
International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.4, July 2016

22

A Design of Cohesion and Coupling Metrics for

Component based Software Systems

Pooja Rana
Research Scholar

Department of CSA
Maharashi Dayanand University

Rajender Singh
Professor

Department of CSA
Maharashi Dayanand University

ABSTRACT
Component based software engineering (CBSE) is based on

the concept of reusability. CBSE is upcoming paradigm

where emphasis is laid on reuse of existing component and

rebuilds a new component. Software metrics are used to check

the complexity of software. Many software metrics have been

proposed for CBS to measure various attributes like

complexity, cohesion, coupling etc. Many different cohesion

and coupling metrics have been developed. For quality

software the cohesion should be high and coupling should be

low. The aim of this paper is to develop adequate coupling,

cohesion and interface metrics. Graph notation and concept of

weights have been used to illustrate proposed metrics and

evaluate the results accordingly.

Keywords

Component based software engineering (CBSE), Coupling,

Cohesion, Interface Metrics.

1. INTRODUCTION
Software components are prefabricated building blocks that

perform specific functions and that can communicate with

each other using industry standard messaging interfaces.

Distinct from software objects, components are larger

modules that represent a higher level of functionality. A

component is something that can be deployed as a black box.

It has an external specification, which is independent of its

internal mechanisms. Component based software engineering

(CBSE) denotes the process of building software by using

pre-built software components thus basing on the meaning of

software components.

Metrics and Measurements are a key element for controlling

software engineering process. Software metrics are

quantifiable measures that could be used to measure different

characteristics of a software system or the software

development process. Software metrics play a very important

role in assessing and predicting various attributes of software

such as complexity, reusability, maintainability, testability

etc. Among these attributes complexity affects all other

attributes of the software. Software metrics are essential to

plan, predict, monitor, control, evaluate, products and

processes. The main goal of the software metrics is to reduce

costs, Improve quality, Control/ Monitor schedule, small

testing effort, many reusable fragments, to better understand

the quality of the product and the program. The paper is

organized in different sections; section 2 describes literature

review of some basic coupling and cohesion metrics. Section

3 describes the proposed cohesion and coupling metrics,

section 4 represents the empirical evaluation of the metrics. In

the last paper concludes with a discussion of the implications

of the research.

2. TRADITIONAL COUPLING AND

COHESION METRICS
Coupling is a measure of the degree of independence between

modules. When there is little interaction between two

modules, the modules are described as loosely coupled. When

there is a high degree of interaction the modules are described

as tightly coupled. The component complexity closely

depends on what contributes to develop components. There

are many factors that affect the component Complexity like

variables, interface, coupling and cohesion cyclometic

complexity. Variable factors define the complexity of the

variables in the component. Interface means the interaction of

one component with other component. Coupling is

interdependence between the components. Cohesion is

interdependence of variables and methods of a component.

Last factor is cyclometic complexity of the methods of the

component.

Table 1 summary of complexity metrics

Name Definition

CDM[13] “The complexity results from

dependencies among system‟s

components. Dependency of a

component Ci to other component is the

number of all paths in the graph from Ci

to other component.”[13]

CIDM[13] “This Metric computes the ratio of total

number of direct interactions between

the components to total number

components.”[13]

TC(CBS)[9] This composite metric takes different

attributes of complexity. “The result

shows the effect of these parameters on

complexity of a CBS.”[9]

IACC[9] This metric shows the interaction with

other component. The concept of link is

used to quantify interface aspect of a

component.[9]

AIIC[6] This metric shows the average of the

incoming interactions of one

component

AOIC[6] This metric shows the average of the

outgoing interactions of one component

AIC(CBS)[6] This Metric shows the average interface

metric by summation of incoming

interface and outgoing interface

metrics.

Table 1 summaries different type of the complexity metrics.

The dependency among components may be defined as the

reliance of a component on others to support a specific

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.4, July 2016

23

functionality or configuration [9]. In CBSE system the

components interacts with other components by sharing

information in order to provide system functionalities. This

composition creates interaction that promotes dependencies

among components. System functionalities cannot solely

encapsulate within one component. Therefore changing a

component may affect that composite functionality, which is

reflected in different components. In addition, replacing a new

version of a specific component might involve replacing the

component on which it depends, in order to preserve a

specific system„s functionality.

