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ABSTRACT 

The present paper discusses the open shop scheduling 

problem using a manual tuning of a simulated annealing 

algorithm’s parameters. A comparison has been done between 

Taillard’s Benchmarks for 60 instances, 2 dispatching rules 

and 1296 variants of the SA algorithm obtained by changing 

the initial solution, the epoch length, and the steps’ number, 

the initial temperature, the neighborhood and the cooling 

scheme. 

The gotten results lead to some interesting conclusions for the 

best choice of the parameters. 
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1. INTRODUCTION 
Shop scheduling involves the processing of a set of jobs on a 

set of machines by defining the time intervals in which the 

operations have to be processed. [1] 

There are three basic types of shops: a flow-shop (each job is 

characterized by the same technological route), a job-shop 

(each job has a specific route) and an open shop (no 

technological route is imposed on the jobs). [2] 

However there exist different objectives in scheduling 

optimization. The most known objective is the makespan 

Cmax minimization which is the time’s span required to 

process all the jobs, i.e. the time from the beginning of the 

first operation until the end of the last operation. The second 

one is to minimize the flowtime, denoted by ∑Cj, which is the 

completion times’ sum of all the jobs. Other objectives are the 

tardiness’s minimization, the number of tardy jobs, etc. 

In this article a manual tuning of the simulated annealing’s 

parameters is made and the given results were compared with 

Taillard’s benchmarks for 60 instances where n=m 𝜖{4, 5, 7, 

10, 15, 20}. 

The present paper is organized as follow: Section 2 contains a 

short reminder of the different works found on the open shop 

scheduling optimization. Section 3 sets out the algorithm used 

and the tuning made. In section 4 the gotten results are 

presented and their interpretation. Finally this article ends 

with a conclusion and some perspectives.  

2. LITERATURE REVIEW 
As mentioned before the open shop is one type of the three 

basic shops where a set of n jobs J1, J2,…, Jn has to be 

processed on a set of m machines M1, M2,…, Mm with an 

arbitrary order. The operation (i, j) means the processing of 

job Ji on machine Mj. 

One can find this kind of shop in a large aircraft garage with 

specialized work centers, in automobile repair, quality control 

centers, semiconductor manufacturing, teacher-class 

assignments, examination scheduling, and satellite 

communications as described in [3], [4] and [5]. 

There exist many works involving the open shop scheduling 

problem. One of them is that of Liaw [6] who used simulated 

annealing in case of minimizing makespan on a nonpremptive 

open shop. He proposed a neighborhood search. His algorithm 

was tested on randomly generated problems, benchmark 

problems. He got a good results but spent a lot of time to 

reach them (up to 3.5 hours per single run for an instance with 

n=m=30). 

The same author, proposed in [7] a hybrid genetic algorithm 

(HGA) to resolove the open shop scheduling problem. The 

hybrid algorithm incorporates a local improvement procedure 

based on tabu search (TS) into a basic GA. The algorithm 

developed has been tested on randomly generated instances 

and on the benchmarks sets by Taillard [8] and Brucker et al. 

[9]. It has been found that this HGA outperformed other 

existing algorithms from the literature, and some benchmark 

instances have been solved to optimality for the first time. 

Michael Andresen et al.[3] considered the problem of 

scheduling n jobs on m machines in an Open Shop 

environment with the minimization of total weighted tardiness 

as a goal. The main goal of their study was to find out which 

parameters have a strong influence and which have a smaller 

influence on the selection of an appropriate simulated 

annealing algorithm. 

Fang et al. [10] suggested an algorithm which combines a GA 

with heuristic rules for the schedule construction. The 

algorithm has been tested on the benchmark instances from 

[8] using ten runs for each instance. By their tests, they 

discovered one new best known solution for a problem with 7 

machines and 7 jobs and a problem with 10 machines and 10 

jobs instance. 

Rui Zhang et al.[11] executed a simulated annealing algorithm 

based on bottleneck jobs on an Open Shop scheduling 

problem. Their study attempt to minimize the total weighted 

tardiness. 

