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ABSTRACT 
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of a semi-Thue systeme, we give some results illustrated by 

some examples to give some Noetherian  semi-Thue systems.  

Keywords 
Free monoid, morphism of monoids, closure of a binary 

relation, rewriting systems of words, well-founded 

(Noetherian), weight function. 

1. INTRODUCTION 
The central idea of rewriting is to impose directionality on the 

use of equations in proofs. A semi-Thue system is a pair 
 𝐴, 𝑅  where 𝐴 is an alphabet and 𝑅 is a non-empty finite 

binary relation on 𝐴∗. We write 𝑢𝑠𝑣 →𝑅 𝑢𝑡𝑣 whenever u, v 

∈ 𝐴∗  and  𝑠, 𝑡 ∈ 𝑅. We write u
𝑅
→∗v if there words 

𝑢0, 𝑢1, … , 𝑢𝑛 ∈ 𝐴∗ such that:  

           𝑢0 = 𝑢, 𝑢𝑖 →𝑅 𝑢𝑖+1, ∀0 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑢𝑛 = 𝑣. 

 If 𝑛 = 𝑜, then  𝑢 = 𝑣, and if 𝑛 = 1, we have 𝑢 →𝑅 𝑣.  

𝑅
→∗  is the reflexive transitive closure of →𝑅. 

The semi-Thue system (𝐴, 𝑅) is terminating if there does not 

exist an infinite chain 𝑢₁ →𝑅 𝑢2 →𝑅 𝑢₃ →𝑅 . .. in 𝐴∗.  

Define the accessibility problem as follow: given a semi-

Thue system (𝐴, 𝑅) and two words u and v over the alphabet 

of A, decide whether  𝑢
𝑅
→∗ 𝑣. 

The remainder of this paper is organized as follows. The 

Section 2, is devoted to the preliminaries notions. In Section 

3, we give some results concerning the termination problem 

for a rewriting system. Finally, we draw our conclusions in 

Section 4. 

2. PRELIMINARIES 
Let 𝐴 be a set, which we call an alphabet. A word w on the 

alphabet A is a finite sequence of elements of 𝐴 

𝑢 =  𝑎1, 𝑎2, … , 𝑎𝑛       𝑎𝑖 ∈ 𝐴. 

    The set of all words on the alphabet A is denoted by 𝐴∗and 

is equipped with the associative operation defined by the 

concatenation of two sequences 

 𝑎1, 𝑎2, … , 𝑎𝑛  𝑏1, 𝑏2, … , 𝑏𝑚  =  𝑎1, 𝑎2, … , 𝑎𝑛 , 𝑏1, 𝑏2, … , 𝑏𝑚  

This operation is associative. This allows us to write 

 𝑢 = 𝑎1𝑎2 …𝑎𝑛 . The string consisting of zero letters is called 

the empty word, written ε. Thus, ε, 0, 1, 011, 1111 are words 

over the alphabet {0, 1}. The set 𝐴∗ of words is equipped with 

the structure of a monoid. The monoid 𝐴∗ is called the free 

monoid on 𝐴. The length of a word 𝑢, denoted  𝑢 , is the 

number of letters in 𝑢 where each letter is counted as many 

times as it occurs. Again by definition, |ε|=0. The length 

function possesses some of the formal properties of logarithm: 

 𝑢𝑣 =  𝑢 +  𝑣 ,  𝑢𝑖 = 𝑖 𝑢 |, for any words 𝑢 and v and 

integers 𝑖 ≥ 0. For example  011 = 3 and  1111 = 4. For a 

subset 𝐵 of 𝐴, we let  𝑢 𝐵 denote the number of letters of 

𝑢 which are in 𝐵 . Thus   𝑢 =   𝑢 𝑎𝑎∈𝐴 . A language 𝐿 over 

𝐴∗ is any subset of  𝐴∗, 𝑖. 𝑒, 𝐿 ⊆ 𝐴∗. 

A mapping ℎ: 𝐴∗ ⟶ Δ∗, where 𝐴 and Δ are alphabets, 

satisfying the condition 

ℎ 𝑢𝑣 = ℎ 𝑢 ℎ 𝑣 , for all words 𝑢 and 𝑣 of 𝐴∗ 

is called a morphism. It is noted here, to define an alphabetic 

morphismℎ, it suffices to list all the words ℎ 𝑎 , where 𝑎 ∈ 𝐴. 