Cohesion is the measure of strength of the association of

elements within a module. In other words, the extent to which

all instructions in a module relate to a single function is called

cohesion. Table 2 summarizes the characteristics of the

cohesion metrics.

Table 2 summary of the cohesion metrics

Name Definition

LCOM[19] “This metric calculate the number

of pairs of methods in class using

no instance variable in common.”

[19]

LCOM3[18] “Number of disjoint components in

the graph that represents each

method as a node and the sharing

of at least one attribute as an edge.”

[18]

RLCOM[15] “Ratio of number of non-similar

method pairs to total number of

method pairs in the class”.[15]

TCC[17] “Ratio of number of similar

method pairs to total number of

method pairs in class.” [15]

These cohesion metrics considered method similarity as an

intransitive relation. LCOM3 and TCC incorporate indirect

relationships between methods. LCOM3 and TCC treat

indirect and direct cohesion in the same way[14].

3. PROPOSED COHESION AND

COUPLING METRICS

3.1 Cohesion Metrics
Cohesion is the measure of strength of the association of

elements within a component. In a truly cohesive component,

all of the instructions in the component pertains to performing

a single unified task. The cohesive component only needs to

take the data it is passed, act on them, and pass its output on

to its super-ordinate component. Cohesion specifies the

similarity of methods in a component. It is a measure of the

extent to which the various functions performed by a

component are related to one another.

COVC (Cohesion of variables within a component):

Cohesion of variables in a component refers to the frequency

of variables usage by the component. A component is

cohesive if the association of variables declared in the

component is focused on accomplishing a single task. The

instance variables are classified in three categories standard,

moderate and Critical. This classification is based on data

types of the instance variables. Standard include integer, float,

double, Boolean etc., moderate includes string, arrays, vector,

list, Critical includes class type, user defined component,

pointers and references. Suppose a component C such as a

class has a set of methods M(C)={mc1 ,mc2,mc3, ………..,mcn)

and a set of instance variables v in V(C) = {vc1,vc2,vc3,

………. Vcn}. Fv(C) is the set of pairs (vc,mc) for each

instance variables v in V(C) that is used by methods m in

M(C). Fv(C) is further divided into three i.e. a set of pairs

(vsi,mci) and a set of pairs (vmi,mci) and a set of pairs(vci,mci)

for each instance variable v in V(C) that is used by methods m

in M(C).

COVC=
𝐹𝐼𝑉

𝑇𝑉

𝑛
𝑖=0

FIV= { 𝑓 𝑣𝑠𝑖 ∗ 𝑊𝑠 + [𝑓(𝑛
𝑖=0 𝑣𝑚𝑖) ∗ 𝑊𝑚] + [𝑓 𝑣𝑐𝑖 ∗

𝑊𝑐]}

Here

FIV = frequency of the instance variables within a component

TV= total no of Instance Variable in a component

F(vsi)= Frequency of standard variables

F(vmi)= Frequency of moderate variables

F(vci)= Frequency of critical variables

Ws, Wm, Wc are the weight factor of the standard, moderate

and critical type of variables respectively.

COMC (Cohesion of Methods within a component):

Cohesion of Methods in a component refers to the relatedness

of methods and instance variables of a component. This

metrics considers the interaction between the methods with in

a component. Here we find out the sum of methods that use

the same type of variables i.e standard, moderate, critical.

COMC=
𝐶𝑂𝑀

𝑇𝑀

𝑛
𝑖=0

COM= { 𝑀𝑠𝑖 ∗ 𝑊𝑠 + 𝑀𝑚𝑖 ∗ 𝑊𝑚 + 𝑀𝐶𝑖 ∗ 𝑊𝑐 }𝑛
𝑖=0

COM = count of methods that use same type of variables

TM= total no of methods

Msi= sum of methods that use Standard type of variables.

Mmi= sum of methods that use Moderate type of variables.

Mci= sum of methods that use critical type of variables.

Ws, Wm, Wc are weight factor for standard, moderate and

critical type of variables.

TCCC(Total Cohesion Complexity of a Component)

Total cohesion complexity of a component is the combination

of cohesion of variables in a component and cohesion of

methods in a component.

TCCC= COVC + COMC

COVC= cohesion of variables within a component matrices

COMC= cohesion of methods within a component matrices

3.2 Coupling Metrics
Coupling between components is the number of other

components coupled to this component. In CBSS, coupling

will be defined as: two components are coupled if and only if

at least one of them acts upon other. Coupling and cohesion

relate to particular relationships that exist between component

and within component respectively.