Recently Bai et al [12] used a heuristic called general dense 

scheduling to solve the static and dynamic versions of the 

flexible open shop scheduling problem. The heuristic 

proposed brings forth some interesting results. 

Naderi et al [13] studied the scheduling open shop problem 

with no intermediate buffer, called no-wait open shops under 

makespan minimization. They develop three mathematical 



International Journal of Computer Applications (0975 – 8887) 

Volume 146 – No.2, July 2016 

6 

models and propose metaheuristics based on genetic and 

variable neighborhood search algorithms. The results they got 

show that the models and metaheuristics are effective to deal 

with the no-wait open shop problems. 

The simulated annealing algorithm proposed in this article 

was used by Chaouqi et al [14] in hybridization within the 

intuitive heuristic to perform a joint scheduling of production 

and maintenance in the job shop problem. On the same topic 

the authors used the Johnson’s algorithm combined with a 

genetic algorithm and the intuitive heuristic to optimize three 

objectives of the flow shop problem. [15] 

3. SIMULATED ANNEALING AND 

PARAMETERS TUNING 
In the years 80 three researchers from IBM company – S. 

Kirkpatrick, C. D. Gelatt and M.P. Vecchi have proposed and 

published a new iterative method called Simulated annealing 

Kirkpatrick et al.[16], which avoid the local minimum. Since 

that discovery, this method has been tested in different fields 

like the design of the electronic circuits, the image processing 

etc. 

Simulated annealing is inspired from a metallurgic process 

called annealing. The annealing process is a heat treatment 

that alters the physical and sometimes chemical properties of 

a material to increase its ductility and reduce its hardness, 

making it more workable. It involves heating a material to 

above its recrystallization temperature, maintaining a suitable 

temperature, and then cooling [17]. This strategy leads to a 

crystallized solid state, which is a stable state, corresponding 

to an absolute minimum of energy. 

Similarly to the real process simulated annealing involves two 

steps; heating and cooling. In the first step a control parameter 

called temperature is introduced which must lead the system 

to an optimal state. In the second one this temperature is 

reduced during certain epochs within a cooling parameter till 

the end of the period then it will be reinitialized. 

Instead of Hill Climbing method, the simulated annealing 

accepts a worse solution with a certain probability. This one 

depends on the decreasing temperature so a local optimum is 

avoided. 

In this paper where the objective is the minimization of the 

makespan, the algorithm is as follow [18] : 

BEGIN 

Generate an initial feasible solution R AND calculate 

Cmax(R) 

BestSol= R; BestCmax=Cmax(R); T=Initial temperature; 

While (Stopping criterea not met) Do 

R' = best neighbor in between the generated neighbors of 

R; 

ΔC = Cmax(R’)-Cmax(R); 

Prob=Rand(0,1); 

If ((ΔC≤0) or (prob < exp(-ΔC/T))) Then 

R= R’; Cmax(R):=Cmax(R’); 

If (Cmax(R)<BestCmax) then BestCmax=Cmax(R); 

BestSol= R; 

End if 

Update T according to the chosen cooling scheme; 

End if 

End while 

END 

Figure 1: Simulated algorithm applied to open shop 

problem with makespan minimization as an objective  

Where R is the rank matrix, Cmax is the makespan and 

neighbor is the new solution generated according to the 

chosen neighborhood.  

3.1 Rank matrix 
The rank matrix R= (rij) describes a sequence graph G(MO, 

JO) which is a feasible combination of machine orders and job 

orders. The rank rij is the maximal number of operations on a 

longest path ending in operation (i, j) [2]. 

Let the case n=m=3 where the job orders are described by the 

matrix JO and the machine orders are described by the matrix 

MO. 

𝑀𝑂 =  
3 2 1
1 2 3
2 1 3

  𝐽𝑂 =  
3 1 2
3 2 1
1 2 3

  

The graphs related to these two matrices are shown in figure 

2:

 

Figure 2: G(MO), G(JO) and G(MO, JO) 

In the same figure the graph G(MO, JO) is given which is the 

combination of the two graphs. 