If 𝑀 is a monoid, then any mapping 𝑓: 𝐴 → 𝑀  can be extends 

to a unique morphism 

 𝑓:  𝐴∗ ⟶ 𝑀 For instance, if 𝑀 is the additive monoid ℕ, and 

𝑓 is defined by 𝑓(𝑎) = 1 for each 𝑎 ∈ 𝐴, then 𝑓 (𝑢) is the 

length |𝑢| of the word 𝑢. 

Let ℎ: 𝐴∗ ⟶ Δ∗ be a morphism of monoids. if ℎ is one-to-one 

and onto, then ℎ is an isomorphism and the monoids 𝐴∗ and 

Δ∗ are isomorphic. we denote  by Hom(𝐴∗, Δ∗) the set of 

morphisms from 𝐴∗ to Δ∗ and Isom(𝐴∗, Δ∗) the set of all 

isomorphism’s from 𝐴∗ to Δ∗. 

A binary relation on 𝑋 is a subset 𝑅 ⊆ 𝑋 × 𝑋.  If   𝑥, 𝑦 ∈ 𝑅,  

then we denote  𝑥𝑅𝑦  and we say that 𝑥 is related to 𝑦 by 

𝑅. The inverse relation of 𝑅 is the binary relation 

 𝑅−1 ⊆ 𝑋 × 𝑋 .  Defined by: 𝑦𝑅⁻¹𝑥 ⇔ (𝑥, 𝑦) ∈ 𝑅. 

The relation 𝐼𝑋 =   𝑥, 𝑥 , 𝑥 ∈ 𝑋  is called the identity relation. 

The relation  𝑋 2 is called the complete relation.   

Let 𝑅 ⊆ 𝑋 × 𝑋 and  𝑆 ⊆ 𝑋 × 𝑋  two a binary relations, the 

composition of 𝑅 and 𝑆 is a binary relation 𝑆 ∘ 𝑅 ⊆ 𝑋 × 𝑋 

defined by 𝑥𝑆 ∘ 𝑅𝑧 ⟺ ∃𝑦 ∈ 𝑋 such that 𝑥𝑅𝑦 and 𝑦𝑆𝑧. 

A binary relation 𝑅 on a set 𝑋 is said to be 

1. Reflexive if 𝑥𝑅𝑥 for all 𝑥 in 𝑋; 

2. Symmetric if 𝑥𝑅𝑦 implies 𝑦𝑅𝑥; 

3. Transitive if 𝑥𝑅𝑦 and 𝑦𝑅𝑧 imply 𝑥𝑅𝑧. 

4. Ant symmetry if 𝑥𝑅𝑦 and 𝑦𝑅𝑥 imply 𝑥 = 𝑦. 

A binary relation ≥ on a set 𝑋 is partial order (or partial 

ordering) iff it is reflexive, transitive and ant symmetric. 

A strict partial ordering > on a set 𝑋 is irreflexive, ant 

symmetric and transitive relation on 𝑋. 

A strict partial ordering > is called well-founded 

(Noetherian), if there is no infinite descending chain 𝑥0 >
𝑥1 > 𝑥2 … 

Let  𝑋, >  be a well-founded ordering, let P be property of 

elements of 𝑋, if for all 𝑥 ∈ 𝑋 the implication: 

If 𝑃(𝑥 ′), for all 𝑥′ ∈ 𝑋 such that 𝑥 > 𝑥′ then 𝑃 𝑥 . 
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Let 𝑅 be a relation on a set 𝑋. The reflexive closure of 𝑅 is the 

smallest reflexive relation 𝑅0 on 𝑋 that contains 𝑅; that is, 

1. 𝑅 ⊆ 𝑅0 

2. if 𝑅′ is a reflexive relation on 𝑋 and 𝑅 ⊆ 𝑅′, then 

𝑅0 ⊆ 𝑅′. 

The symmetric closure of 𝑅 is the smallest symmetric relation 

𝑅+ on 𝑋 that contains 𝑅; that is, 

3. 𝑅 ⊆ 𝑅+ 

4. if 𝑅′ is a symmetric relation on 𝑋 and 𝑅 ⊆ 𝑅′, then 

𝑅+ ⊆ 𝑅′. 

The transitive closure of 𝑅 is the smallest transitive relation 

𝑅∗ on 𝑋 that contains 𝑅; that is, 

1. 𝑅 ⊆ 𝑅∗, 

2. if 𝑅′ is a transitive relation on 𝐴∗ and 𝑅 ⊆ 𝑅′, then 

𝑅∗ ⊆ 𝑅′. 

Let 𝑅 be a relation on a set 𝑋. Then 

1. 𝑅0 = 𝑅 ∪ 𝐼𝑋 . 