In order to develop a coupling metrics a directed graph(G) is

to be taken into consideration. The vertices of a graph are

components and the edges between the vertices are interface

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.4, July 2016

24

between the components. From this directed graph an

interface matrix(IM(n*n)) is derived. In this matrix one

represents the interface between the component and zero

represents that there is no interface among the component.

 IM[I,j] =

1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐶𝑖 𝑎𝑛𝑑 𝐶𝑗

0 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑛𝑜 𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐶𝑖 𝑎𝑛𝑑 𝐶𝑗

Suppose there is a set of components c={c1, c2, c3 ….. cn}. let

there is a set of IN parameters and OT parameters related to

each component. These parameters are further classified into

three categories standard, moderate and critical. Each return

value is considered as IN parameter and arguments passed as

OUT parameters.

The OUT parameter of all the interaction can be represented

with the help of five parallel arrays. First array represents the

starting vertex of interaction, second array represents the

ending vertex of interaction, third array represents the number

of standard out parameters passed by the starting vertex,

fourth array represents the number of moderate out parameter

passed by the starting vertex and fifth array represents number

of critical out parameter passed by the starting vertex. The

total number of rows of these parallel arrays will be

determined by total number of one‟s exist in the interface

matrix.

Srtpoint array[]= { v1,v2,v3………………… vn}

Edpoint array[]={v1,v2,v3…………………..vn}

Std array[]= {1,2,3,4…………………n}

Mod array[]={1,2,3,4……………….n}

Crit array[]={1,2,3,4………………….n}

ACCOC(Average Component to Component Out

Parameters Complexity):

ACCOC=
 𝐶𝐶𝑂𝐶𝑖𝑚
𝑖=0

𝑚

CCOC= 𝑂𝑆𝑖 ∗ 𝑊𝑠 + (𝑂𝑀𝑖𝑛
𝑖=0 ∗ 𝑊𝑚)(𝑂𝐶𝑖 ∗ 𝑊𝑐)

CCOC= Component to Component OUT Parameters

Complexity

OS= standard type of OUT parameter

OM= Moderate type of OUT parameter

OC= Critical type of OUT parameter

Ws, Wm, Wc are weight factors for standard, moderate and

critical type of OUT parameters.

Each return value is considered as IN parameter. IN parameter

can be of standard, moderate or critical. Interface method

either returns a standard type of variable or moderate type of

variable or critical type of variable or no value is to be

returned by the interface method. The weight factor for

standard variable is 0.10, for moderate variable is 0.20 and for

critical variable is 0.30

ACCIC(Average Component to Component IN

parameters complexity):

ACCIC =
𝐶𝐶𝐼𝐶𝑖

𝑚

𝑚
𝑖=0

0.10 ≤ 𝑥𝑖 ≤ 0.30 𝑖𝑓 𝐼𝑁 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑥𝑖𝑠𝑡

0 𝑖𝑓 𝐼𝑁 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡

𝑛

𝑖=0

CCIC= Component to Component IN parameter Complexity

IS= standard type of IN parameter

IM= Moderate type of IN parameter

IC= Critical type of IN parameter

Ws, Wm, Wc are weight factors for standard, moderate and

critical type of IN parameters.

ACCC(Average Component to Component Complexity):

ACCC= ACCIC + ACCOC

ACCIC = Average Component to Component IN parameter

Complexity

ACCOC = Average Component to Component OUT

parameter Complexity

4. CASE STUDY AND EXPERIMENTAL

RESULTS

4.1 Cohesion
Suppose there are four components. These components are

represented with the help of graph. Graph G(V,E) where V

represents vertex and E represents edge.

Figure 1 shows components relationship and their

methods and variables

The following table shows the component with their method

and instance variables.

Here Mc are the methods in a class of a component and Vc are

the instance variables of the class. Vsi, Vmi and Vci are the

standard variables, moderate variables and critical variables

respectively. Fv is the frequency of each variable used by

different methods. Fvsi, Fvmi and Fvci are frequency of

standard, moderate and critical type of variables. SOM is the

sum of methods which are using same type of variables

SOM(sv), SOM(Mv) and SOM(cv) are some of methods

which are using

.

