On the Termination Problem for String Rewrite Systems

Nacer Ghadbane
Laboratory of Pure and Applied Mathematics, Department of Mathematics, University of M'sila, Algeria

Douai Mihoubi
Laboratory of Pure and Applied Mathematics, Department of Mathematics, University of M'sila, Algeria

Abstract

Based on some result given in[2], concerning the termination of a semi-Thue systeme, we give some results illustrated by some examples to give some Noetherian semi-Thue systems.

Keywords

Free monoid, morphism of monoids, closure of a binary relation, rewriting systems of words, well-founded (Noetherian), weight function.

1. INTRODUCTION

The central idea of rewriting is to impose directionality on the use of equations in proofs. A semi-Thue system is a pair (A, R) where A is an alphabet and R is a non-empty finite binary relation on A^{*}. We write $u s v \rightarrow_{R} u t v$ whenever u, v $\in A^{*} \quad$ and $(s, t) \in R$. We write $\vec{u}_{R}^{*} \mathrm{v}$ if there words $u_{0}, u_{1}, \ldots, u_{n} \in A^{*}$ such that:

$$
u_{0}=u, u_{i} \rightarrow_{R} u_{i+1}, \forall 0 \leq i \leq n-1 \text { and } u_{n}=v .
$$

If $n=o$, then $u=v$, and if $n=1$, we have $u \rightarrow_{R} v$.
\vec{R}^{*} is the reflexive transitive closure of \rightarrow_{R}.
The semi-Thue system (A, R) is terminating if there does not exist an infinite chain $u_{1} \rightarrow_{R} u_{2} \rightarrow_{R} u_{3} \rightarrow_{R} \ldots$ in A^{*}.
Define the accessibility problem as follow: given a semiThue system (A, R) and two words u and v over the alphabet of A, decide whether $u \vec{R}^{*} v$.
The remainder of this paper is organized as follows. The Section 2, is devoted to the preliminaries notions. In Section 3 , we give some results concerning the termination problem for a rewriting system. Finally, we draw our conclusions in Section 4.

2. PRELIMINARIES

Let A be a set, which we call an alphabet. A word w on the alphabet A is a finite sequence of elements of A
$u=\left(a_{1}, a_{2}, \ldots, a_{n}\right) \quad a_{i} \in A$.
The set of all words on the alphabet A is denoted by A^{*} and is equipped with the associative operation defined by the concatenation of two sequences

$$
\left(a_{1}, a_{2}, \ldots, a_{n}\right)\left(b_{1}, b_{2}, \ldots, b_{m}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}, b_{1}, b_{2}, \ldots, b_{m}\right)
$$

This operation is associative. This allows us to write
$u=a_{1} a_{2} \ldots a_{n}$. The string consisting of zero letters is called the empty word, written ε. Thus, $\varepsilon, 0,1,011,1111$ are words over the alphabet $\{0,1\}$. The set A^{*} of words is equipped with the structure of a monoid. The monoid A^{*} is called the free monoid on A. The length of a word u, denoted $|u|$, is the number of letters in u where each letter is counted as many times as it occurs. Again by definition, $|\varepsilon|=0$. The length function possesses some of the formal properties of logarithm:
$|u v|=|u|+|v|,\left|u^{i}\right|=i|u| \mid$, for any words u and v and integers $i \geq 0$. For example $|011|=3$ and $|1111|=4$. For a subset B of A, we let $|u|_{B}$ denote the number of letters of u which are in B. Thus $|u|=\sum_{a \in A}|u|_{a}$. A language L over A^{*} is any subset of A^{*}, i.e, $L \subseteq A^{*}$.