3.2 Neighborhoods 
In this paper nine neighborhoods are used. Here a brief 

description of them is given.  

The first one is the PI neighborhood which stands for pairwise 

interchange where two arbitrary operations are interchanged. 

The second one is the API neighborhood. This neighborhood 

consists on interchanging two adjacent operations on a rank 

matrix to get a new neighbor, i.e an operation (i,j) is randomly 

selected and then it is interchanged with the predecessor or 
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successor operation on machine Mj or of job Ji. If the pairwise 

interchange leads to a feasible schedule, it is accepted as a 

neighbor, otherwise another second operation is chosen to 

perform a new adjacent pairwise interchange. The 

neighborhood k_API is the same as the API with the 

exception of generating k neighbors. When generating a 

neighbor, the interchanges’ number of two adjacent operations 

or on a machine of a job is randomly chosen. However in 

CR_API (resp. BL_API) neighborhood a Cmax critical 

operation (resp. block-end-operation) is interchanged with a 

directly adjacent operation.  

In the neighborhood SHIFT one operation is changed in the 

relative order of operations, i.e. one operation is shifted left or 

right in the job order on one machine or in the machine order 

of one job. The operation is chosen randomly. Then another 

operation belonging to the same job or to be processed on the 

same machine is selected, e.g. let (i, k) be the other chosen 

operation. If the rank aik is smaller than aij, the rank aij is 

modified such that operation (i, j) appears immediately before 

(i, k) (it corresponds to a right shift of machine Mj in the 

machine order of job Ji). If the generated solution is infeasible, 

two other operations will be chosen randomly for performing 

a shift. In the BL_SHIFT a Cmax critical block-end-operation 

is shifted in the sequence. However the CR_SHIFT 

neighborhood which is a sub-neighborhood of the SHIFT 

neighborhood generates new neighbors from this one where 

the old ones satisfy a necessary condition for an improvement 

of the makespan, namely a critical path in the starting solution 

is destroyed, and there does not exist a path in the graph 

describing the generated neighbor which contains the same 

vertices as this critical path of the current starting solution. 

Finally in this paper two other neighborhoods are used: the 

3_CR where a Cmax critical operation is interchanged with a 

directly adjacent operation.[3] [19] 

4. RESULTS AND DISCUSSION 
In this section, computational results are presented for the 

simulated annealing. The parameters used in this study are: 

Steps 𝜖{5000, 10000, 15000, 20000},  Epoch_length 𝜖 {100, 

200, 300}, initial_temperature 𝜖 {10, 20, 30}, cool_scheme 𝜖 

{GEOMETRIC, LUNDYANDMEES}, initial_solution 𝜖 

{SPT, LPT},  neighborhood 𝜖 {PI, API, k_API, CR_API, 

BL_API, SHIFT, BL_SHIFT, CR_SHIFT, 3_CR}, k=3, 

number of neighbors = 1, cool_paramter = 0.0005. Thus the 

number of variants is 4*3*3*2*2*9=1296 variants.  

The time limit is 10 seconds fixed as a stopping criterion. 

4.1 Case n° 1 : Cmax= Optimum 
Here we describe the frequencies of variants which solved a 

certain number of problems out of the sixty instances given by 

Taillard, i.e. the final makespan calculated for these variants 

has reached the optimums of the corresponding problem. The 

table n°1 presents the gotten results in this first case. 

Table 1. Number of variants by the number of solutions 

where Cmax=Opt 

Variants’ number Solutions’ number 

831 0 

196 1 

97 2 

55 3 

50 4 

26 5 

18 6 

13 7 

6 8 

3 9 

1 10 

One can see in the figure n° 3, most of variants do not 

generate an optimal solution for each instance from the sixty 

instances which is undesirable, i.e. the tuning suggested is not 

as good as expected. Only one configuration reached optimum 

solution for 10 out of 60. In this one the epoch length is 100, 

the number of steps is equal to 20000, the initial temperature 

is 10, the cooling parameter is 0.0005, the neighborhood is 

CR_SHIFT the initial solution is LPT and the cooling scheme 

is GEOMETRIC. This variant will be denoted by SA1. 

