
International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.2, July 2016

5

A Featured Tuning of the Simulated Annealing Applied

to the Open Shop Scheduling

Chaouqi Mohsine
OSIL Team LRI, ENSEM,

KM7, BP 8118 Route El Jadida
Casablanca, Morocco

Benhra Jamal
OSIL Team LRI, ENSEM,

KM7, BP 8118 Route El Jadida
Casablanca, Morocco

My Ali El Oualidi
OSIL Team LRI, ENSEM,

KM7, BP 8118 Route El Jadida
Casablanca, Morocco

ABSTRACT

The present paper discusses the open shop scheduling

problem using a manual tuning of a simulated annealing

algorithm’s parameters. A comparison has been done between

Taillard’s Benchmarks for 60 instances, 2 dispatching rules

and 1296 variants of the SA algorithm obtained by changing

the initial solution, the epoch length, and the steps’ number,

the initial temperature, the neighborhood and the cooling

scheme.

The gotten results lead to some interesting conclusions for the

best choice of the parameters.

General Terms

Algorithm, parameters, tuning.

Keywords

Scheduling, Simulated annealing, epoch length,

neighborhood, cooling scheme, tuning, and open shop.

1. INTRODUCTION
Shop scheduling involves the processing of a set of jobs on a

set of machines by defining the time intervals in which the

operations have to be processed. [1]

There are three basic types of shops: a flow-shop (each job is

characterized by the same technological route), a job-shop

(each job has a specific route) and an open shop (no

technological route is imposed on the jobs). [2]

However there exist different objectives in scheduling

optimization. The most known objective is the makespan

Cmax minimization which is the time’s span required to

process all the jobs, i.e. the time from the beginning of the

first operation until the end of the last operation. The second

one is to minimize the flowtime, denoted by ∑Cj, which is the

completion times’ sum of all the jobs. Other objectives are the

tardiness’s minimization, the number of tardy jobs, etc.

In this article a manual tuning of the simulated annealing’s

parameters is made and the given results were compared with

Taillard’s benchmarks for 60 instances where n=m 𝜖{4, 5, 7,

10, 15, 20}.

The present paper is organized as follow: Section 2 contains a

short reminder of the different works found on the open shop

scheduling optimization. Section 3 sets out the algorithm used

and the tuning made. In section 4 the gotten results are

presented and their interpretation. Finally this article ends

with a conclusion and some perspectives.

2. LITERATURE REVIEW
As mentioned before the open shop is one type of the three

basic shops where a set of n jobs J1, J2,…, Jn has to be

processed on a set of m machines M1, M2,…, Mm with an

arbitrary order. The operation (i, j) means the processing of

job Ji on machine Mj.

One can find this kind of shop in a large aircraft garage with

specialized work centers, in automobile repair, quality control

centers, semiconductor manufacturing, teacher-class

assignments, examination scheduling, and satellite

communications as described in [3], [4] and [5].

There exist many works involving the open shop scheduling

problem. One of them is that of Liaw [6] who used simulated

annealing in case of minimizing makespan on a nonpremptive

open shop. He proposed a neighborhood search. His algorithm

was tested on randomly generated problems, benchmark

problems. He got a good results but spent a lot of time to

reach them (up to 3.5 hours per single run for an instance with

n=m=30).

The same author, proposed in [7] a hybrid genetic algorithm

(HGA) to resolove the open shop scheduling problem. The

hybrid algorithm incorporates a local improvement procedure

based on tabu search (TS) into a basic GA. The algorithm

developed has been tested on randomly generated instances

and on the benchmarks sets by Taillard [8] and Brucker et al.

[9]. It has been found that this HGA outperformed other

existing algorithms from the literature, and some benchmark

instances have been solved to optimality for the first time.

Michael Andresen et al.[3] considered the problem of

scheduling n jobs on m machines in an Open Shop

environment with the minimization of total weighted tardiness

as a goal. The main goal of their study was to find out which

parameters have a strong influence and which have a smaller

influence on the selection of an appropriate simulated

annealing algorithm.