2. 𝑅+ = 𝑅 ∪ 𝑅−1. 

3. 𝑅∗ =  𝑅𝑘𝑘=+∞
𝑘=1 . 

A semi-Thue system 𝑅 over 𝐴, for briefly STS, is a finite set 

𝑅 ⊆ 𝐴∗ × 𝐴∗, whose elements are called rules. A rule  𝑠, 𝑡  

will also be written as 𝑠 → 𝑡. The set 𝑑𝑜𝑚 𝑅  of all left-hand 

sides and 𝑟𝑎𝑛 𝑅  of all right-hand sides are defined by: 

𝑑𝑜𝑚 𝑅 =  𝑠 ∈ 𝐴∗, ∃𝑡 ∈ 𝐴∗:  𝑠, 𝑡 ∈ 𝑅   and  

𝑟𝑎𝑛 𝑅 =  𝑡 ∈ 𝐴∗, ∃𝑠 ∈ 𝐴∗:  𝑠, 𝑡 ∈ 𝑅 . 

If 𝑅 is finite, then the size of 𝑅 is defined to be    𝑠 + 𝑠,𝑡 ∈𝑅

 𝑡   and is denoted by  𝑅 . 

We define the binary relation →𝑅 as follows, where u, v ∈ 𝐴∗: 

𝑢 →𝑅 𝑣 if there exist x, y ∈ 𝐴∗ and  𝑟, 𝑠 ∈ 𝑅 with 𝑢 =
𝑥𝑟𝑦   𝑎𝑛𝑑 𝑣 = 𝑥𝑠𝑦. We write u

𝑅
→∗v if there words 

𝑢0, 𝑢1, … , 𝑢𝑛 ∈ 𝐴∗ such that:  

           𝑢0 = 𝑢, 𝑢𝑖 →𝑅 𝑢𝑖+1, ∀0 ≤ 𝑖 ≤ 𝑛 − 1 and 𝑢𝑛 = 𝑣. 

 If 𝑛 = 𝑜, then  𝑢 = 𝑣, and if 𝑛 = 1, we have 𝑢 →𝑅 𝑣.  

 Note that 
𝑅
→∗  is the reflexive transitive closure of →𝑅. 

The set of irreducible words with respect to 𝑅 is  

𝐼𝑅𝑅 𝑅 = 𝐴∗ −  𝑥𝑠𝑦: 𝑥, 𝑦 ∈ 𝐴∗, 𝑠 ∈ 𝑑𝑜𝑚 𝑅  . 

We say that 𝑅 is Noetherian if there does not exist an infinite 

sequence of words 𝑢𝑖 ∈ 𝐴∗ 𝑖 ∈ ℕ  such that 𝑢0 →𝑅 𝑢1 →𝑅 . ... 

Let > be a binary relation on 𝐴∗. The relation > is 

admissible, if for all 𝑢, 𝑣, 𝑥, 𝑦 ∈ 𝐴∗,  

𝑢 > 𝑣    𝑖𝑚𝑝𝑙𝑖𝑒𝑠      𝑥𝑢𝑦 > 𝑥𝑣𝑦. 

Let 𝐴 =  𝑎1, 𝑎2, … , 𝑎𝑛 , with 𝑎𝑛 > 𝑎𝑛−1 > ⋯ > 𝑎1 , in the 

following cases, we give some of admissible partial 

orderings on 𝐴∗. 

1. Define 𝑥 > 𝑦 as follows: 𝑥 > 𝑦  if  𝑥 >  𝑦  is the 

length ordering on 𝐴∗. 

2. Let 𝑤: 𝐴 ⟶ ℕ be a mapping that associates a 

positive integer (a weight) with each letter. Define 

the weight ordering >𝒘 induced by w as follows: 

𝑥 >𝑤 𝑦  if   𝑤 𝑥 > 𝑤 𝑦 . 

Here w is extended to a mapping from 𝐴∗ into ℕ by taking 

𝑤 ε = 0 and 𝑤 xa = 𝑤 x + 𝑤 a  for all 𝑥 ∈ 𝐴∗, 𝑎 ∈ 𝐴. 

3. The lexicographical ordering >𝑙𝑒𝑥  on 𝐴∗ is 

defined as follows: 𝑥 >𝑙𝑒𝑥 𝑦 if there is a non-empty 

string z such that  

𝑥 = 𝑦𝑧, 𝑜𝑟 𝑥 = 𝑢𝑎𝑖𝑣 𝑎𝑛𝑑 𝑦 = 𝑢𝑎𝑗 𝑧,  

For some 𝑥, 𝑣, 𝑧 ∈ 𝐴∗ and 𝑖, 𝑗 ∈  1, … , 𝑛  satisfying 𝑖 > 𝑗. 

