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ABSTRACT

In this paper the rough interval multiobjective transportation
problem (RIMOTP) is presented and its solution procedure is
introduced. The concept of solving the interval multiobjective
transportation problem is applied for solving RIMOTP. So,
The rough interval in the objective function and the
constrains, is represented by three different models and such
models are solved by using fuzzy programming technique
based on the right limit, the center and the half-width of each
rough interval using possibly region. Numerical examples are
provided to illustrate the solution procedure of three possible
types of the original problem.
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1. INTRODUCTION

The theory of rough sets is presented by Pawlak [12]. The
rough programming is discussed by many authors [5, 9, and
15]. Abd EI-Wahed [1, 7] presented a fuzzy programming
approach to determine the optimal compromise solution of a
multiobjective transportation problem. A fuzzy technique is
used to solve the multiobjective transportation problems with
interval cost [4]. Ammar et al [3] proposed a method to solve
rough interval multiobjective transportation problem based on
weighting method and separation method. Mohanty and Dash
[8] presented the uncertainty distribution to solve rough
transportation problem. EI-Sisy [5] presented the duality of
multiobjective rough convex programming problem under
uncertainty. Xu and Tao [14] introduced a class of rough
multiobjective programming problem. Bit et al [2] developed
a procedure applying fuzzy programming technique for
solving the multi-criteria decision making transportation
problem.

In this paper, the concept of solving the conventional interval
linear programming problem combined with the fuzzy
technique is used to solve the rough interval multiobjective
transportation problem. Such technique is used to deal with
three different types of rough interval multiobjective
transportation problem. The remaining of the paper unfolds as
follows: In Section 2, rough interval definition is presented. In
section 3, Multiobjective Transportation Problem is
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illustrated. Section 4, The Proposed Approach is devoted to
numerical examples for the illustration. .

2. ROUGH INTERVAL

Definition 1: Let w denote a closed and bounded set of

numbers. A rough interval W® = [w": W"] is defined
as an interval with known lower w'= [w?, w®] and upper
bound wY= [w®, w9] but unknown distribution information
for w. and w*CwY. When wt = wY; WR becomes a

conventional interval, i.e. WR =w" = w" [13].

Definition 2: Let *e{+,—,><,+} be a binary

operation on rough interval W® and Z® when W® , z® > 0
we have w", w, Z" and ZU are conventional intervals, the
above operations can be further transferred to the following
functions if letting w" =[w?, w®], wY=[w¢, w], Zz* =[ Z2,
Zb], zY=[z°, 791 where w® , wP, w®, w¥ ,Z?, Z° Z° and
Zd are deterministic numbers denoting the lower and upper
bounds of w', wY, z" and zV

WR+ZR=(wo+ 22w +Z W+ Z°w+Z2°])
WR-ZR=(w*-Z*w"-Z":w-Z2°w"-2"))
WRxZR=(W*xZ*w°xZ J:wx Z°wx Z%])
WRsZR=(we+Z2w + Z°we+Z2w+Z9))
where Z2, Z°, z¢ and 2% #0 in {+}binary operation[6].

3. MULTIOBJECTIVE

TRANSPORTATION PROBLEM

Multiobjective Transportation Problem (MOTP) can be
classified into three different types based on the certainty of
its coefficient. The traditional MOTP where all the
coefficients in the objective function and the entire constrains
are deterministic values. The second type is the interval
multiobjective transportation problem (IMOTP) where the
coefficients of the model represented by interval values. The
third type is rough interval multiobjective transportation
problem (RIMOTP) where the coefficients of the model are
represented by rough interval values. The following section
will illustrate the mathematical model of each type.

3.1 The Deterministic Multiobjective

Transportation Problem
The Deterministic multiobjective transportation problem can
be defined as: Suppose that [8] there are m sources and n
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destinations. Let a; be the number of supply units available at
sources i (i=1, 2,..., m) and let bj the number of
demands units required at destination j (j=1, 2,...,n). Let
cij represents the unit transportation cost for transportation
the units from source i to destination j. The target is to
determine the number of units to be transported from source i
to destination j, so that the total transportation cost is
minimum. Let x;; be the decision variable which  denotes
the number of units shipped from sources i to destination j.

Min f*(x)=)") cf;x; where k =12,..,K

i=lj=1
subject to

n
inj =4

' I :112)-"1m

i=1 j=1

The weighting method [2], e-constrained [5], and fuzzy
technique [16] can be used to solve model (1).

