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ABSTRACT 

Digital image presents information in two-dimensional data, 

which can be used as feedback measurement for robot visual 

servoing control. Median filter and morphological operation 

are used for object detection and extraction its features. 

Kalman filter is applied for visual measurements that contain 

noises and uncertainties captured by video camera over the 

time. Sinusoidal Kalman filter and sinusoidal measurement 

model is used. The derivations of noise’s process and 

matrices’ control are presented. The Kalman filter is tuned by 

using PSO optimization to produce values closer to the true 

spatial measurements of the target.  A developed PSO is 

proposed in which adaptive inertia weight chaotic PSO 

algorithm and velocity constriction factor are used for the 

porpuse of getting rid from the local and the adjacent 

optimum convergence. Simulation for tracking object on 

circular path are presented. Experimental result shows good 

performance of the proposed method for noisy measurement 

of the target. 
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1. INTRODUCTION 
Images are a way of recording and presenting information in a 

visual form which are two-dimensional data. They must be 

converted into numerical data, referred to as digital images, to 

enable computer manipulation [1]. The tracking operation of 

objects on video sequence has many applications of real world 

like the robots’ service, systems of surveillance, systems of 

public security, and processing of visual information. The 

tracking’ target is the moving object throughout the locating 

process of a sequence of sequential frames. The objective of 

visual tracking target, is considered to be as "visual servoing", 

which is used for  estimating the velocity and the position of 

an object that is spoted with  the video that is recorded by the 

camera. The robot visual servoing refers to control of robotic 

systems using information from a vision system [2]. For 

logical term, the robot manipulator behaves as hand, and the 

camera as its eye. Kalman filters is now considered as a 

standard approximation concept for error reducing  in a least 

squares sense and in measurements usage by different sources 

[3]. According to many applications, essentially the Kalman 

filter is   a part of the development vision system  in robots. 

The purpose of using kalman filter is to use the visual 

measurements those involved unwanted parts (noises) and  the 

captured parts those are uncertainties by the video camera 

over the time. Using this filter can produce the values those 

that tend to be adjacent to the target (a self-localization robot 

and estimation of object) and the spatial true measurements of 

the robots and targets (robot self-localization and object 

estimation). The used Kalman filter assumes that the target 

dynamics could be modeled in the time that dynamics target is 

affected by the noise while the data of sensor is stationary 

with zero mean [4].  Tuning of this filter is referred to the 

estimation of matrix covariance. If it is not properly tuned, it 

leads to divergence of expected value from actual value [5].  

Genetic algorithm and methods of swarm intelligence have 

been adopted to solve tuning of Kalman filter widely [6-8]. 

Unlike the genetic algorithm, the particle swarm optimization 

(PSO) does not have an evolution operators like crossover 

mutation. The advantages of using method of optimization 

like PSO that it does not rely explicitly on the problem’s 

gradient to be optimized, and can process tough functions of 

cost with many local minima [9].  

2. TARGET DETECTION 
This part is very important due to the use of the obtained 

information in a tracking algorithm to estimate the position of 

the target (object).  The first step is by taking a snapshot using 

camera to get a digital image. The  digital image is consisting 

of pixels. The picture is in RGB (Red, Green, and Blue) form. 

The object detection process is required to deal with gray 

scale image type. In gray scale image, the image has two 

dimensional function, f( pixel , pixel), where  pixel and  pixel are 

the coordinates of the image. The value of this image is 

represented by the amplitude of ( pixel ,pixel). In [10] the 

formula that used to convert from RGB to grayscale.  

(1)         

Many steps are applied to extract the target from the 

background, after converting the image to a gray scale. A 

median filter is applied to the image where the intensity value 

is assigned to the central pixel in the filter image. Median 

filter has many advantages of used, it doesn’t reduce the 

brightness difference across steps because the available value 

is only those present in the neighborhood region, and it 

doesn’t shift the boundaries. Applying the median filter 

composed three main steps: choosing suitable windows, 

sorting all values of pixels that surrounds neighborhood, and 

replacing the value of that falls at the center pixels array of the 

image window by the ranking result [11]. Figure 1 explains 

how the median filter algorithm is applied. A (3x3) 

neighborhood has (124, 126, 127, 120, 150, 125, 115, 119, 

and 123) values. These values are sorted as the following 

orders: 115, 119, 120, 123, 124, 125, 126, 127, and 150. The 

BGRGrayimage *114.0*587.0*299.0 
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median value is 124. The last step is replacing the central 

pixel that equal to 150 by the median value (124). 