C1
Methods=7

Variables=6

C2
Methods=4

Variables=5

C3
Methods=5

Variables=6

C4
Methods=6

Variables=5

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.4, July 2016

25

Table 3 shows the frequency of different type of variables.

Com

pone

nt

M

c

Vc Fv SOM

V

si

V

m

i

V

ci

F

v

si

F

v

mi

F

v

ci

SO

M(s

v)

SOM(

mv)

SO

M(c

v)

C1 7 6 20 12

4 1 1 1

6

3 1 7 4 1

C2 4 5 5 4

1 3 1 1 3 1 1 2 1

C3 5 6 10 6

1 1 4 1 1 8 1 1 4

C4 6 5 25 15

2 2 1 8 1

2

5 5 5 5

standard, moderate and critical type of variables.

COVC(c1) = (16*.1 + 3*.2 + 1*.3)/6

 = 2.5/6

 =0.42

COVC(c2) = (1*.1 + 3*.2 + 1*.3)/5

 = 1/5

 = 0.2

COVC(c3) = (1*.1 + 1*.2 + 8*.3)/6

 = 2.7/6

 = 0.45

COVC(c4) = (8*.1 + 12*.2 + 5*.3)/5

 = 4.7/5

 = 0.94

Here .1, .2 and .3 are the weights of the standard, moderate and

critical instance variables.

COMC(c1)= (7*.1 + 4*.2 +1*.3)/7

 = 1.8/7

 = 0.26

COMC(c2)= (1*.1 + 2*.2 + 1*.3)/4

 = .80/4

 =.2

COMC(c3) = (1*.1 + 1*.2 + 4*.3)/5

 = 1.5/5

 = 0.3

COMC(c4) = (5*.1 + 5*.2 + 5*.3)/6

 = 3/6

 = 0.5

TCCC(c1)= 0.43+0.26

 = 0.69

TCCC(c2)= 0.20+0.20

 = 0.40

TCCC(c3)= 0.45+0.30

 = 0.75

TCCC(c4)= 0.90+0.5

 = 1.4

Table 4 shows COVC, COMC and TCCC values

Component COVC COMC TCCC

C1 0.43 0.26 0.69

C2 0.20 0.20 0.40

C3 0.45 0.30 0.75

C4 0.94 0.50 1.44

Graph 1 shows the graphical representation of cohesion

metrics

The above line graphs shows values of COVC, COMC and

TCCC of different components. X axis represents the

components c1, c2, c3 and c4. This graphs shows c2 component

which has lowest value of COVC, COMC and TCCC. C4

component contains the highest values for COVC, COMC and

TCCC. In c4 frequency of the moderate instance variables are

highest as compared to another component. After comparing

their result, finding is variation of the result depends on the

frequency of instance variables. Cohesion represents the

togetherness of variables and methods of the component

4.2 Coupling
Suppose there are four component c1, c2, c3 and c4. Each

component have some methods and instance variables. A

directed graph G(v,e) represent four components, each vertex(v)

in the graph represents the component and each edge(e)

represents the interface among the components. Each edge has

0

0.5

1

1.5

2

C1 C2 C3 C4

M
e

tr
ic

s
V

al
u

e
s

Cohesion Comparison

COVC

COMC

TCCC

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.4, July 2016

26

some OUT and IN parameter which is passed by one

component to another component.

 Modot=6, modin=1

Stdot=6 modot=2 critot=6

 critot=4

 Stdot=3,modot=3

 Stdot=2, modot=2, critot=2

Figure 2 shows relationship between componenets by

passing in or out parameters.

An interface matrix represents this graph with the help of

interface matrix IM(n*n). In this matrix total num of rows and

Columns are equal to the total number of components or vertex.

Here IM[I,j] is equal to one if there is an interface between the

components and zero if there is no interface among the

components.

 A B C D

 A 0 1 1 0

 B 0 0 0 1

IM[i,j] = C 0 1 0 0

 D 1 0 1 0

We can represent the edge of graph G by parallel arrays

Table 5 shows different parallel arrays showing out and in

parameters..

Index Srtpoint[] Edpoint[] Std[] Mod[] Crit[]

1 A B 0 6 0

2 A C 6 0 0

3 B D 0 0 6

4 C B 3 3 0

5 D A 0 2 4

6 D C 2 2 2

The first row of the array represents that there is an interface

between component A and component B which has six out

parameter of moderate type and so on. From these arrays we

will find the ACCOC.