Fang et al. [10] suggested an algorithm which combines a GA

with heuristic rules for the schedule construction. The

algorithm has been tested on the benchmark instances from

[8] using ten runs for each instance. By their tests, they

discovered one new best known solution for a problem with 7

machines and 7 jobs and a problem with 10 machines and 10

jobs instance.

Rui Zhang et al.[11] executed a simulated annealing algorithm

based on bottleneck jobs on an Open Shop scheduling

problem. Their study attempt to minimize the total weighted

tardiness.

Recently Bai et al [12] used a heuristic called general dense

scheduling to solve the static and dynamic versions of the

flexible open shop scheduling problem. The heuristic

proposed brings forth some interesting results.

Naderi et al [13] studied the scheduling open shop problem

with no intermediate buffer, called no-wait open shops under

makespan minimization. They develop three mathematical

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.2, July 2016

6

models and propose metaheuristics based on genetic and

variable neighborhood search algorithms. The results they got

show that the models and metaheuristics are effective to deal

with the no-wait open shop problems.

The simulated annealing algorithm proposed in this article

was used by Chaouqi et al [14] in hybridization within the

intuitive heuristic to perform a joint scheduling of production

and maintenance in the job shop problem. On the same topic

the authors used the Johnson’s algorithm combined with a

genetic algorithm and the intuitive heuristic to optimize three

objectives of the flow shop problem. [15]

3. SIMULATED ANNEALING AND

PARAMETERS TUNING
In the years 80 three researchers from IBM company – S.

Kirkpatrick, C. D. Gelatt and M.P. Vecchi have proposed and

published a new iterative method called Simulated annealing

Kirkpatrick et al.[16], which avoid the local minimum. Since

that discovery, this method has been tested in different fields

like the design of the electronic circuits, the image processing

etc.

Simulated annealing is inspired from a metallurgic process

called annealing. The annealing process is a heat treatment

that alters the physical and sometimes chemical properties of

a material to increase its ductility and reduce its hardness,

making it more workable. It involves heating a material to

above its recrystallization temperature, maintaining a suitable

temperature, and then cooling [17]. This strategy leads to a

crystallized solid state, which is a stable state, corresponding

to an absolute minimum of energy.

Similarly to the real process simulated annealing involves two

steps; heating and cooling. In the first step a control parameter

called temperature is introduced which must lead the system

to an optimal state. In the second one this temperature is

reduced during certain epochs within a cooling parameter till

the end of the period then it will be reinitialized.

Instead of Hill Climbing method, the simulated annealing

accepts a worse solution with a certain probability. This one

depends on the decreasing temperature so a local optimum is

avoided.

In this paper where the objective is the minimization of the

makespan, the algorithm is as follow [18] :

BEGIN

Generate an initial feasible solution R AND calculate

Cmax(R)

BestSol= R; BestCmax=Cmax(R); T=Initial temperature;

While (Stopping criterea not met) Do

R' = best neighbor in between the generated neighbors of

R;

ΔC = Cmax(R’)-Cmax(R);

Prob=Rand(0,1);

If ((ΔC≤0) or (prob < exp(-ΔC/T))) Then

R= R’; Cmax(R):=Cmax(R’);

If (Cmax(R)<BestCmax) then BestCmax=Cmax(R);

BestSol= R;

End if

Update T according to the chosen cooling scheme;

End if

End while

END

Figure 1: Simulated algorithm applied to open shop

problem with makespan minimization as an objective

Where R is the rank matrix, Cmax is the makespan and

neighbor is the new solution generated according to the

chosen neighborhood.

3.1 Rank matrix
The rank matrix R= (rij) describes a sequence graph G(MO,

JO) which is a feasible combination of machine orders and job

orders. The rank rij is the maximal number of operations on a

longest path ending in operation (i, j) [2].

Let the case n=m=3 where the job orders are described by the

matrix JO and the machine orders are described by the matrix

MO.