 
Fig. 1: Application of median filter to gray scale image 

A powerful operation that called morphological operation is 

used for the cause of image feature extraction. It is used in 

many real time applications like video surveillance and 

tracking. This operation is wildly applied to extract image 

component for the description and the representation of the 

region of the shape, it is also used to remove the unwanted 

regions or objects that are presented in a frame. Erosion and 

dilation are primitive operations that widely used. Erosion 

leads to reducing the size of image feature, while the dilation 

is the inverse of erosion that rebuilds image feature [12]. 

When the  Erosion is followed by dilation, obtained operation  

is called opening, while when the dilation is followed by the 

erosion, the obtained operation is called closing. Image D is 

eroded by structuring element (E),   , according to 

equation (2) as: 

                                                 (2) 

 

Where (l, m) and (s,t) are the dimensions of the image, and 

structuring element; respectively. Image D is opened by the 

equation below as: 

                                                                      (3)  

    

Erosion and opening morphological operations are used in this 

paper to track the moving object. After applied these 

operations, the information of the object (like: center, 

orientation, and area) are obtained in which can be used for 

the prediction stage. This algorithm marks its own importance 

as it is efficient, accurate, and less time duration. 

3. KALMAN FILTER 
In the year of 1960, the famous paper that named ‘’ describing 

a recursive solution to the discrete-data linear filtering 

problem’’ has been published by R. E. Kalman. From the year 

mentioned above, and during computing and the digitalizing 

revolution, Kalman filter has been the most important issue in 

researches and applications of tracking fields, essentially in 

the navigation and the autonomous tracks. According to many 

used aspects, kalman filter is very powerful: it can easily 

supports the estimations of  the past dates, the present, and 

also the states of future, it can really do that  until when the  

nature that is precise for the system that is modelled system is 

unknown [13]. Kalman filter is usually estimating a process 

during the use of a feedback control form: some time the filter 

is estimating the state of process and then obtains the 

feedback in the noisy measurements form. The update 

equations’ time are usually responsible for forward projecting  

(in time) the current state and error covariance estimates for  

obtaining a priori that estimates for the steps in next time. The 

equations of updated measurements are very responsible for 

the purpose of incorporating the new measurement into the a 

priori estimation in order to obtain the   posteriori improved 

estimation. The target motion model state is defined by the 

following equations of the vector-matrix those shown in the 

following [14]: 

kkkk wuGxAx   11
                                       (4.a)                                                                                              

kkk vxHz                                                               (4.b)                                                                                                          

 

where x is a vector’s column with the system states, A is the 

dynamics systems matrix, u is a vector that is known, which is 

occasionally called a control vector, w is a white-noise tackle, 

that is expressed as a vector also, z is a measurement vector, H 

is the matrix of measurement, v is a white-noise tackle, that  is 

expressed as a vector also. The updated time  equations which 

are  in the form of discrete are as followed:  

11ˆˆ 
  kkkkk uGxx                                           (5.a)                                                                                                 

k
T
kkkk QMM  


1

                                          (5.b)                                                          

 

The fundamental matrix here is represented by Фk, Mk is 

representing the covariance matrix errors in the estimated 

state, while Qk  is the matrix of tackle noise. The updated 

measurement equations are: 

  1  k
T

k
T

kk RHMHHMK                     (6.a)                                                                               

   kkkkk xHzKxx ˆˆˆ                                      (6.b)

   kkk MHKIM                                              (6.c) 

Where Kk represents the Kalman gain matrix, Rk is the 

measurement noise matrix, I is the identity matrix. 

3.1 Sinusoidal Kalman Filter and 

Sinusoidal Measurement 
The filter performance can be improved if a priori information 

is available. Recall that the actual signal is 

)(sin tx                                                                      (7) 

The preceding equation can be written as a matrix of second 

order differential equation in the form of state-space as: 
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                                                     (8) 

 

From the preceding equation, the system dynamics matrix is 













0

10
2

A                                                                 (9) 

 

For a time-invariant system dynamics matrix, the fundamental 

matrix can be derived according to 

                                                                       (10)                                                                                         

 

Using the inverse Laplace transformation to express the 

fundamental matrix as a function of time as: 

  


















tt

t
t

t







cossin

sin
cos                                 (11)                                                                                  

Substituting the sampling time Ts for time, the discrete 

fundamental matrix is: 
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
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
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It is clear that the fundamental matrix is sinusoidal. It is very 

important to note that the state can be propagated forward 

exactly with the matrix of fundamental whenever the 

frequency of the sinusoid is known. The amplitude of the 

sinusoid does not required to be known. 

