subgraphs

faster than existing techniques. The results obtained in the

preliminary tests confirmed the effectiveness of the proposed

algorithm. The proposed algorithm can also be applied to

search structures in graph data sets for general applications.

The algorithm can also be extended to find frequent subgraphs

for unlabelled graphs.

6. REFERENCES

[1] D. Cook, L. Holder, Mining Graph Data, John Wiley &

Sons Inc, 2007.

[2] R. Kumar, P Raghavan, S. Rajagopalan, D. Sivakumar,

A. Tomkins, E. Upfal. The Web as a Graph. ACM PODS

Conference, 2000.

[3] D. Maio and D. Maltoni. A structural approach to

fingerprint classification. In Proceedings of 13th

International Conference on Pattern Recognition,

Vienna, Austria, pp. 578–585, 1996

[4] F. Eichinger, K. Bohm, M. Huber. Improved Software

Fault Detection with Graph Mining. Workshop on

Mining and Learning with Graphs, 2008

[5] M. S. Gupta, A. Pathak, S. Chakrabarti. Fast algorithms

for top-k personalized pagerank queries. WWW

Conference, 2008

[6] M. Koyuturk, A. Grama, W. Szpankowski. An Efficient

Algorithm for Detecting Frequent subgraphs in

Biological Networks. Bioinformatics, 20:I200–207,

2004.

[7] B. Zhou, J. Pei. Preserving Privacy in Social Networks

Against Neighborhood Attacks. ICDE Conference, pp.

506-515, 2008

[8] Kuramochi, M. and Karypis, G., Finding frequent

patterns in a large sparse graph. Data Min. Knowledge

Discovery, 2005, 11(3),243–271

[9] L. Zou, L. Chen, and M. T. ¨Ozsu. Distance-join: pattern

match query in a large graph database. PVLDB,

2(1):886–897, 2009.

[10] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li. Efficient

subgraph matching on billion node graphs. PVLDB,

5(9):788–799, May 2012.

[11] J. Lee, W.-S. Han, R. Kasperovics, and J.-H. Lee. An in-

depth comparison of subgraph isomorphism algorithms

in graph databases. PVLDB, 6(2):133–144, Dec. 2012

[12] Elseidy M., Abdelhamid E., Skiadopoulos S. and Kalnis

P. (2014) GraMi: Frequent subgraph and pattern mining

in a single large graph. PVLDB, 7,517–528.

[13] Fiedler M. and Borgelt C. (2007) Support Computation

for Mining Frequent Subgraphs in a Single Graph. Proc.

MLG 07, Firence, Italy, August 1–3. ACM, New York,

NY, USA.

[14] Bringmann B. and Nijssen S. (2008) What is Frequent in

a Single Graph?. Proc. PAKDD 08, Osaka, Japan, May

20–23, pp. 858–863. Springer, Berlin.

[15] McKay, B., Practical Graph Isomorphism, Citeseer,

1981.

[16] J.R. Ullmann, An algorithm for subgraph isomorphism,

J. ACM 23 (1976) 31–42.

[17] J. Gross, J. Yellen (Eds.), Handbook of Graph Theory,

CRC Press, Florida, 2004

[18] SUBDUE databases: http://ailab.wsu.edu/subdue/

[19] L. Salwinski, C.S. Miller, A.J. Smith, F.K. Pettit, J.U.

Bowie and D. Eisenberg, The database of interacting

proteins: 2004 update. Nucleic Acids Research. 2004, 32:

D449-D451.

IJCATM : www.ijcaonline.org