A mapping $h: A^{*} \rightarrow \Delta^{*}$, where A and Δ are alphabets, satisfying the condition
$h(u v)=h(u) h(v)$, for all words u and v of A^{*}
is called a morphism. It is noted here, to define an alphabetic morphism h, it suffices to list all the words $h(a)$, where $a \in A$. If M is a monoid, then any mapping $f: A \rightarrow M$ can be extends to a unique morphism
$\widehat{f}: A^{*} \rightarrow M$ For instance, if M is the additive monoid \mathbb{N}, and f is defined by $f(a)=1$ for each $a \in A$, then $\hat{f}(u)$ is the length $|u|$ of the word u.
Let $h: A^{*} \rightarrow \Delta^{*}$ be a morphism of monoids. if h is one-to-one and onto, then h is an isomorphism and the monoids A^{*} and Δ^{*} are isomorphic. we denote by $\operatorname{Hom}\left(A^{*}, \Delta^{*}\right)$ the set of morphisms from A^{*} to Δ^{*} and $\operatorname{Isom}\left(A^{*}, \Delta^{*}\right)$ the set of all isomorphism's from A^{*} to Δ^{*}.
A binary relation on X is a subset $R \subseteq X \times X$. If $(x, y) \in R$, then we denote $x R y$ and we say that x is related to y by R. The inverse relation of R is the binary relation
$R^{-1} \subseteq X \times X$. Defined by: $y R^{-1} x \Leftrightarrow(x, y) \in R$.
The relation $I_{X}=\{(x, x), x \in X\}$ is called the identity relation. The relation $(X)^{2}$ is called the complete relation.

Let $R \subseteq X \times X$ and $S \subseteq X \times X$ two a binary relations, the composition of R and S is a binary relation $S \circ R \subseteq X \times X$ defined by $x S \circ R z \Leftrightarrow \exists y \in X$ such that $x R y$ and $y S z$.

A binary relation R on a set X is said to be

1. Reflexive if $x R x$ for all x in X;
2. Symmetric if $x R y$ implies $y R x$;
3. Transitive if $x R y$ and $y R z$ imply $x R z$.
4. Ant symmetry if $x R y$ and $y R x$ imply $x=y$.

A binary relation \geq on a set X is partial order (or partial ordering) iff it is reflexive, transitive and ant symmetric.
A strict partial ordering $>$ on a set X is irreflexive, ant symmetric and transitive relation on X.
A strict partial ordering $>$ is called well-founded (Noetherian), if there is no infinite descending chain $x_{0}>$ $x_{1}>x_{2} \ldots$
Let $(X,>)$ be a well-founded ordering, let P be property of elements of X, if for all $x \in X$ the implication:
If $P\left(x^{\prime}\right)$, for all $x^{\prime} \in X$ such that $x>x^{\prime}$ then $P(x)$.

Let R be a relation on a set X. The reflexive closure of R is the smallest reflexive relation R^{0} on X that contains R; that is,

1. $R \subseteq R^{0}$
2. if R^{\prime} is a reflexive relation on X and $R \subseteq R^{\prime}$, then $R^{0} \subseteq R^{\prime}$.

The symmetric closure of R is the smallest symmetric relation R^{+}on X that contains R; that is,
3. $R \subseteq R^{+}$
4. if R^{\prime} is a symmetric relation on X and $R \subseteq R^{\prime}$, then $R^{+} \subseteq R^{\prime}$.

The transitive closure of R is the smallest transitive relation R^{*} on X that contains R; that is,

1. $R \subseteq R^{*}$,
2. if R^{\prime} is a transitive relation on A^{*} and $R \subseteq R^{\prime}$, then $R^{*} \subseteq R^{\prime}$.

Let R be a relation on a set X. Then

1. $R^{0}=R \cup I_{X}$.
2. $\quad R^{+}=R \cup R^{-1}$.
3. $R^{*}=\mathrm{U}_{k=1}^{k=+\infty} R^{k}$.