3.2 Process Noise  
In the previous section, Kalman filter is assumed the 

frequency of the sinusoid   knew as constant. Thus the state 

equation is modified by the addition of process noise:  
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Where us is a source of white tackle noise that is certainly 

added to the second derivative. These sources of a white noise 

are sometime  required to get the filter work later if the 

problem is encountered [14]. The tackle  noise is already 

added to the derivative of the state that is the least certain, that 

is  because of it is unknown  if the sinusoid frequency is 

constant or not. From the preceding space-state equation, the   

matrix’ noise continuous tackle can be written by inspection 

as: 











10

00
sQ                                                              (14) 

 

The discrete process noise matrix, Qk, can be found from the 

continuous process-noise matrix and the fundamental matrix 

according to [14]: 

    tQQ TT

k

s

d
0

                                               (15) 

 

Substituting equations (11) and (14) into equation (15) to 

obtain: 
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  16) 

 

3.3 Control Matrix 
The state equation for the system is accepted as second order 

differential equation. For sinusoidal function, higher order 

derivatives are continuous and existed. Thus in this work, 

control matrix is also included and its magnitude will be tuned 

so as to improve the Kalman filter performance. If uk-1 is 

assumed to be constant between sampling instants, Gk is 

obtained from [14] as: 

  
sT

k GG
0

d                                                 (17) 

 

From the equation of state-space, it can be seen that  











1

0
G                                                                           (18) 

And that  

guk 1
                                                                          (19) 

 

Here the control action is added to the second derivative to act 

as constant acceleration which results in improvements for the 

first derivative of the signal. Substituting equations (11) and 

(18) into equation (17) to obtain: 


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The Kalman-filtering equation including the control matrix is: 

 1111 ˆˆˆ   kkkkkkkkkkk uGHxHzKuGxx     (21) 

 

Substituting the fundamental and control matrices yields a 

difference’s matrix equation, which can be converted easily to 

several of difference scalar equations as shown below: 

k1
2
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s
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T
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k211 Res/))(sin(ˆcosˆsinˆ
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4. PARTICLE SWARM 

OPTIMIZATION 
From many years before, the modern or the nontraditional 

methods of optimization have been developed clearly. In 

1995, the PSO is formulated by Edward and Kennedy. The 

thought tackle inside the algorithm is discovered by the 

animal’s social behavior, like bird flocking, fish schooling, 

and ext. Each particle was moving about the cost surface with 

a velocity. Each particle studies the best own previous 

solution to the problem of optimization, and its best previous 

group. The optimal value must be founded by the process  

repeating. The PSO algorithm updates the velocity vector for 

each particle and then adds that velocity to the particle 

position or value [15]: 

)(rΓ)(rΓ old
,

bestglobal
,22

old
,

bestlocal
,11

old
,

new
, jijijijijiji w ppppvv   (23.a) 

new
,

old
,

new
, jijiji vpp                                                          (23.b) 

 

where v is particle velocity, w is inertia weight, P is particle 

position or variable, r1and r2 are independent uniform random 

numbers, P local best is best local solution, P global best is best 

global solution, i is particle index, j is dimension of variable, 

Γ1 is cognitive parameter, Γ2 is social parameter. 

The disadvantages of traditional PSO are the premature and 

local optimum convergence. PSO variants are discovered to 

increase its performance and improves the ability to solve a 

wide range of optimization problems [16]. Some 

modifications happened on the basic components of PSO such 

as inertia weight, velocity clamping, and velocity constriction 

[17-21]. Bansal et al. studied 15 relatively recent and popular 

inertia weight strategies and carried out over five basic 

benchmark optimization functions to compare different 

strategies of setting inertia weight [22]. As an overall outcome 

of the experiments carried out, chaotic inertia weight is the 

best strategy for better accuracy. Another modifications are 

presented which concern with the swarms itself such as 

swarm initiation, insertions new swarms, and mutation [23-
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26]. These modifications can increase the search diversity. 

Jamous et al. suggested as future work to apply multiple 

modifications on more than one of the basic components of 

PSO and swarms [27]. An improved chaotic PSO algorithm is  

based on the inertia weight that is very adaptive (AIWCPSO) 

is proposed [28]. At the early stage of the evolution, the initial 

population and velocity are generated by using chaotic 

mapping. The iterative number, aggregation degree factor, and 

the improved evolution speed parameter are used as feedback 

to adjust the inertia weight adaptively.  

