
International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.6, July 2016

6

Piracy Detection App of Android Applications

Nandisha M. M.
Student, Department Computer

 Networking Engg.
Visveswaraya Technological

 University.India.

S. L. Deshpande
Prof. Department of Computer

 Networking Engg
Visveswaraya Technological

University. India

ABSTRACT

Rapid increase of Smartphone users worldwide has moved

developers attention towards Mobile platform to create

applications for Smartphone. Android is one such major mobile

platform and also an open source operating system. With the

rapid increase in the android applications some undesirable

apps begin to show up. Two kinds of such apps are pirated and

malware. This focuses on piracy of application in android

market, because one developer pirates the other developer’s

work. Two type of piracy present in android application, first

copied java source code and other is graphical asset. This

paper discusses on how to identify pirated application both

graphical and java source code piracy. Androguard tool

analyze similarity of bytecode in applications. With this tool,

add extra feature to Combined Graphical asset comparison in

Androguard. Finally, experimented result shows within 50sec

can compare 20 Mb application graphical similarities and

120sec for source code comparison using Androsim (Snappy

compressor).

General Terms
Security, Algorithms, Androguard, Smartphones.

Keywords
Android, Androguard, Piracy, Malware, Sourcecode, Graphical

asset, Similarity, Backend, Frontend.

1. INTRODUCTION
Mobile platform is one of the world top five future trends in

information technology [6]. Every year millions of Smartphone

are sold in the market. Because of its usage and easiness to

handle the data everywhere, the importance of Smartphone has

increased in our daily life when compared to desktop and

laptops. All operations available in Smartphone are same as

desktop computer, so user’s attention moved towards

Smartphone. According to Statistics [1] number of Smartphone

users in United States at the end of 2016 reaches 207.2 million,

number of Smartphone users worldwide reaches more than 2

billion. As per statistics, in US, the number of smart phone

users has increased from 62.6 million to 190.5 million from the

year 2010 to 2015. Nearly 127.5 millions of device increased in

United States only in 5 years. Assume overall world

Smartphone devices.

World most Smartphone devices use two major mobile

operating systems namely android and IOS. Android is

developed by Google which is an open source platform it was

launched to market in the year 2008. Most of Smartphone

devices in the world use android operating system. Being the

open source platform, its SDK is freely and easily available. It

motivates to developer to develop an application in this

platform. Google developed official application market called

Google play store and is having 1.6million application in their

dataset. Many third party applications are available in web,

other than Google play store.

The format and Installation package of an application is called

APK (Android Application package). APK includes

AndroidManifest.xml, classes.dex, resources.arsc, META-INF

and res files. It is easy to get the code from android application

using Reverse Engineering tools. One developer pirates the

other developer’s work and makes an application similar to the

original developer’s application. In this paper describes about

how to detect the pirated application, in terms of both frontend

and backend similarity.

The following section as follows, section 2 describes literature

survey about various android application similarity, section 3

for problem definition, section 4 architecture of application

similarity, than graphical and code similarity technique and

finally, experimental results.

2. LITEATURE SURVEY
Many similarity approaches have been proposed but final goal

is to effective detection criteria. Two ways of application

analysis are namely static and dynamic analysis. Dynamic

analysis can examine the application at execution time only but

Static analysis is without execution of application. Juxtapp is a

static analysis and scalable infrastructure in android

applications for detecting know malware and also identify

piracy of applications based on code similarity and this

architecture is ran on Amazon EC2 and is implemented in

Hadoop[7]. Juxtapp more focus on scalability and working

environment setup is difficult (Juxtapp requires nearly 100

minutes to completing 95k applications with on 100 8-core

machines, 64GB RAM).

Androguard is static analysis tool for android application.

Androguard is a powerful tool to decompile android

applications and malware detection in applications. One of the

features in Androguard is, application similarity identification

using Androsim [2]. Androsim mainly detect the piracy of

source code in applications and execution time depends on

which compressor chooses. Androguard is open source tool,

available freely to all users, but the issue is when downloading

tool from [10] and run the tool in machine it only accepting

Zlib and BZ2 compressor. This paper describes some feature

which has been added to Androsim that work on snappy

compressor. In further describes some compression library to

increase the speed of application similarity identification.