3.2 Interval Multiobjective Transportation

Problem
The formulation of interval multiobjective transportation
(IMOTP) problem of minimizing interval cost of K'"
objectives function under constrains of interval sources

[a’ :a’ ] and interval demands [bJL Ib;J Jwhere L, U are

the lower and upper of each conventional interval [4]:

Min f5(x)=>">"[ci* ¢/ Ix; where k =1,2,...K
i=lj=1
subject to
qu =[a,a’],i=12..,m

1

qu =b;,b’], j=12..n

Z[a,L a’l= Z[bf,b]“] i=12..m,j=12..n

=1

>0

>< —

ij

Where [C iTL

which to be transported from the source i to destination j in
objective function k.

ICiTU]I the lower and upper cost of good

There are special types of IMOTP can be derived from its
general form. In the first type, the objective functions'
parameters are denoted by conventional intervals while the
remaining parameters of the model (the supplies capacities
and destination demands) are deterministic. This type can be
represented as in (3)
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m n

Min £*(x) =) Y [ct; .ct;1x; where k =1,2,...,K
i=lj=1
subject to

n

Yx; =a ,i=12..m

i Zb] 0=12,..m,j=12...n

i=1 j=1

X; >0Vi,j,i=12..,m,j=12..,n

i

In the second type, the objective functions' parameters are
deterministic while the supplies capacities and destination
demands are denoted by conventional intervals. The linear
model of such problem can be presented as in (4)

Min £ ()= ci x; where k =1.2,..,K
i=1j=1

subject to

qu =[a",a"],i=12..m

[b]' J]’J_lz’ "

|’|] Z[bj|1

X. 20

|M3:

N

i=12,..,m,j=12..n

&Ms

In order to solve the IMOTP, the separation method [3] is
used. The original model can be represented by two different
models which are the lower bound approximation model and
the upper bound approximation model and solve each model
separately.  After that the solutions of both models are
collected together to represent the interval solution for the
problem. While the deterministic solution is targeted the fuzzy
technique is applied to deal with the problem [11].

3.3 Rough Interval Multiobjective

Transportation Problem
The general rough interval multiobjective transportation
problem (RIMOTP) can be stated by (5) as follows:

Min f ¥

izn:[[cIJ ,C ][c,J , ]]xij where k =1,2,..K

i=lj=1
subject to

ixu =[[a* &’ ]:[af a']] i=L2..m

j=1

3

Xu_[[bj vb ][bJ ,b ]] J—12 n

[N

ICENCES B R )

: Xi >0 i
Where the supply, demand, and objective functions are
=[[af a7 1:[a] &) 1],
bR =[[b*,b*]:[b% ,b?1] and, f ¥ ¢) =

donated by rough intervals a1-RI
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[[F % ,F ™ J:[f %, f %7] respectively and k=
1,2, ..., K is the number of objectives.

The rough intervals

[[Ci"}‘k ,Cbi?k]i[cicjk ,Cgk 11k =12,...,K are denoted

the uncertain costs for the transportation problem. The source
parameter lies between lower approximations interval LAl

a Ab . . .
[ai y & ] (surly) and upper approximation interval UAI
[af,a_" ](possibly). Similarly, destination parameter lies

between lower approximation LAI [bja,bjb] (surly) and

c d .
UAI[bj ,bj ] (possibly)
Two special types of (RIMOTP) can be derived from the
general form. In the first type

upper approximation

Min £ =" Y [les i Flej' o Tix; where k =1,2,..K
i=1j=1

subject to

Zn:xij =3 ,i=12.,m

I

S8, oL
=1

The objective functions' parameters are denoted by rough
interval while the remaining parameters of the model (the
supplies capacities and destination demands) are deterministic
values as in (6).

In the second type, the objective functions' parameters are
deterministic while the supplies capacities and destination
demands are denoted by rough intervals as in (7).

Min f*(x)=>">cix; where k =1,2,.K
i-1j-1
subject to
>, =l a1 &1 i =12..,m
%)

2x, =[b} b} 15 b) 1 =120

Sl @i o 1= Y10} b1 b ]
X 20

Definition 3 (Pareto surely-feasible solution) A solution is
defined as surely-feasible solution if x belongs to the lower
approximation of the feasible set.