The second good result, which is 9 optimums over 60, is 

given by three configurations: SA2= (epoch_length = 200, 

steps = 20000, t_start=10, cool_parameter = 0.0005, 

neighborhood = CR_SHIFT, cool_scheme = GEOMETRIC, 

init_sol = LPT), SA3= (100, 15000, 10, 0.0005, CR_SHIFT, 

GEOMETRIC, LPT) and SA4= (200, 20000, 10, 0.0005, 

CR_SHIFT, LUNDYANDMEES). 

 

Figure 3: Number of variants by the number of solutions 

where Cmax=Opt 

To get more information from the generated data a deep 

analyze of them is made by studying another case; where the 

ratio Optimum/Cmax is greater than or equal to 0.99. 

4.2 Case n° 2: Optimum/Cmax>=0.99 
In this second case a new distribution is given which differs 

from the previous one. One can observe in figure 4 a 

decreasing graph from 0 to 4 solutions then a new pic and 

again a decreasing graph from 5 to 18. 

The maximal number of solutions with Opt/Cmax>=0.99 is 18 

out of 60 reached by one variant: SA1, followed by 16 out of 

60 obtained for these two configurations SA2 and SA3. 

Here one can observe that the three variants SA1, SA2 and 

SA3 performed well in either cases. 
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Figure 4: Number of variants by the number of solutions 

where Optimum/Cmax>=0.99 

We grouped all the results of SA1, SA2 and SA3 applied to 

the Taillard’s problem, with those given by SPT and LPT 

rules in table n° 2. The abbreviation LB means the lower 

bound and Opt stands for the optimum found in the literature. 

Table 2. Results for the benchmark problems from 

Taillard 

(nxm)_i LB Opt SPT 
LP

T 
SA1 SA2 SA3 

(4x4)_1 186 193 228 219 193 193 193 

(4x4)_2 229 236 276 256 236 239 236 

(4x4)_3 262 271 304 299 271 271 272 

(4x4)_4 245 250 307 260 250 250 250 

(4x4)_5 287 295 348 317 295 303 295 

(4x4)_6 185 189 225 239 189 189 189 

(4x4)_7 197 201 247 218 201 201 201 

(4x4)_8 212 217 233 248 217 217 217 

(4x4)_9 258 261 282 282 261 261 261 

(4x4)_10 213 217 235 225 217 217 217 

        

(5x5)_11 295 300 333 344 301 303 305 

(5x5)_12 255 262 297 297 263 270 263 

(5x5)_13 321 323 404 364 336 338 337 

(5x5)_14 306 310 317 369 322 319 316 

(5x5)_15 321 326 392 358 339 339 339 

(5x5)_16 307 312 353 360 322 327 324 

(5x5)_17 298 303 340 357 314 308 307 

(5x5)_18 292 300 369 343 312 301 314 

(5x5)_19 349 353 372 418 367 362 357 

(5x5)_20 321 326 375 371 332 326 332 

        

(7x7)_21 435 435 507 465 459 453 455 

(7x7)_22 443 443 485 526 459 470 459 

(7x7)_23 468 468 538 527 500 498 500 

(7x7)_24 463 463 492 527 494 472 474 

(7x7)_25 416 416 461 443 434 429 434 

(7x7)_26 451 451 518 494 469 490 469 

(7x7)_27 422 422 464 451 445 436 445 

(7x7)_28 424 424 482 494 442 447 442 

(7x7)_29 458 458 520 488 472 472 472 

(7x7)_30 398 398 435 445 416 429 407 

        