Puppetdroid is a dynamic analysis of similarity measure of

applications that more focuses on graphical similarity rather

than coding similarity. Using Perceptual Hashing the system

gets a hash of app screenshots so that two applications screen

shot compare then find the similarity [9]. Because of dynamic

analysis, each application screen short in devices and many

different screen shot collections are difficult and risky.

Appearance similarity evaluations in android applications [3] is

static analysis approach, more focuses on graphical assist of

application. Decompile android applications and scan for text

and images elements, five type of feature extracted for text

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.6, July 2016

7

similarity, namely content of text, colour of text, background

colour of text, size of text, style of text and finally, apply

greedy algorithm for similarity score. For image, extract

features are size of image, colour histogram of image element,

2D haar wallet transformations for image element, finally

similarity comparison. Resultant Average of both text and

image element get the final similarity score.

3. PROBLEM DEFINATION
From the above, we observed that Androguard tool can use

small developer to big vendors can compare their application

with other applications but only backend source code. Problem

is every developer need to know their application similarity to

another application with same features, before it is published to

market, but the environment setup to check similarity of

application is difficult, tools for similarity check are not

available easily to developer, both source code and GUI

similarity needs to be checked. In market places depends on

two approaches to eliminate applications, one is review based

and reactive approach. Former one requires security

examination and mostly expert manual review, and next

reactive approach, which requires user reporting, user ratings

and user policing as indicators that an application is pirated.

Developer or vendor can check their application with other

many applications and use any one of approach take further

actions if application pirated. About graphical comparison,

when check backend code at the same time can compare GUI

element based on comparison of text and image as a feature,

used in applications.

4. ARCHITEATURE
In this architecture separated two sections, one for backend

source code comparison and another, frontend graphical

similarity comparison shows in Figure 1. Classes.dex includes

all java bytecode which compiled from java source code and

res folder include graphical related elements. After decompile

of apk can get all text visible in display screen and images are

available in drawable folders. In the next section how to detect

graphical similarity between applications and further some

discuss on Androsim with snappy compressor to increase speed

of Androguard.

5. GRAPHICAL SIMILARITY OF

APPLICATION
The growth of applications in Android marketplaces like

Google play store and other third-party marketplaces is due to

lack in security. GUI between the legitimate or popular app and

malicious app is somewhat similar, so that it becomes difficult

for Android users to differentiate them. Backend java source

code piracy identification is not solving the piracy problem

because world dealing with non technical people called as

users. Before user fakery because of frontend, need to avoid

this problem. Hence the motive is to detect both backend (java

source code) and frontend (GUI) application similarity.

There are three ventures to compare likeliness of changed

Android applications. This includes application preprocessing,

Feature extraction and similarity comparison. As already

discussed in case of apk, it is necessary to extract the GUI

related features inside resource directory. When an application

is complied, xml files get converted to binary format. AAPT

(Android Asset Packaging Tool) can be used to get original

xml code in resource directory. This set-up compares the two

android applications based on GUI Similarity, from two

significant features namely image and text.

5.1 Image Similarity
Because of large set of images inside an apk, makes it difficult

to compare each and every image. Cryptographic hash function

can be used to check the integrity of data. Example: SHA-1,

MD5, SHA-256[4]. Small partial data modification changes the

lot of variation in hash values, is called avalanched effect. This

method of identifying the similarity of image is too difficult

because if the slight modification of image like background

color is changed, the image is cropped or rotated or if just one

pixel is modified out of the original image, it is not possible to

match the hash of the image to an already existing one. This is

not practical solution to check the similarity of images in

applications. Need to detect similar images, even if they have

been modified a little. For this scenario perceptual hashing

algorithm works on fingerprint of data by deriving it various

features from content (images).

Mainly three perceptual algorithm namely AHash,

PHash, DHash.

• AHash (Average Hash or Mean Hash): This

methodology change over the pictures into grayscale

8x8 pictures and sets the 64 bits in the hash in view

of whether the pixels quality is more noteworthy than

the normal shading for the picture.

• PHash (Perceptive Hash): This calculation is like

past, however utilize a discrete cosine changes

(DCT) and looks at in view of frequencies instead of

shading qualities.

• DHash (Difference hashing): Like AHash and

PHash, DHash is truly easy to actualize and is

significantly more precise than it has any privilege to

be. As a usage, DHash is almost same as AHash

however it performs much better. While AHash

concentrates by and large values and PHash assesses

recurrence designs, DHash tracks gradients.