Definition 4 (Pareto possibly-feasible solution): A solution is
defined as possibly-feasible solution if x belongs to the upper
approximation of the feasible set

4. THE PROPRSED APPROACH

The proposed approach is built based on the concept of:

Step 1: Convert the rough objective into deterministic
objective as in section 4.1.
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Step 2: Convert the rough constraints into deterministic
constraints as in section 4.2.

Step 3: Construct the payoff Table by solving each objective
function individually under the set of constrains and
calculate the values of the other objectives at the
resulted solution.

Step 4: Define the maximum and the minimum value of
each objective function from the payoff Table.

Step 5: Construct the membership function of each objective
function using (11) ,(12) , (13) and (14).

Step 6: Construct the linear model defined by (15).

Step 7: Solve the linear model resulted from Step 6

4.1 Converting Rough Interval Objective to

Deterministic Objective
In order to solve the conventional interval multiobjectve
programming many Authors converted it to 2 separate models
and solve it separately and collecting the solution of the two in
on solution [11]. Based on such concept, the rough interval
multiobjective problem can be converted into a linear
multiobjectve programming as in (8).

=1 j=1
m n
Min - f e (X)= ZZC:CNLXIJ
ml:lﬂ]:l
Min X (x)= .Z-;‘ __1c|'1‘dxu
7m Jin
Min f* (x)= ;j lciljfcwuxij

where k =1,2,...,K

n

D WL +cl“™) X, :iichu : (8)

= i1 -1

k

v

I
N

ULRI
1

n

fCl;\lLRI :ZZ((a+b)+2)X i
il
WL*=(b-a)+2 and C*" =(b+a)=+2

n

fUIfJRI :ii(wu “ +CU kCNU)>(ij :izci(jixij ’

i=1j=1 =~
fl =22 (C+d)=2)X,
i=1lj=1

WU*=(d-c)+2 and C*" =(d+c)+2

Where:

ULri: the objective of the upper for lower approximation
rough interval

oniri: the objective of the center for lower approximation
rough interval

Uuri: the objective of the upper for upper approximation
rough interval

X onurr: the objective of the center for upper approximation
rough interval
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4.2 Converting Rough Interval Constraint

to Deterministic Constraint
Consider the following multiobjective transportation
problem as illustrated in (9.a-9.f):

Min f R"”(x):ZZcI K x”,where Rl =ab,cd k=12..,K (9a)
i=lj=1
subject to

injsaf, injzaf,l 12,..,m (9h)
j=l j=l
S, $x2e itz o
i i1
gxij <b?, Zl:xuzba, j=12,.0 (94)
Z;xijsbf, Zx”_b j=12..n (9e)

By studying model (9) we can find that constraints (9.b) are
dominated by constraints (9.c). Also, constraints (9.d) are
dominated by constraints (9.e). So, the model (9) can be

rewritten as in (10).i.e possibly region.

Min £ #01= Y Y6l whereRI =ab,¢,d, k =1.2...K
i<l j=1
subject to
Yxp<al, Yx2a,i=12..,m
i< i<
3, <0, Y, 2b, =12, (w0
IES j=l
Za ZbC,i 12,0, j=12,..0
i=l j=L
Ya=yb,i=12..m, j=12..
[ERE
X;20 Vi, .

4.3 Membership Function

Assuming that membership functions are linear, the linear

. N K K K
membership for minimization of T a, Tonirr Tuors -

and e are given by (11), (12), (13), and (14)
respectively [16].

1 if kaLRl <qukLR|
k fUT_RI qukLRl H k k k
Hy (fULRI )= 1_W if LfULRI <fULRI <UfULRI (11
ULRI ULRI
0 if fukLm ZUfukLRl
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1 If fCkNLRl <LfC$\lLR|
(o )efidon Mo g e
’uk( CNLRI )_ Uf k —Lf k I CNLRI < CNLRI CNLRI ( )
0 i fctum ZUfciLm
1 If fUIEJRl <|_kaURl

fr o —Lfk .
Ky (fukuru )= 1- U]:JUkm—umiRl i LfUItJRI <kaURI <Ufukum (13)
UURI UURI

0 If kaURI _UkaURI

1 If fCI;\lURI S I‘]‘:CKNURI

fom —Lfa :
o ) T Yo <f, U1, 04

CNURI CNURI

0 it f* >uf

CNURI CNURI

Max 4,
subject to
C4pUtl L) <UEE

ULRI ULRI

CNLR\ 'u(Uf CIV(\ILRI _L CtILR\ ) S Uf k

CNLRI

spUff L") <ut]

Uum UURI UURI
k k k
- <
CNURI ’U(Uf L CNUR\) _UfCNURI

qu_ ' qu_ a,i=12...m (15)

n

Y x; <b?, Zx”zb° j =120

j=l

Za Zb° i =12,..m, j=12..,0

[ERE
Za Zbd,i—lz, M, =120
i=1 =1

X;20¥i,j,u20

5. ILLUSTRATIVE EXAMPLES

To solve the 3 examples(roughness in objective function only
,roughness in feasible region only and fully roughness) beasd
on the the right limit, the center and the half-width of each
rough interval using possibly region. And all solutions are
deterministic.