𝑀𝑂 =
3 2 1
1 2 3
2 1 3

 𝐽𝑂 =
3 1 2
3 2 1
1 2 3

The graphs related to these two matrices are shown in figure

2:

Figure 2: G(MO), G(JO) and G(MO, JO)

In the same figure the graph G(MO, JO) is given which is the

combination of the two graphs.

3.2 Neighborhoods
In this paper nine neighborhoods are used. Here a brief

description of them is given.

The first one is the PI neighborhood which stands for pairwise

interchange where two arbitrary operations are interchanged.

The second one is the API neighborhood. This neighborhood

consists on interchanging two adjacent operations on a rank

matrix to get a new neighbor, i.e an operation (i,j) is randomly

selected and then it is interchanged with the predecessor or

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31 32 33

 G(MO) G(JO)

11 12 13

21 22 23

31 32 33

 G(MO, JO)

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.2, July 2016

7

successor operation on machine Mj or of job Ji. If the pairwise

interchange leads to a feasible schedule, it is accepted as a

neighbor, otherwise another second operation is chosen to

perform a new adjacent pairwise interchange. The

neighborhood k_API is the same as the API with the

exception of generating k neighbors. When generating a

neighbor, the interchanges’ number of two adjacent operations

or on a machine of a job is randomly chosen. However in

CR_API (resp. BL_API) neighborhood a Cmax critical

operation (resp. block-end-operation) is interchanged with a

directly adjacent operation.

In the neighborhood SHIFT one operation is changed in the

relative order of operations, i.e. one operation is shifted left or

right in the job order on one machine or in the machine order

of one job. The operation is chosen randomly. Then another

operation belonging to the same job or to be processed on the

same machine is selected, e.g. let (i, k) be the other chosen

operation. If the rank aik is smaller than aij, the rank aij is

modified such that operation (i, j) appears immediately before

(i, k) (it corresponds to a right shift of machine Mj in the

machine order of job Ji). If the generated solution is infeasible,

two other operations will be chosen randomly for performing

a shift. In the BL_SHIFT a Cmax critical block-end-operation

is shifted in the sequence. However the CR_SHIFT

neighborhood which is a sub-neighborhood of the SHIFT

neighborhood generates new neighbors from this one where

the old ones satisfy a necessary condition for an improvement

of the makespan, namely a critical path in the starting solution

is destroyed, and there does not exist a path in the graph

describing the generated neighbor which contains the same

vertices as this critical path of the current starting solution.

Finally in this paper two other neighborhoods are used: the

3_CR where a Cmax critical operation is interchanged with a

directly adjacent operation.[3] [19]

4. RESULTS AND DISCUSSION
In this section, computational results are presented for the

simulated annealing. The parameters used in this study are:

Steps 𝜖{5000, 10000, 15000, 20000}, Epoch_length 𝜖 {100,

200, 300}, initial_temperature 𝜖 {10, 20, 30}, cool_scheme 𝜖

{GEOMETRIC, LUNDYANDMEES}, initial_solution 𝜖

{SPT, LPT}, neighborhood 𝜖 {PI, API, k_API, CR_API,

BL_API, SHIFT, BL_SHIFT, CR_SHIFT, 3_CR}, k=3,

number of neighbors = 1, cool_paramter = 0.0005. Thus the

number of variants is 4*3*3*2*2*9=1296 variants.

The time limit is 10 seconds fixed as a stopping criterion.

4.1 Case n° 1 : Cmax= Optimum
Here we describe the frequencies of variants which solved a

certain number of problems out of the sixty instances given by

Taillard, i.e. the final makespan calculated for these variants

has reached the optimums of the corresponding problem. The

table n°1 presents the gotten results in this first case.

Table 1. Number of variants by the number of solutions

where Cmax=Opt

Variants’ number Solutions’ number

831 0

196 1

97 2

55 3

50 4

26 5

18 6

13 7

6 8

3 9

1 10

One can see in the figure n° 3, most of variants do not

generate an optimal solution for each instance from the sixty

instances which is undesirable, i.e. the tuning suggested is not

as good as expected. Only one configuration reached optimum

solution for 10 out of 60. In this one the epoch length is 100,

the number of steps is equal to 20000, the initial temperature

is 10, the cooling parameter is 0.0005, the neighborhood is

CR_SHIFT the initial solution is LPT and the cooling scheme

is GEOMETRIC. This variant will be denoted by SA1.