A semi-Thue system R over A, for briefly STS, is a finite set $R \subseteq A^{*} \times A^{*}$, whose elements are called rules. A rule (s, t) will also be written as $s \rightarrow t$. The set $\operatorname{dom}(R)$ of all left-hand sides and $\operatorname{ran}(R)$ of all right-hand sides are defined by:
$\operatorname{dom}(R)=\left\{s \in A^{*}, \exists t \in A^{*}:(s, t) \in R\right\}$ and
$\operatorname{ran}(R)=\left\{t \in A^{*}, \exists s \in A^{*}:(s, t) \in R\right\}$.
If R is finite, then the size of R is defined to be $\sum_{(s, t) \in R}(|s|+$ $|t|)$ and is denoted by $\|R\|$.
We define the binary relation \rightarrow_{R} as follows, where $u, v \in A^{*}$: $u \rightarrow_{R} v$ if there exist $\mathrm{x}, \mathrm{y} \in A^{*}$ and $(r, s) \in R$ with $u=$ $x r y$ and $v=x s y$. We write $\mathrm{u}_{R}^{*} \mathrm{v}$ if there words $u_{0}, u_{1}, \ldots, u_{n} \in A^{*}$ such that:
$u_{0}=u, u_{i} \rightarrow_{R} u_{i+1}, \forall 0 \leq i \leq n-1$ and $u_{n}=v$.
If $n=o$, then $u=v$, and if $n=1$, we have $u \rightarrow_{R} v$.
Note that \vec{R}^{*} is the reflexive transitive closure of \rightarrow_{R}.
The set of irreducible words with respect to R is
$I R R(R)=A^{*}-\left\{x s y: x, y \in A^{*}, s \in \operatorname{dom}(R)\right\}$.
We say that R is Noetherian if there does not exist an infinite sequence of words $u_{i} \in A^{*}(i \in \mathbb{N})$ such that $u_{0} \rightarrow_{R} u_{1} \rightarrow_{R} \ldots$
Let $>$ be a binary relation on A^{*}. The relation $>$ is admissible, if for all $u, v, x, y \in A^{*}$,
$u>v$ implies xuy $>x v y$.
Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, with $a_{n}>a_{n-1}>\cdots>a_{1}$, in the following cases, we give some of admissible partial orderings on A^{*}.

1. Define $x>y$ as follows: $x>y$ if $|x|>|y|$ is the length ordering on A^{*}.
2. Let $w: A \rightarrow \mathbb{N}$ be a mapping that associates a positive integer (a weight) with each letter. Define
the weight ordering $>_{\boldsymbol{w}}$ induced by w as follows: $x>_{w} y$ if $w(x)>w(y)$.

Here w is extended to a mapping from A^{*} into \mathbb{N} by taking $w(\varepsilon)=0$ and $w(\mathrm{xa})=w(\mathrm{x})+w(\mathrm{a})$ for all $x \in A^{*}, a \in A$.
3. The lexicographical ordering $>_{\text {lex }}$ on A^{*} is defined as follows: $x>_{\text {lex }} y$ if there is a non-empty string z such that
$x=y z$, or $x=u a_{i} v$ and $y=u a_{j} z$,
For some $x, v, z \in A^{*}$ and $i, j \in\{1, \ldots, n\}$ satisfying $i>j$.
4. The length-lexicographical ordering $>_{l l}$ is a combination of the length ordering and lexicographical ordering : $\boldsymbol{x}>_{l l} \boldsymbol{y}$ if $|x|>|y|$ or $|x|=|y|$ and $x>_{l e x} y$.

3. STUDY OF CASES WHERE THE WORD REWRITING SYSTEM IS NOETHERIAN

In this section, we use the following theorem from[2], to giving some results concerning a Noetherian semi-Thue system.
Theorem $3.1\lceil 2\rceil$
Let (A, R) be a semi-Thue system. Then the following two statements are equivalent:

1. The reduction relation \rightarrow_{R} is Noetherian.
2. There exists an admissible well-founded partial ordering $>$ on A^{*} such that $x>y$ holds for each $(s, t) \in R$.

