Abstract

Biometrics refers to the recognition or confirmation of an individual based on certain unique features or characteristics. Biometric identifiers are the characteristic and quantifiable features that are used to label and describe individuals. Iris recognition and favor because of its high recognition rate, non-invasive and simple algorithm and other advantages, in a selection of biometric classification technology is very prominent. The iris texture feature extraction is the core of the iris acknowledgment algorithm. Fractal geometry theory provide new ideas and methods to express nonlinear image information, the fractal dimension is an imperative limitation of fractal geometry, is a measure of complexity of irregular modify, covering envelop dimension can better replicate the graphics changes in different resolution characteristics; absent is the fractal dimension and autonomous statistics, is a supplement to the fractal dimension, overcome the different texture description may have the same fractal measurement of the problem. The biometric template is usually created using some sort of arithmetical operations. If a personality wants to be identified by the system, then first a digitized image of their eye is first shaped, and then a biometric pattern is created for their iris region. This biometric pattern is
Enhanced Human Iris Recognition System based on Procedure of Authentication System

compared with all the other pre-existing templates in the database using certain matching
algorithms in order to get the identification of the individual. In this paper, we describe the novel
techniques that are developed to create an Iris appreciation System, A current survey of iris
biometric research from its inception till now lists approximately 29 publications. Research in iris
biometrics has expanded so much that, although covering only these years and intentionally
being discriminating about treatment, this new survey lists a larger number of references.

References

1. Lye Wi Liam, Ali Chekima, Liau Chung Fan and Jamal Ahmad Dargham, “Iris Recognition
using Self-Organizing Neural Network”, IEEE 2002 Student Conference on Research and
2. Eric Sung, XiLin Chen, Jie Zhu and Jie Yang, “Towards non-cooperative iris recognition
systems”, Seventh international Conference on Control, Automation, Robotics And Vision
3. Jiali Cui, Yunhong Wang, JunZhou Huang, Tieniu Tan and Zhenan Sun, “An Iris Image
Synthesis Method Based on PCA and Super-resolution”, IEEE CS Proceedings of the 17th
International Conference on Pattern Recognition (ICPR’04), 23-26 August 2004, Cambridge,
4. HyungGu Lee, Seungin Noh, KwanghyukBae, Kang-Ryoung Park and Jaihie Kim,
“Invariant biometric code extraction”, IEEE Intelligent Signal Processing and Communication
5. Xianzhao et.al, “Improved Empirical Mode Decomposition Algorithm of Processing
6. Raedet.a; , “A Powerful yet Efficient Iris Recognition Based on Local Binary Quantization”,
Information Technology And Control, Vol. 43, 2014.
8. Wei Kin et.al, “Iris recognition based on bidimensional empirical mode decompositionand
9. Azade et.al, “Iris Recognition based on Wavelet Transform and Probabilistic Neural
10. Tomasq et.al, “Selection of parameters in iris recognition system“, Multimedia tools and
11. Haiqing et.al, “A Brief Survey on Recent Progress in Iris Recognition”, Biometric
Smartphone based visible iris recognition using deep sparse filtering. Pattern Recogn. Lett. 57,
C (May 2015), 33-42.
13. Jain Zhen, “Iris Recognition based on Block Theory and Self-adaptive Feature
Selection”, International Journal of Signal Processing, Image Processing and Pattern
14. Yongqiang LI, “Iris Recognition Algorithm based on MMC-SPP”, International Journal of


Index Terms

Computer Science

Image Processing

Keywords

Iris Recognition, Biometric authentication, fractal geometry theory and feature extraction process.