(10x10)_3

1 
637 637 685 661 661 661 661 

(10x10)_3

2 
588 588 658 643 606 607 633 

(10x10)_3

3 
598 598 679 672 650 662 647 

(10x10)_3

4 
577 577 632 591 584 591 584 

(10x10)_3

5 
640 640 693 701 688 677 686 

(10x10)_3

6 
538 538 559 556 554 555 555 

(10x10)_3

7 
616 616 672 637 635 637 637 

(10x10)_3

8 
595 595 651 686 623 644 630 

(10x10)_3

9 
595 595 655 621 621 621 621 

(10x10)_4

0 
596 596 633 636 630 621 634 

        

(15x15)_4

1 
937 937 987 972 970 972 972 

(15x15)_4

2 
918 918 937 972 971 971 969 

(15x15)_4

3 
871 871 891 878 876 878 878 

(15x15)_4

4 
934 934 975 965 939 949 964 

(15x15)_4

5 
946 946 959 999 990 990 990 

(15x15)_4

6 
933 933 981 952 951 950 952 

(15x15)_4 891 891 919 955 950 954 954 
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(15x15)_4

8 
893 893 928 929 920 919 920 

(15x15)_4

9 
899 899 990 927 927 927 927 

(15x15)_5

0 
902 902 922 943 942 941 943 

        

(20x20)_5

1 

115

5 

115

5 

119

4 

120

0 

119

6 

119

9 

120

0 

(20x20)_5

2 

124

1 

124

1 

129

6 

129

6 

128

9 

129

6 

129

6 

(20x20)_5

3 

125

7 

125

7 

130

4 

125

8 

125

8 

125

8 

125

8 

(20x20)_5

4 

124

8 

124

8 

131

2 

127

4 

127

4 

126

4 

127

4 

(20x20)_5

5 

125

6 

125

6 

127

7 

126

2 

126

0 

126

2 

126

0 

(20x20)_5

6 

120

4 

120

4 

121

9 

121

5 

121

5 

121

5 

121

3 

(20x20)_5

7 

129

4 

129

4 

140

7 

131

7 

131

3 

131

2 

131

7 

(20x20)_5

8 

116

9 

116

9 

120

5 

121

6 

121

5 

121

5 

121

5 

(20x20)_5

9 

128

9 

128

9 

130

6 

129

3 

129

2 

129

2 

129

2 

(20x20)_6

0 

124

1 

124

1 

127

2 

126

5 

125

9 

125

9 

126

5 

One can notice that the gotten results using the three variants 

SA1, SA2 and SA3 for the sixty instances are very close to 

the optimums found in the literature, and better than the two 

dispatching rules. 

The worst value of the makespan given by the SA1 compared 

to the optimum value was 650 for the 33th instance where 

n=m=10, and the optimum is equal to 598. For this value the 

ratio Opt/Cmax is 92% which is acceptable. 

Again the worst obtained values for the SA2 and SA3 are 

respectively 662 and 647 also obtained for the 33th instance. 

Thus the worst values for the ratio Opt/Cmax are 90% and 

92% which still acceptable.  

In addition to the ten first instances where Opt=Cmax for the 

SA1 variant, there are five other instances where the ratio 

Opt/Cmax is approximatively equal to 100%. Those instances 

are (5x5)_11, (5x5)_12, (20x20)_53, (20x20)_55 and 

(20x20)_59.  

5. CONCLUSION 
In this paper a comparison has been done between Taillard’s 

Benchmarks for 60 instances in the open shop problem, the 

SPT and the LPT dispatching rules and 1296 variants of the 

simulated annealing algorithm obtained by changing the 

initial solution, the epoch length, the number of steps, the 

initial temperature, the neighborhood and the cooling scheme. 

The gotten results are interesting in few cases. This is maybe 

due to the time limit set as a stopping criterion or it is due to 

the chosen simulated annealing algorithm implementation 

which needs some improvements. However some variants 

yield great results. 

As a perspective of future studies, one can use some other 

tools like neural networks or Bayesian networks and a 

hybridization in between different algorithms to get a better 

tuning of the SA parameters then try new tests to get an 

optimum makespan for all instances. 
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