Corollary 3.2

Let (A, R) be a semi-Thue system, with
$R=\left\{\left(a_{i}, b_{i}\right), 0 \leq i \leq n, n \in \mathbb{N}\right\}$, if $\forall 0 \leq i \leq n,\left|a_{i}\right|>\left|b_{i}\right|$, then (A, R) is Noetherian.

Proof

To obtain the desired result, we show that there exists an admissible well-founded partial ordering $>$ on A^{*} such that $x>y$ holds for each $(s, t) \in R$. It suffices to take the length ordering $>$ defined by $x>y$ if $|x|>|y|$.

Example 3.3

Consider the semi-Thue system (A, R) with $A=\{a, b\}$ and $R=\{(a a, b)\}$. We have $|a a|=2,|b|=1$, then $|a a|>|b|$, consequently (A, R) is Noetherian.

Corollary 3.4

Let (A, R) be a semi-Thue system, with
$A=\left\{a_{0}, a_{1}, \ldots, a_{n}\right\}$ and
$R=\left\{\left(a_{j}, b_{j}\right), 0 \leq j \leq m, m \in \mathbb{N}\right\}$. Consider the mapping
$w: A \longrightarrow \mathbb{N}, a_{i} \longmapsto w\left(a_{i}\right)$ and
$w: A^{*} \rightarrow \mathbb{N}, w(x)=\sum_{i=0}^{i=n} w\left(a_{i}\right)|x|_{a_{i}}$.
If for all $j \in\{0, \ldots, m\}: w\left(a_{i}\right)>w\left(b_{i}\right)$ then
(A, R) is Noetherian.

Proof

To obtain the desired result, we show that there exists an admissible well-founded partial ordering $>$ on A^{*} such that $x>y$ holds for each $(s, t) \in R$. It suffices to take the weight ordering $>_{w}$ induced by w as follows:
$x>_{w} y$ if $\sum_{i=0}^{i=n} w\left(a_{i}\right)|x|_{a_{i}}>\sum_{i=0}^{i=n} w\left(a_{i}\right)|y|_{a_{i}}$.

Example 3.5

Let $A=\{a, b, c\}, R=\{(b b, a a),(c b, a b)\}$ and
$w:\{a, b, c\} \rightarrow \mathbb{N}$, with $w(a)=1, w(b)=2, w(c)=3$.
We check that $w(b b)>w(a a)$ and $w(c b)>w(a b)$.
We have $w(b b)=w(a)|b b|_{a}+w(b)|b b|_{b}+w(c)|b b|_{c}$

$$
=1 \times 0+2 \times 2+3 \times 0=4 .
$$

A similar argument we have

$$
\begin{aligned}
w(a a)= & w(a)|a a|_{a}+w(b)|a a|_{b}+w(c)|a a|_{c} \\
& =1 \times 2+2 \times 0+3 \times 0=2 .
\end{aligned}
$$

On the other hand we have,

$$
\begin{aligned}
& w(c b)= w(a)|c b|_{a}+w(b)|c b|_{b}+w(c)|c b|_{c} \\
&=1 \times 0+2 \times 1+3 \times 1=5 . \\
& \text { And } w(a b)=w(a)|a b|_{a}+w(b)|a b|_{b}+w(c)|a b|_{c} \\
&=1 \times 1+2 \times 1+3 \times 0=3 .
\end{aligned}
$$

Finally (A, R) is Noetherian.

Corollary 3.6

Let $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$, with $a_{n}>a_{n-1}>\cdots>a_{1}$. Let (A, R) be a semi-Thue system.

If for all $(s, t) \in R, s>_{\text {lex }} t$, then (A, R) is Noetherian.

Proof

To obtain the desired result, we show that there exists an admissible well-founded partial ordering $>$ on A^{*} such that $x>y$ holds for each $(s, t) \in R$. It suffices to take the lexicographical ordering $>_{\text {lex }}$.