ACCOC=
 𝐶𝐶𝑂𝐶𝑖𝑚
𝑖=0

𝑚

CCOC= 𝑂𝑆𝑖 ∗ 𝑊𝑠 + (𝑂𝑀𝑖𝑛
𝑖=0 ∗ 𝑊𝑚) + (𝑂𝐶𝑖 ∗ 𝑊𝑐)

CCOC1= 0*0.10 + 6*0.20 + 0*0.30 = 1.2

CCOC2= 6*0.10 + 0*0.20 + 0*0.30 = 0.6

CCOC3= 0*0.10 + 0*0.20 + 6*0.30 = 1.8

CCOC4 = 3*0.10 + 3*0.20 + 0*0.30 = 0.9

CCOC5 = 0*0.10 + 2*0.20 + 4*0.30 = 1.6

CCOC6 = 2*0.10 + 2*0.20 + 2*0.30 = 1.2

ACCOC= (1.2 + 0.6 + 1.8 + 0.9 + 1.6 +1.2) /4

 = 7.3/4

 =1.825

ACCIC =
𝐶𝐶𝐼𝐶𝑖

𝑚

𝑚
𝑖=0

CCIC=

0.10 ≤ 𝑥𝑖 ≤ 0.30 𝑖𝑓 𝐼𝑁 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑒𝑥𝑖𝑠𝑡

0 𝑖𝑓 𝐼𝑁 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡

 𝑛
𝑖=0

CCIC1= 0.20, CCIC2=0.10, CCIC3=0.30, CCIC4=0.30,

CCIC5=0.30, CCIC6=0.20

ACCIC= (0.20 + 0.10 + 0.30 + 0.30 + 0.30 + 0.20)/4

 = 1.4/4

 =0.35

ACCC= ACCIC + ACCOC

ACCC= 0.35 + 1.825

= 2.175

Table 6 shows interface coupling metrics

Interface CCOC ACCOC CCIC ACCIC ACCC

I1 1.2

1.825

0.20

0.35

2.175

I2 0.6 0.10

I3 1.8 0.30

I4 0.9 0.30

I5 1.6 0.30

I6 1.2 0.20

Graph 2 shows graphical representation of the result of

coupling metrics

The above graph shows the different interfaces. Here I2 has the

lowest values for CCOC and CCIC and I3 has highest values

for CCOC and CCIC. Coupling represents how much one

component is dependent on the other component. Coupling

0

0.5

1

1.5

2

I1 I2 I3 I4 I5 I6

Interfaces

Coupling Comparison

CCOC

CCIC

 A B

C

11

C1

11

D

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.4, July 2016

27

should be low. From this I2 has the lowest coupling i.e

component A and C are not much dependent on each other.

5. CONCLUSION
In the example there are four components, each component

having a class and having some member functions and some

instance variables. After comparing their result, finding is

variation of the result depends on the frequency of instance

variables and type of variables used within component. In the

example the value of TCCC of C4 is higher than other

components; based on the fact that the frequency of the

moderate variables is higher than the standard and critical

variables. To make things more clear one can state that if the

frequency of the moderate instance variables is more than the

frequency of the standard and critical variables within a

component then the resulting cohesion value is high which

indicates that the complexity of the component is low and hence

the reusability factor is better compared to other components.

In standard rule Cohesion should be high and coupling should

be low. Cohesion represents the togetherness of variables and

methods of the component. Here C4 component represents the

higher relatedness of their variables and methods. In coupling

there are six interfaces each interface has different number of

IN and OUT parameters of different types. In this example the

interface2 has lowest value of CCOC and CCIC metrics

because interface2 has standard OUT parameters and standard

IN parameter. From this the conclusion is to be drawn that the

complexity (coupling or cohesion) of the component depends

on the frequency of the variables and the type of variables. The

result shows that these parameters affect the complexity of the

component. The proposed complexity appears to be logical and

fits the intuitive understanding but is not the only criteria for

deciding the overall complexity of a CBSE. More empirical

research by applying our proposed metrics in the real CBSS

systems is also one of our future works. Using data from

industry implemented projects will provide a basis to examine

the relationship between proposed metric values and several

quality attributes of CBS.