Figure 1: Architecture diagram of application similarity in both cases graphical and source code

For better performance and speed, choose DHash algorithm

which compute the difference in Radiance between neighbor

pixels, detecting the relative gradient direction. In detail the

DHash algorithm has four steps; first, convert the image into

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.6, July 2016

8

gray scale image because it reduces each pixel value to a

luminous intension value. For example, a white pixel (255,

255,255) will be reduced to an intensity value of 255 and black

for 0.Second Soften the image to a common size or shrinking

the image to a common base size, here important thing is

resizing or stretching an image which won’t affect its hash

value and all images in application are normalized to a

common size. After the previous two steps compare adjacent

pixels which are left with a list containing intensity values,

then compare each intensity value to its adjacent value for each

row resulting in an array of binary values. Finally, resultant

difference converts it into bits to make it easy to store as a

hexadecimal string.

Figure 2: Image comparison using perceptual algorithm

After completion of above four steps, resulting 64 bit

hexadecimal image fingerprint that is called image hash.

Algorithm 1 shows the concept of image comparison. Resultant

hash can be stored in database once calculated shown in Figure

2. To check similarity between two images hamming distance

is used to compare two image fingerprints. Now fix the

acceptable range A. If the both fingerprint match exactly same

that is called identical image or Low distance values will

represents the images are similar, high distance values

represent that the images are different, this shown in Figure 2.

This is one way to detect similarity between images.

Algorithm 1: Two Image comparisons using Perceptual

hash

I1 = 16bit hexadecimal fingerprint

I2 =16bit hexadecimal fingerprint

Where Image1=I1 Image2=I2

Hamming Distance= I1 (XOR) I2

Assume A=10

Where A=acceptable value

IF hamming distance= 0

Images are identical

Else if hamming distance >0 && <A

Images are Similar

Else

Images are Dissimilar

5.2 Text Similarity
In application preprocessing remove the package of an

application and convert to binary xml to original xml using

aapt(Android Asset Packaging Tool) and In order to compare

GUI similarity of applications in feature extraction, GUI

related symptom of an app are extracted and later for similarity

comparison it is expressed in feature vector. In subtle element,

it incorporates an arrangement of elements identified with the

visual connection of a showcase, which incorporates every text

appearing in the screen with a few distinctive properties like

context of text, size of text, Background of text, color of text,

textual style of content.

To extricate the setting estimation of the context component,

have to scan the attribute "android:text" to get its value

otherwise have to index strings.xml file to get the text value.

For this component, indicate it as f1. To get a context color,

need to scan attributes "android: textColor" in color.xml this

indicate as f2. Same like above f1 and f2 staying three

"android: background", android: textSize", "android: textStyle"

denoted as f3, f4, f5 respectively.

1. For the substance estimation of the content component,

which has a place with string sort, characterize by:

𝑆𝐼𝑀 𝑓1𝑖 , 𝑓1𝑗 = 1 −
𝑑(𝑓1𝑖,𝑓2𝑗)

max ⁡(𝑙𝑒𝑛𝑔𝑡 𝑕 𝑓1𝑖 ,𝑙𝑒𝑛𝑔𝑡 𝑕 𝑓1𝑗)

Where: function d is the edit distance of two strings.

2. The color highlight h is a three-tuple array (R, G, B),

which contains the red, green and blue part estimation of

the shading. The SIM capacity is characterized as:

 𝑆𝐼𝑀 𝑓2𝑖 , 𝑓2𝑗 = 1 −
(𝑟𝑖−𝑟𝑗 + 𝑔𝑖−𝑔𝑗 + 𝑏𝑖−𝑏𝑗)

3×255

3. Also, the background color of the content component is

taken care of with the same capacity SIM as above.

4. For the text size f4 the function is:

𝑆𝐼𝑀 𝑓4𝑖 , 𝑓4𝑗 = 1 −
|𝑓4𝑖−𝑓4𝑗 |

max ⁡(𝑓4𝑖 ,𝑓4𝑗)

5. See the yield of SIM capacity as 1 if the content style is

the same, 0 generally.