4. The length-lexicographical ordering >𝒍𝒍 is a 

combination of the length ordering and 

lexicographical ordering : 𝒙 >𝒍𝒍 𝒚 if  𝑥 >  𝑦  or 

 𝑥 =  𝑦  and 𝑥 >𝑙𝑒𝑥 𝑦. 

3. STUDY OF CASES WHERE THE 

WORD REWRITING SYSTEM IS 

NOETHERIAN 
In this section, we use the following theorem from 2 , to 

giving some results concerning a Noetherian semi-Thue 

system. 

Theorem 3.1  𝟐  

Let  𝐴, 𝑅  be a semi-Thue system. Then the following two 

statements are equivalent: 

1. The reduction relation →𝑅 is Noetherian. 

2. There exists an admissible well-founded partial 

ordering > on 𝐴∗ such that 𝑥 > 𝑦 holds for each 

 𝑠, 𝑡 ∈ 𝑅. 

Corollary 3.2 

Let  𝐴, 𝑅  be a semi-Thue system, with  

𝑅 =   𝑎𝑖 , 𝑏𝑖 , 0 ≤ 𝑖 ≤ 𝑛, 𝑛 ∈ ℕ , if  ∀0 ≤ 𝑖 ≤ 𝑛,  𝑎𝑖 >  𝑏𝑖 , 
then  𝐴, 𝑅  is Noetherian. 

Proof 

To obtain the desired result, we show that there exists an 

admissible well-founded partial ordering > on 𝐴∗ such that 

𝑥 > 𝑦 holds for each  𝑠, 𝑡 ∈ 𝑅. It suffices to take the length 

ordering > defined by 𝑥 > 𝑦  if  𝑥 >  𝑦 . 

Example 3.3 

Consider the semi-Thue system  𝐴, 𝑅  with 𝐴 =  𝑎, 𝑏  and 

𝑅 =   𝑎𝑎, 𝑏  . We have  𝑎𝑎 =2,  𝑏 = 1, then  𝑎𝑎 >  𝑏 , 
consequently  𝐴, 𝑅  is Noetherian. 

Corollary 3.4 

Let  𝐴, 𝑅  be a semi-Thue system, with  

𝐴 =  𝑎0, 𝑎1, … , 𝑎𝑛   and  

𝑅 =  (𝑎𝑗 , 𝑏𝑗 ),0 ≤ 𝑗 ≤ 𝑚, 𝑚 ∈ ℕ . Consider the mapping   

𝑤: 𝐴 ⟶ ℕ, 𝑎𝑖 ⟼ 𝑤 𝑎𝑖   𝑎𝑛𝑑  

𝑤: 𝐴∗ ⟶ ℕ, 𝑤 𝑥 =  𝑤 𝑎𝑖  𝑥 𝑎𝑖

𝑖=𝑛
𝑖=0 . 

If for all 𝑗 ∈  0, … , 𝑚 : 𝑤 𝑎𝑖 > 𝑤 𝑏𝑖  then  

 𝐴, 𝑅  is Noetherian. 
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Proof 

To obtain the desired result, we show that there exists an 

admissible well-founded partial ordering > on 𝐴∗ such that 

𝑥 > 𝑦 holds for each  𝑠, 𝑡 ∈ 𝑅. It suffices to take the weight 

ordering  >𝑤   induced by 𝑤 as follows: 

𝑥 >𝑤 𝑦  if    𝑤 𝑎𝑖  𝑥 𝑎𝑖

𝑖=𝑛
𝑖=0 >  𝑤 𝑎𝑖  𝑦 𝑎𝑖

𝑖=𝑛
𝑖=0  . 

Example 3.5 

Let 𝐴 =  𝑎, 𝑏, 𝑐 , 𝑅 =   𝑏𝑏, 𝑎𝑎 ,  𝑐𝑏, 𝑎𝑏   and  

𝑤:  𝑎, 𝑏, 𝑐 ⟶ ℕ, with 𝑤 𝑎 = 1, 𝑤 𝑏 = 2, 𝑤 𝑐 = 3. 

We check that 𝑤 𝑏𝑏 > 𝑤 𝑎𝑎  𝑎𝑛𝑑 𝑤 𝑐𝑏 > 𝑤 𝑎𝑏 . 