6. REFERENCES
[1] Umesh Tiwari and Santosh Kumar(2014) “Cyclomatic

Complexity Metric for Component Based Software”, ACM

SIGSOFT Software Engineering Notes page 1 vol 39 No1,

Jan 2014

[2] Sonu Mittal and Pradeep Kr Bhatia(2013) “Predicting

Quantitative Functional Dependency Metric Based Upon

the Interface Complexity Metric In Component Based

Software”, International Journal of Computer Application,

Vol 73, No 2, July 2013

[3] Navneet Kaur, Ashima Singh(2013) “A Complexity

Metrics for Black Box Components”, International Journal

of soft computing and engineering. Vol 3, issue 2,May

2013

[4] Rajender Singh Chhillar and Praveen Kajla(2012) “New

Component Composition Metrics for Component Based

Software Development”, International Journal of

Computer Application, Vol 60, No15, Dec 2012

[5] Rajender Singh Chhillar, Priyanka Ahlawat and Usha

Kumari (2012) “Measuring Complexity of Component

Based System Using Weighted Assignment Technique”,

2nd International Conference on information

Communication and Management(ICICM 2012).

[6] Usha Kumari and Shuchita Upadhyaya (2011): An

Interface Complexity Measure for Component-based

Software Systems International Journal of Computer

Applications (0975 – 8887) Volume 36– No.1

[7] Jianguo Chen and Hui Wang (2011); Complexity Metrics

for Component-based Software Systems; International

Journal of Digital Content Technology and its

Applications. Volume 5, Number 3

[8] Sengupta, S., Kanjilal, A. (2011): Measuring Complexity

of Component Based Architecture : A Graph Based

Approach, ACM SIGSOFT Software Engineering Notes,

36 (1), pp. 1-10.

[9] Usha Chhillar, Sucheta Bhasin (2011): A Journey of

Software Metrics: Traditional to Aspect-Oriented

Paradigm, 5th National Conference on Computing For

Nation Development, 10th -11th March, 2011, New Delhi,

pp. 289-293.

[10] Chen, Wang, Zhou (2011): Complexity Metrics for

Component Based Software Systems, International Journal

of Digital Content Technology and its Applications,

Volume 5, Number 3, March 2011.

Doi:10.4156/jdcta.vol5.issue3.24

[11] Sharma, A., Grover, P.S., Kumar, R. (2009): Dependency

Analysis for Component-Based Software Systems, ACM

SIGSOFT Software Engineering Notes, 34 (4), pp. 1-6.

[12] V. Lakshmi Narasimhan, P. T. Parthasarathy, and M. Das

(2009): Evaluation of a Suite of Metrics for Component

Based Software Engineering (CBSE), Issues in Informing

Science and Information Technology Volume 6, 2009

[13] Gill, N.S, Balkishan (2008): Dependency and Interaction

Oriented Complexity Metrics of Component-Based

Systems, ACM SIGSOFT Software Engineering Notes, 33

(2), pp. 1-5.

[14] Gui, Scott,(2008) New Coupling and Cohesion Metrics for

Evaluation of Software Component Reusability, 9th

International Conference For Young Computer Scientists,

IEEE 2008. DOI 10.1109/ICYCS.2008.270

[15] Li, X, Liu, Z. Pan, B. and Xing, B.(2001) A Measurement

Tool for Object Oriented Software and Measurement

Experiments with IT. In Proc. IWSM 2000. (Lecture Notes

in Computer Science 2006, Springer- Verlag, Berlin,

Heidelberg, 2001),44-54

[16] W. Kozaczynski, G. Booch (1998), “Component-Based

Software Engineering,” IEEE Software Volume: 155,

Sept.-Oct. 1998, pp. 34–36.

[17] Biemen, J. M. and Kang, B-Y. Cohesion and Reuse in an

Object-Oriented System. In Proc. ACM Symposium on

Software Reusability (SSR‟95). (April 1995) 259-262

[18] Hitz, M. and Montazeri, B. Measuring coupling and

cohesion in object oriented systems. Proceedings of

International Symposium on Applied Corporate

Computing. (Monterrey,Mexico, 1995).

[19] Chidamber, S.R. and Kemerer, C.K. towards a Metrics

Suite for Object Oriented Design. Proceedings of 6th ACM

Conference on Object Oriented Programming, Systems,

Languages and Applications (OOPSLA‟91), (Phoenix,

Arizona,1991), 197-211.

IJCATM : www.ijcaonline.org