In this paper, AIWCPSO algorithm is adapted and velocity 

constriction factor, λ, is introduced (equation (24)). This 

includes modifications to the basic components of PSO which 

are inertia weight and velocity constriction.  Also, chaotic 

swarm initiation and swarm injection depending on the 

variance of the population’s fitness are included. 

new
,

old
,

new
, jijiji vpp                                                 (24) 

 

4.1 Novelty in AIWCPSO Algorithm 
The basic novel steps of AIWCPSO algorithm are described 

as following:  

Step 1 Chaotic initialization strategy is applied to generate 

initial solution to position and N initial velocities by cubic 

mapping (equation (25)). Then this initial solution is mapped 

to the search space range. The cubic mapping is described as 

following: 
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Step 2 The inertia weight is updated by the equations below: 
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Where wmax is represents the maximum value of the  inertia 

weight, wmin is the minimum value of the  inertia weight, iter 

is the current iteration number, itermax is the maximum 

number of iteration, α and β  choises are typically within the 

range [0, 1]. esfi is the improved evolution speed parameter of 

particle i (i =1, 2,..., N), adf  is the aggregation degree factor 

of swarm, F (pbesti
k) is the particle i best fitness value at the 

kth  iteration, Fbest represents the best fitness that is achieved 

by the particles, Favg is the mean fitness of all particles in the 

swarm at the same iteration. Note: the superscript k is the 

current iteration value. 

Step 3 Calculation of the variance (σ) for the population's 

fitness (equation (29)). If it is less than threshold value and the 

current iteration optimal fitness worse than the best theoretical 

fitness, go to chaotic disturbance. 


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Where F (pi) is fitness values of particle i, and N is number of 

particles. 

Step 4 Chaotic disturbance strategy: 

Chaotic vector oij (i =1, 2,..., N; j =1,2,..., J) is generated by 

cubic mapping (equation (25)), where o0j is (-1,1) of random 

numbers, and the component of this vector is loaded to the  

chaotic disturbance range of  [−γj, γj ] (j=1, 2,..., J). Then 

chaotic disturbance variation is Δpi = (γ1 oi1, γ2 oi2,...,γJ oiJ). 

The position updated of particle after adding the chaotic 

disturbance variation is given by: pbij (k +1) = pij (k) + vij (k) + 

Δpij. Finally, comparison is made between the fitness values 

of F (pbi (k +1)) and F (pi (k +1)). If F (pbi (k +1)) is better 

than F (pi (k +1)), then pi (k +1) is updated by pbi (k +1). 

Note: J is the variable's dimension of particle i. For more 

details about AIWCPSO algorithm see [28]. 

5. INVERSE KINEMATICS of ROBOT   

ARM 
The inverse kinematics problem for a robotic manipulator 

involves obtaining the required manipulator joints' angel for a 

given desired end-point position and orientation. Thus the 

knowing of the links' parameters and desired coordinates (xd, 

yd, zd) allows to calculate the joints' angle by using the inverse 

kinematics [29]. The top view of the robot arms on the xo, yo 

plan gives a radial distance (Fig.2a). The specified radial 

distance, r, from the base is related to the desired target 

position coordinates xd and yd by: 

 

22
dd yxr                                                           (30.a) 

),(2tanθ1 dd xyA                                           (30.b)      

    

A-Top view of Lynx6 robot arm 

 

 B-geometry associated with three links 

Fig. 2: Geometric representation for lynx6 robot arm. 

From Fig. 2b and considering the law of cosines, it can be 

used to solve for the joints' angle as: 
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),(2Atanρ rzd                                                          (32) 

Applying the law of cosines to find ψ: 

22
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22
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-
ψcos

d

d
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


                                       (33) 

Then it is obtained: 

ψρθ2                                                                       (34) 

Finally, it can solve for θ4 as: 

 

324 θθ90θ                                               (35) 

 

 

6. SIMULATION RESULTS 
Simulations are implemented in Matlab7. The Kalman filter 

parameters are initialized to unity. The tuned parameters are: 

process noise (Q), noise measurement (R), and control factor 

(g). These parameters are tuned by PSO to minimize the root 

mean square error (RMSE). The tuning is achieved off-line. 

Then, these tuned parameters are used for on-line Kalman 

tracking. The parameters of PSO are set as follows: Γ1=2.05; 

Γ2=2.05; λ=0.7298 [21]; N= 40; itermax= 30; wmax=0.45, wmin= 

0.15; α=0.75; β=0.25; γ=10-3; threshold value= 10-3; best 

theoretical value =10-6. 