After all above five result namely f1, f2, f3, f4, f5 combine

together to get the score of the similarity degree of the two text

element. For understanding purpose can take 5 results as 1.25,

2.5, 2.25, 1.75, 1.6 for f1, f2, f3, f4, f5 respectively. To find Sct

(the likeness score of two applications texts component),

proposed a calculation to figure the closeness among all texts

appearing in two applications and break down the most

conceivable correspondence among content components from

two unique applications [3]. Algorithm 2 describes two text

element comparisons in applications. Example takes two

applications android1.apk and android2.apk. Decompile the

both applications using reverse engineering tool. Resultant two

folders created namely android1 and android2. In res folder

inside android1 application there is a values folder that

contains string.xml file. This file includes all texts visible on

android device screen. Scan all the text and store in database.

Do same for android2 application. Now two text files ready for

comparison using sequence matcher algorithm or any.

Resultant value converts into percentage of text similarity.

Algorithm 2: Two apps' text element similarity score

calculation

Example takes two applications: android1.apk and

android2.apk

1) Convert binary xml to original xml using aapt

(Reverse Engineering tool).

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.6, July 2016

9

2) After decompiled two applications it’s create two

folder namely android1 and android2.

3) Scan both applications, String.xml file in values

folder and get all text visible on android screen.

4) Store separately both application texts.

5) Compare two text file using sequence matcher or any

text compare.

6) Finally, put result into percentage of graphical text

similarity.

6. ANDROGUARD FOR APPLICATION

SIMILARITY
In what manner would we be able to say two numerical article

are indistinguishable, it is simple simply need to analyze all

characters in that sentence, however in what capacity would we

be able to say two numerical item similar not identical?.

Shannon entropy, Sequence matcher, Descriptional entropy, is

not practical solution for our purpose [11]. Many real world

compressors are presented for similarity distance identification,

in those one of the real world compressors is Normalized

Compression Distance (NCD) [2]. NCD’s working speed

depends on compression library. In detail, identify similarity

between two elements X and Y is defined as dNCD(X, Y). To

understanding algorithm of NCD, let us take two elements X

and Y.

• C(X) and Lx = L(C(X));

• C(Y) and Ly = L(C(Y));

• C (X|Y) and Lx|y = L(C (X|Y));

Where X|Y is the succession of X and Y, C is the compressor,

and L is the length of a string.

Then dNCD(X, Y) is defined by:

𝑑𝑁𝐶𝐷 𝑋, 𝑌 =
𝐿𝑋|𝑌−min ⁡(𝐿𝑋 ,𝐿𝑌)

min ⁡(𝐿𝑋 ,𝐿𝑌)

The NCD depends on the comparability of components. A

compressor C is ordinary if the accompanying four sayings are

fulfilled up to an added substance O (log n), where n is the

maximal binary length of the components required in the

inequalities:

1) Idempotency: C (xx) = C(x), and C (ε) = 0, where ε is

the empty string.

2) Monotonicity: C (xy) _ C(x).

3) Symmetry: C (xy) = C (yx).

4) Distributivity: C (xy) + C (z) _ C (xz) + C (yz).

For this situation of pick a best compressor, essential thing is

compressor must fulfill above four inequalities. In a genuine

occasion there is a timing limitation to execute the calculation.

Here pressure rate is not an essential element to pick the

compressor in the event that it fulfills with the accompanying

principles:

1) Compressor regards the four inequalities,

2) Compressor C(x) can compute a satisfactory measure

of time.

Application comparison in Androguard project has the

following steps:

• •Create signatures for each method.

• Detect all identical methods

• Detect which all methods are similar by using NCD (with

Snappy compressor).

Androsim after execute it produces and detects the following

elements as an output in android applications:

• Identical methods.

• Similar methods.

• New methods.

• Deleted methods.

For more information refer [2, 11] because this paper gives

importance to graphical similarity identification. Androguard

(Androsim) detect the java bytecode similarity. Extend this

Androguard feature into detect graphical similarity application

in efficient manner.

7. EXPERIMENTEAL RESULTS
In code similarity main concept is choose best compressor to

increase the speed of similarity check. From the above section

in case of choosing the compressor, compressor must satisfy

four inequalities. For Androguard, Compression libraries such

as Zlib, LZMP, B2Z, and Snappy satisfy these inequalities [2].

In this paper, Experimented to identify the speed of compressor

with text data (.pdf/.docx) as an input. Testing environment

includes Oracle Virtual box with dual core processor, Ubuntu

14.04LTS operating system 64 bits, 2GB RAM. Fig 3 and 5

shows the variation of compressed file size with respect to

various compression libraries. Fig 4 and 6 shows the time

difference between various compressors, text data is used as

an input file (.pdf) with file size 10762187 bytes and (.docx)

file with size 28535845 bytes respectively.