We have 𝑤 𝑏𝑏 = 𝑤 𝑎  𝑏𝑏 𝑎 + 𝑤 𝑏  𝑏𝑏 𝑏 + 𝑤 𝑐  𝑏𝑏 𝑐  

   = 1× 0 + 2 × 2 + 3 × 0 = 4. 

A similar argument we have  

𝑤 𝑎𝑎 = 𝑤 𝑎  𝑎𝑎 𝑎 + 𝑤 𝑏  𝑎𝑎 𝑏 + 𝑤 𝑐  𝑎𝑎 𝑐  

                          = 1× 2 + 2 × 0 + 3 × 0 = 2. 

On the other hand we have,  

𝑤 𝑐𝑏 = 𝑤 𝑎  𝑐𝑏 𝑎 + 𝑤 𝑏  𝑐𝑏 𝑏 + 𝑤 𝑐  𝑐𝑏 𝑐  

                            = 1× 0 + 2 × 1 + 3 × 1 = 5. 

And 𝑤 𝑎𝑏 = 𝑤 𝑎  𝑎𝑏 𝑎 + 𝑤 𝑏  𝑎𝑏 𝑏 + 𝑤 𝑐  𝑎𝑏 𝑐  

                            = 1× 1 + 2 × 1 + 3 × 0 = 3. 

Finally  𝐴, 𝑅  is Noetherian. 

Corollary 3.6 

Let 𝐴 =  𝑎1, 𝑎2, … , 𝑎𝑛 , with 𝑎𝑛 > 𝑎𝑛−1 > ⋯ > 𝑎1. Let 
 𝐴, 𝑅  be a semi-Thue system.  

If for all   𝑠, 𝑡 ∈ 𝑅, 𝑠 >𝑙𝑒𝑥 𝑡, then  𝐴, 𝑅  is Noetherian. 

Proof 

To obtain the desired result, we show that there exists an 

admissible well-founded partial ordering > on 𝐴∗ such that 

𝑥 > 𝑦 holds for each  𝑠, 𝑡 ∈ 𝑅. It suffices to take the 

lexicographical ordering  >𝑙𝑒𝑥  . 

Example 3.7 

Let 𝐴 =  𝑎, 𝑏, 𝑐 , with 𝑐 > 𝑏 > 𝑎. 
R=   𝑏𝑎, 𝑎𝑏 ,  𝑐𝑏, 𝑏𝑐  . We have 𝑏𝑎 >𝑙𝑒𝑥 𝑎𝑏 and 

𝑐𝑏 >𝑙𝑒𝑥 𝑏𝑐. Then  𝐴, 𝑅  is Noetherian. 

Corollary 3.8 

Let  𝐴, 𝑅  be a semi-Thue system. Consider the 

morphism of monoids 𝑓:  𝐴∗,⋅ ⟶  ℕ, + . 

If for all  𝑠, 𝑡 ∈ 𝑅, 𝑓 𝑠 > 𝑓 𝑡 , then Then  𝐴, 𝑅  is 

Noetherian. 

Proof 

To obtain the desired result, we show that there exists an 

admissible well-founded partial ordering > on 𝐴∗ such that 

𝑥 > 𝑦 holds for each  𝑠, 𝑡 ∈ 𝑅. It suffices to take the weight 

ordering  >𝑓   induced by 𝑓 as follows: 

𝑥 >𝑓 𝑦  if   𝑓 𝑥 > 𝑓 𝑦 .  

 

 

Example 3.9 

Let 𝐴 =  𝑎, 𝑏, 𝑐 , R=   𝑏𝑎, 𝑏𝑐 ,  𝑎𝑏, 𝑎𝑐  .  

Consider the morphism of monoids 𝑓:  𝐴∗,⋅ ⟶  ℕ, + , 

with 𝑓 𝑎 = 2, 𝑓 𝑏 = 1, 𝑓 𝑐 = 0. We check that 

𝑓 𝑏𝑎 > 𝑓 𝑏𝑐  and 𝑓 𝑎𝑏 > 𝑓 𝑎𝑐 . 

We have 𝑓 𝑏𝑎 = 3, 𝑓 𝑏𝑐 = 1 and 𝑓 𝑎𝑏 = 3, 

          𝑓 𝑎𝑐 = 2. Finally  𝐴, 𝑅  is Noetherian. 

4. CONCLUSION 
In this paper, we have given au an admissible well-founded 

partial ordering > on the free monoid 𝐴∗ with a finite 

alphabet𝐴, in order to assure that the semi-Thue system is 

Noetherian. 
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