Example 3.7

Let $A=\{a, b, c\}$, with $c>b>a$.
$\mathrm{R}=\{(b a, a b),(c b, b c)\}$. We have $b a>_{l e x} a b$ and $c b>_{\text {lex }} b c$. Then (A, R) is Noetherian.

Corollary 3.8

Let (A, R) be a semi-Thue system. Consider the morphism of monoids $f:\left(A^{*}, \cdot\right) \rightarrow(\mathbb{N},+)$.

If for all $(s, t) \in R, f(s)>f(t)$, then Then (A, R) is Noetherian.

Proof

To obtain the desired result, we show that there exists an admissible well-founded partial ordering $>$ on A^{*} such that $x>y$ holds for each $(s, t) \in R$. It suffices to take the weight ordering $>_{f}$ induced by f as follows:

$$
x>_{f} y \text { if } f(x)>f(y) .
$$

Example 3.9

Let $A=\{a, b, c\}, \mathrm{R}=\{(b a, b c),(a b, a c)\}$.
Consider the morphism of monoids $f:\left(A^{*}, \cdot\right) \rightarrow(\mathbb{N},+)$, with $f(a)=2, f(b)=1, f(c)=0$. We check that $f(b a)>f(b c)$ and $f(a b)>f(a c)$.
We have $f(b a)=3, f(b c)=1$ and $f(a b)=3$,
$f(a c)=2$. Finally (A, R) is Noetherian.

4. CONCLUSION

In this paper, we have given au an admissible well-founded partial ordering $>$ on the free monoid A^{*} with a finite alphabet A, in order to assure that the semi-Thue system is Noetherian.

5. REFERENCES

[1] Berstel \& D. Perrin. "Theoryofcodes", Academic Press (1984).
[2] R. V. Book, F. Otto, "String-Rewriting Systems", Springer-Verlag, (1993).
[3] N. Dershowitz, "Termination of Rewriting", Jornal of Symbolic Computation, vol 3, pp. 69-116, (1987).
[4] M. Eytan, G. TH. Guilbaud, Présentation de quelques monoïdes finis. Mathématiques et sciences humaines, vol,7, pp. 3-10, (1964).
[5] R. Floyd, R. Beigel, Traduction de D. Krob, "Le langage des machines", International Thomson France, paris, (1995).
[6] Y. Metivier, "Calcul de longueurs de chaînes de réécriture dans le monoïde libre", Theoretical Computer Science, vol 35, pp. 71-87, (1985).
[7] Y. Lafont, "A new finiteness condition for monoids presented by complete rewriting systems (after Craig C. Squier)", Journal of Pur and Applied Algebra, vol 98, pp. 229-244, (1995).
[8] Y. Lafont, "Réécritue et problème du mot", Gazette des Mathématiciens, pp. 27-38, (2009).
[9] Y. Lafont. Algebra and Geometry of Rewrtiting. Laboratoire de Mathématiques Discrètes de Luminy, Marseille, France. (2006).
[10] M. Lohrey, " The Compressed Word Problem for Groups", Springer (2014).
[11] M. Nivat. Sur le noyau d'un morphisme du monoïde libre, Proceedings de Séminaire Schutzenberger, vol 1, pp. 1-6, (1970).
[12] D. Kapur and P. Narendran,A Finite Thue System With Decidable Word Problem And Without Equivalent Finite Canonical System", Theoretical Computer Science, vol 35, pp. 337-344, (1985).
[13] M. Nivat. Sur le noyau d'un morphisme du monoïde libre, Séminaire Schutzenberger, tom 1 (1969/1970), exp. N0 4, p. 1-6.
[14] J. Rouyer. Preuves de terminaison de systèmes de réécriture fondées sur les interprétations polynomiales. CRIN, Nancy, (1989).
[15] H. Zantema, Termination of String Rewriting Proved Automatically, TU Eindhoven, (2004).