Observe the Fig 3,4,5,6 LZMP (Lempel–Ziv–Markov chain

algorithm) which gives a good compression rate 10.7Mb pdf

file converted to 7.5Mb but taking more time, compares to

other compressors, but snappy gives high speed compression.

Example Fig 3 LZMP takes 4.5 sec for pdf file, for the same

file snappy compress 0.0172 sec. As already discussed

compression rate is not an important factor but Snappy satisfy

the speed in both cases but gives the worst compression rate

shown in Fig 3 and 5. For time constraints Snappy is a good

compressor and NCD can check similarity between elements

quickly using Snappy.

Experiment between application similarity, downloaded

applications from official market and other third party

application markets. Conduct experiment on data set which

includes official market apk’s and another dataset third party

application market apk’s, finally experimented result shows

that compare to Zlib and xz2, snappy completes its work 40%

quicker than other two compressors. Experimental setup: five

core processors, 4 GB RAM and Ubuntu 14.0LTS operating

system. 20Mb applications hardly take 3 min to check

similarity using Zlib compressor same applications using

snappy take 120sec. Similarity result variation between two

compressors hardly 3% more than snappy. For example if

International Journal of Computer Applications (0975 – 8887)

Volume 146 – No.6, July 2016

10

Figure 3: Variations in Compressed file size (.pdf) Figure 4: Variations in Time with various compressors (.pdf)

Figure 5: Variations in Compressed file size (.docx) Figure 6: Variations in Time with various compressors (.docx)

Zlib give 75% of similarity between two applications, Snappy

gives below 72% similarity for same applications. Same way

for graphical comparison of two applications with 20Mb size,

all text and image comparison gives a result within 50sec with

acceptable result.

8. CONCLUSION AND FUTURE SCOPE
The proposed methodology implemented graphical similarity

in terms of text and image similarity and methodology also

focused on the code similarity of android application. The

method displayed the comparison result, as well as in terms of

percentage. The proposed method increase the application

comparison speed and also added graphical similarity feature

to Androguard. Existing methods are expensive in terms of

cost and complexity. Proposed method reduces the burden on

developer, part of simplifying environmental setup, available

as an open source. Opted experiment result as shown the

improved the efficiency over existing system. In future,

proposed methodology extends to compare all layouts inside

layout folder, after decompile of apk’s, which gives the more

accuracy of graphical comparison of android applications.

9. ACKNLOWGEMENT
Authors acknowledge the kind support and encouragement of

their organization, Visveswaraya Technological University

Belagavi, India.

10. REFERENCES
[1] http://www.statista.com/statistics/201182/forecast-of-

smartphone-users-in-the-us/

[2] Anthony Desnos. 2012 Honeynet project. Android: Static

Analysis Using Similarity Distance ESIEA: Operational

Cryptology and Virology Laboratory (CVO).

[3] Jiawei Zhu, Zhengang Wu, Zhi Guan, and Zhong Chen.

2015 Appearance Similarity Evaluation for Android

Applications. 7th International Conference on Advanced

Computational Intelligence, Mount Wuyi, Fujian, China;

March 27-29, 2015.

[4] http://blog.iconfinder.com/detecting-duplicate-images-

using-python/

[5] http://www.hackerfactor.com/blog/?/archives/529-Kind-

of-Like-That.html

[6] http://www.cio.com/article/2923453/careers-staffing/5-

hot-trends-in-software-development-hiring.html#slide2

[7] Steve Hanna, Ling Huang, Edward Wu, Saung Li,

Charles Chen, and Dawn Song. Juxtapp: A Scalable

System for Detecting Code Reuse among Android

Applications. Intel labs and UC Berkely.

[8] Saung Li. 2012 Juxtapp and DStruct: Detection of

Similarity among Android Applications. Electrical

Engineering and Computer Sciences University of

California at Berkeley.

[9] A. Gianazza, F. Maggi, A. Fattori, L. Cavallaro, and S.

Zanero, “Puppetdroid: A user-centric ui exerciser for

automatic dynamic analysis of similar android

applications,” ArXiv e-prints, Feb. 2014. Computer

Science - Cryptography and Security.

[10] https://code.google.com/p/androguard/

[11] http://phrack.org/issues/68/15.htm

IJCATM : www.ijcaonline.org