The second good result, which is 9 optimums over 60, is

given by three configurations: SA2= (epoch_length = 200,

steps = 20000, t_start=10, cool_parameter = 0.0005,

neighborhood = CR_SHIFT, cool_scheme = GEOMETRIC,

init_sol = LPT), SA3= (100, 15000, 10, 0.0005, CR_SHIFT,

GEOMETRIC, LPT) and SA4= (200, 20000, 10, 0.0005,

CR_SHIFT, LUNDYANDMEES).

Figure 3: Number of variants by the number of solutions

where Cmax=Opt

To get more information from the generated data a deep

analyze of them is made by studying another case; where the

ratio Optimum/Cmax is greater than or equal to 0.99.

4.2 Case n° 2: Optimum/Cmax>=0.99
In this second case a new distribution is given which differs

from the previous one. One can observe in figure 4 a

decreasing graph from 0 to 4 solutions then a new pic and

again a decreasing graph from 5 to 18.

The maximal number of solutions with Opt/Cmax>=0.99 is 18

out of 60 reached by one variant: SA1, followed by 16 out of

60 obtained for these two configurations SA2 and SA3.

Here one can observe that the three variants SA1, SA2 and

SA3 performed well in either cases.

831

196

97
55 50 26 18 13 6 3 1

0

100

200

300

400

500

600

700

800

900

0 1 2 3 4 5 6 7 8 9 10

N
U

M
B

ER
 O

F
V

A
R

IA
N

TS

NUMBER OF SOLUTIONS

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.2, July 2016

8

Figure 4: Number of variants by the number of solutions

where Optimum/Cmax>=0.99

We grouped all the results of SA1, SA2 and SA3 applied to

the Taillard’s problem, with those given by SPT and LPT

rules in table n° 2. The abbreviation LB means the lower

bound and Opt stands for the optimum found in the literature.