In the two-dimensional x-y plane, circular motion can be 

described by the equations: 

 

)(sin50

)(cos50

ty

tx








                                                  (36) 

 

A circular path with speed constant angular (ɷ=2π/23 rad/sec) 

is created in Matlab. A white noise with amplitude equals to 

unity is added to the measurements. These circular paths are 

shown in Fig. 3. Due to an unknown filter usage environment,  

the tackle noise is left to intrusions of engineering. Proper 

initialization of this, is essential as it is necessary to minimize 

the error obtained during tracking [30]. Figure 4 illustrates the 

performance of the Kalman filter with and without process 

noise and control matrices. The inclusion of process noise and 

control matrices improves the performance of sinusoidal 

Kalman filter for the coordinate’s estimation with its derivate 

(Fig. 5). Tuning the filter by PSO minimizes the error to 

almost zero after 10 seconds as shown in Fig. 6. Thus tuning 

of Kalman filter is important to obtain more accurate results 

for object tracking. A comparison between linear and 

sinusoidal Kalman filters is shown in Fig.7. It is clear that 

sinusoidal Kalman filter with process noise and control 

matrices provides more smooth results in comparison to the 

linear Kalman filter. 

  

 
Fig. 3 Circular path with constant angular speed 

 

 

 
 

          A 

 
B 

Fig. 4:   Performance of the Kalman filter with and   

without process noise and control matrices 

 

 
A- Coordinates of tracked object 

 
B- Derivative of coordinates of tracked object 

C-  

Fig. 5:  Path obtained by sinusoidal Kalman filter with   

process noise and control matrices tuned by PSO 
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Fig. 6: Error in the coordinates after Tuning Kalman filter 

by PSO 

 
Fig. 7:  Comparison between linear and sinusoidal 

Kalman filters 

Table 1 summarizes the RMSE for the circular path in the 

coordinates. According to the following table, and during the 

use of the sinusoidal Kalman filter with the tackle noise and 

control the matrices, the errors of estimations are significantly 

reduced in both axes.       

Table 1.  Summary of Results for Circular Path 

Results 

RMSE (cm) 

x-

coordinate 

y-

coordinate 
Radius 

Noisy 

measurement 
1.0064 0.9529 1.3859 

Linear 

Kalman filter 

[30] 

0.8944 0.9529 1.3069 

Sinusoidal 

Kalman filter 

without Q 

and G 

matrices 

2.4853 2.4933 3.5204 

Sinusoidal 

Kalman filter 

with Q 

and G 

matrices 

0.1342 0.0812 0.1568 

 

During the experimental test (Fig. 8), the robot arm (Lynx6), 

rotary carousal, and digital camera are used.  The supposed 

target was a dark circle, which is placed at 5 cm from the disc 

center of the rotary carousal. The rotary carousal rotates with 

constant angular speed. It consists of plastic disc, stepper 

motor, and electrical circuit driver. The motor's angular speed 

is controlled by micro-controller. It completes one revolution 

every 23 seconds. The focal length of the camera is obtained 

by calibration as (240 pixel=227 mm) for both axis. The used 

frame rate is 15 frames per second. Figure 9 shows the 

experimental results for tracking the object which is fixed on 

the rotary carousal. The positions of the object’s tracking on 

rotary carousal during 5 seconds period, are presented in 

Fig.10. The black solid line represents an actual noisy 

measurement comes from using camera after image 

processing. The red x-mark is the center of tracked object 

obtained by the sinusoidal Kalman filter with process noise 

and control matrices.   

 

 

Fig. 8:  Experimental Devices 

 
A 

 
B 

 
C 

Fig. 9:  Experimental results of tracking a target in a 

circular path 
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A- After 5 seconds 

 

 
B- After 10 seconds 

 

 
C- After 15 seconds                                       

 

 
D-  After 20 seconds 

Fig. 10:  Positions for tracking the object on rotary 

carousal experimentally 

Table 2 summarizes the RMSE of experimental results for 

tracking moving object in the coordinates. The estimation 

error is significantly reduced in both axes 

Table 2.  Experimental results 

Results 

RMSE (cm) 

x-

coordinate 

y-

coordinate 
Radius 

Noisy 

measurement 
2.1465 2.0587 2.9742 

Tuned Sinusoidal 

Kalman filter  
0.1713 0.2037 0.2661 

 

7. CONCLUSION 
In this paper, a real-time tracking target for circular path is 

presented. The proposed method includes an image processing 

with Kalman filter as the target estimator position. The 

process noise and control matrices are proved to improve the 

performance of Kalman filter for tracking rotating object on 

circular path. Experimental result shows good performance of 

the proposed method for noisy measurements of the target. 

8. FUTURE WORK 
The future work will focused on the realization of tracking 

more than one object, use more than one robot arm and 

employee this ideas in industry fields. In order to satisfy  that,  

another algorithm using the proposed method should be in 

addition to tracking algorithm (Kalman filter) to achieve 

multiple object tracking.      
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