Table 2. Results for the benchmark problems from

Taillard

(nxm)_i LB Opt SPT
LP

T
SA1 SA2 SA3

(4x4)_1 186 193 228 219 193 193 193

(4x4)_2 229 236 276 256 236 239 236

(4x4)_3 262 271 304 299 271 271 272

(4x4)_4 245 250 307 260 250 250 250

(4x4)_5 287 295 348 317 295 303 295

(4x4)_6 185 189 225 239 189 189 189

(4x4)_7 197 201 247 218 201 201 201

(4x4)_8 212 217 233 248 217 217 217

(4x4)_9 258 261 282 282 261 261 261

(4x4)_10 213 217 235 225 217 217 217

(5x5)_11 295 300 333 344 301 303 305

(5x5)_12 255 262 297 297 263 270 263

(5x5)_13 321 323 404 364 336 338 337

(5x5)_14 306 310 317 369 322 319 316

(5x5)_15 321 326 392 358 339 339 339

(5x5)_16 307 312 353 360 322 327 324

(5x5)_17 298 303 340 357 314 308 307

(5x5)_18 292 300 369 343 312 301 314

(5x5)_19 349 353 372 418 367 362 357

(5x5)_20 321 326 375 371 332 326 332

(7x7)_21 435 435 507 465 459 453 455

(7x7)_22 443 443 485 526 459 470 459

(7x7)_23 468 468 538 527 500 498 500

(7x7)_24 463 463 492 527 494 472 474

(7x7)_25 416 416 461 443 434 429 434

(7x7)_26 451 451 518 494 469 490 469

(7x7)_27 422 422 464 451 445 436 445

(7x7)_28 424 424 482 494 442 447 442

(7x7)_29 458 458 520 488 472 472 472

(7x7)_30 398 398 435 445 416 429 407

(10x10)_3

1
637 637 685 661 661 661 661

(10x10)_3

2
588 588 658 643 606 607 633

(10x10)_3

3
598 598 679 672 650 662 647

(10x10)_3

4
577 577 632 591 584 591 584

(10x10)_3

5
640 640 693 701 688 677 686

(10x10)_3

6
538 538 559 556 554 555 555

(10x10)_3

7
616 616 672 637 635 637 637

(10x10)_3

8
595 595 651 686 623 644 630

(10x10)_3

9
595 595 655 621 621 621 621

(10x10)_4

0
596 596 633 636 630 621 634

(15x15)_4

1
937 937 987 972 970 972 972

(15x15)_4

2
918 918 937 972 971 971 969

(15x15)_4

3
871 871 891 878 876 878 878

(15x15)_4

4
934 934 975 965 939 949 964

(15x15)_4

5
946 946 959 999 990 990 990

(15x15)_4

6
933 933 981 952 951 950 952

(15x15)_4 891 891 919 955 950 954 954

235

113
676853

257

168

9097
55

2423171311 2 2 1
0

50

100

150

200

250

300

0 2 4 6 8 10 12 14 16N
U

M
B

ER
 O

F
V

A
R

IA
N

TS

NUMBER OF SOLUTIONS

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.2, July 2016

9

7

(15x15)_4

8
893 893 928 929 920 919 920

(15x15)_4

9
899 899 990 927 927 927 927

(15x15)_5

0
902 902 922 943 942 941 943

(20x20)_5

1

115

5

115

5

119

4

120

0

119

6

119

9

120

0

(20x20)_5

2

124

1

124

1

129

6

129

6

128

9

129

6

129

6

(20x20)_5

3

125

7

125

7

130

4

125

8

125

8

125

8

125

8

(20x20)_5

4

124

8

124

8

131

2

127

4

127

4

126

4

127

4

(20x20)_5

5

125

6

125

6

127

7

126

2

126

0

126

2

126

0

(20x20)_5

6

120

4

120

4

121

9

121

5

121

5

121

5

121

3

(20x20)_5

7

129

4

129

4

140

7

131

7

131

3

131

2

131

7

(20x20)_5

8

116

9

116

9

120

5

121

6

121

5

121

5

121

5

(20x20)_5

9

128

9

128

9

130

6

129

3

129

2

129

2

129

2

(20x20)_6

0

124

1

124

1

127

2

126

5

125

9

125

9

126

5

One can notice that the gotten results using the three variants

SA1, SA2 and SA3 for the sixty instances are very close to

the optimums found in the literature, and better than the two

dispatching rules.

The worst value of the makespan given by the SA1 compared

to the optimum value was 650 for the 33th instance where

n=m=10, and the optimum is equal to 598. For this value the

ratio Opt/Cmax is 92% which is acceptable.

Again the worst obtained values for the SA2 and SA3 are

respectively 662 and 647 also obtained for the 33th instance.

Thus the worst values for the ratio Opt/Cmax are 90% and

92% which still acceptable.

In addition to the ten first instances where Opt=Cmax for the

SA1 variant, there are five other instances where the ratio

Opt/Cmax is approximatively equal to 100%. Those instances

are (5x5)_11, (5x5)_12, (20x20)_53, (20x20)_55 and

(20x20)_59.

5. CONCLUSION
In this paper a comparison has been done between Taillard’s

Benchmarks for 60 instances in the open shop problem, the

SPT and the LPT dispatching rules and 1296 variants of the

simulated annealing algorithm obtained by changing the

initial solution, the epoch length, the number of steps, the

initial temperature, the neighborhood and the cooling scheme.

The gotten results are interesting in few cases. This is maybe

due to the time limit set as a stopping criterion or it is due to

the chosen simulated annealing algorithm implementation

which needs some improvements. However some variants

yield great results.

As a perspective of future studies, one can use some other

tools like neural networks or Bayesian networks and a

hybridization in between different algorithms to get a better

tuning of the SA parameters then try new tests to get an

optimum makespan for all instances.

6. REFERENCES
[1] M. L. Pinedo, Scheduling, vol. 1. Boston, MA: Springer

US, 2012.

[2] F. Werner, “Genetic algorithms for shop scheduling

problems: A survey,” Preprint, 2011.

[3] O. Magdeburg, F. Mathematik, M. Andresen, H. Bräsel,

M. Plauschin, and F. Werner, “Using Simulated

Annealing for Open Shop Scheduling with Sum

Criteria,” pp. 1–26, 2008.

[4] C. Prins, “An Overview of Scheduling Problems Arising

in Satellite Communications,” J. Oper. Res. Soc., vol. 45,

no. 6, p. 611, Jun. 1994.

[5] C. Y. Liu and R. L. Bulfin, “Scheduling ordered open

shops,” Comput. Oper. Res., vol. 14, no. 3, pp. 257–264,

Jan. 1987.

[6] C. F. Liaw, “Applying simulated annealing to the open

shop scheduling problem,” IIE Trans. (Institute Ind.

Eng., vol. 31, no. 5, pp. 457–465, 1999.

[7] C.-F. Liaw, “A hybrid genetic algorithm for the open

shop scheduling problem,” Eur. J. Oper. Res., vol. 124,

no. 1, pp. 28–42, Jul. 2000.

[8] Taillard E., “Benchmarks for basic scheduling

problems,” Eur. J. Oper. Res., vol. 64, pp. 1–17, 1993.

[9] P. Brucker, J. Hurink, B. Jurisch, and B. Wöstmann, “A

branch & bound algorithm for the open-shop problem,”

Discret. Appl. Math., vol. 76, no. 1–3, pp. 43–59, Jun.

1997.

[10] H. Fang and P. Ross, “A Promising Hybrid GA/Heuristic

Approach for Open-Shop Scheduling Problems In

Proceedings of the 11th European Conference on Arti

cial Intelligence, John Wiley and Sons, 1994, pages

590{594.,” no. 699, 1994.

[11] R. Zhang and C. Wu, “An Immune Genetic Algorithm

Based on Bottleneck Jobs for the Job Shop Scheduling,”

no. 1, pp. 147–157, 2008.

[12] D. Bai, Z.-H. Zhang, and Q. Zhang, “Flexible open shop

scheduling problem to minimize makespan,” Comput.

Oper. Res., vol. 67, pp. 207–215, Mar. 2016.

[13] B. Naderi and M. Zandieh, “Modeling and scheduling

no-wait open shop problems,” Int. J. Prod. Econ., vol.

158, pp. 256–266, Dec. 2014.

[14] M. Chaouqi and J. Benhra, “Recuit simulé hybride pour

un ordonnancement conjoint de la production et de la

maintenance dans un atelier job-shop,” Int. Work. Theory

Appl. Logist. Transp. TALT15, 2015.

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.2, July 2016

10

[15] M. Chaouqi, J. Benhra, and A. Zakari, “Agile Approach

for Joint Scheduling of Production and Maintenance in

Flow Shop,” Int. J. Comput. Appl., vol. 59, no. 11, pp.

29–36, Dec. 2012.

[16] M. P. V. S. Kirkpatrick C. D. Gelatt, “Optimization by

Simulated Annealing,” Science (80-.)., vol. 220, no.

4598, pp. 671–680, 1983.

[17] “Annealing - Wikipedia, the free encyclopedia.”

[Online]. Available:

https://en.wikipedia.org/wiki/Annealing. [Accessed: 19-

Mar-2016].

[18] K. Hasani, S. A. Kravchenko, and F. Werner,

“Minimizing the makespan for the two-machine

scheduling problem with a single server: Two algorithms

for very large instances,” Eng. Optim., vol. 48, no. 1, pp.

173–183, 2016.

[19] M. Andresen, F. Engelhardt, and F. Werner, “LiSA - A

Library of Scheduling Algorithms Handbook for Version

3.0,” 2010.

IJCATM : www.ijcaonline.org