In order to illustrate the solution of the first one which cost of
problem given as rough and the DM is quite sure of the
quantities exist in demands and capacities of supplies. i.e. the
roughness exist only in the objective function while the
constraints are deterministic.
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Example 1
m n
min f1=>Yc,
i<l j=1
m n
min f2=3%"ci%,
i<l j=1
subject to
4 4 4
Y Xy =8 %, =19, ) xy, =17
=1 =1 [

3 3 3 3

i=1 i=1

X; 20

Where the Cinll and Ci?l 2

6769  [B7:p9  [BITAE (676
CF<| [O10B1] [L5LTL418]) (610419 [1820:(17,2]
(L1304 [(39):[26] [OAL:(82]  [[34]:(L5])
[O:6.0] [0A0:802] [LL12): (03] [[4.6]:[36]
Ci'=| 168 [B0:  [BTLAE]  [79):6.0])
[BL0:[7.0) (315126 [BLN[) [0.0: 812

In order to solve such example we construct the model as in
(8) based on the bounded of the rough interval and canter as
follows:

Min g (X )= TXpy + TXg, + 7%y + 7%, +10X,, +17X,,
+17X 5 + 21X, +13X 5, +5X 5, +11X 5, +4X
Min e (X)= 65X, +6.5%,, +6X,; +6.5%,, +10x,, +16X,,
+16.5X 5, +19.5x ,, +12x;, +4X, +10X 5, +3.5%
Min g, (X ) =9, +9X,, +8X,5 +9X,, +10X 5, +18X,, +19X ,,
+22X 5, +14X 5, +6X 5, +12X 55 +5X 5,
Min g (X)= X4 + 7, +6X 5 +7X, +10X , +16X
+16.5X 5 +19.5% 5, +12X 5, +4X 5, +10X 5, +3X

Yox=11,) %, =3, x;;=14 ) x;, =16
i=1l i=1

International Journal of Computer Applications (0975 — 8887)
Volume 147 — No.10, August 2016

Min - f e, (X)=9x,, +11X, +12X; + 6%, +8X, +10X ,
+7X 55 + 9%, +10X 5, +15X 5, +10X 5, +11X,,
Min  f e (X )= 8Ky +10.5X , 115X ;5 +5X, + 7%, +9.5%
+6X 53 +8X,, +8X 4, +14X 5, + 9%, +10.5x
Min - f e (X )=10X, +12X,, +13X 5 + 6%, +9X , +11X
+8X 5 +11X,, +11X,, +16X 5, +11X 5, +12X,,
Min - f Quer (X )= 18X,y +10X, 115X 15 +4.5% , +7X 5, +9X
+6X 53 +8.5%,, +9x 5, +14X 5, + 9% 5, +10X,,
subject to
Xy +Xpp +X g +X,, =8
Xy X5+ X5 +X,, =19
Xgy +Xg + X +Xg, =17
Xy +X, +Xy =11
Xpp +Xp +X5 =3
X +Xp +Xg =14
Xiq + Xy +X4 =16
X; 20 vi,vj,

In order to solve the above model we have to solve each
objective function separately and calculate the remaining

objectives at the resulted as presented on Table 1.

As the 1, 2, 3 steps, the solution each single objective
transportation problem where

X = (K X K Ko K Ko X Koy Ko Ko)
X YRt = (0,2,6,0,11,0,8,0,0,1,0,16)
X SNRRIT —(0,0,8,0,11, 2,6,0,0,1,0,16)
X YR —(0,0,8,0,11,2,6,0,0,1,0,16)
X NURIL —(0,0,8,0,11,2,6,0,0,1,0,16)
X URIZ —(0,0,0,8,2,3,14,0,9,0,0,8)
X SN2 —(0,0,0,8,0,3,14,2,11,0,0, 6)
X YWRIZ —(0,0,0,8,2,3,14,0,9,0,0,8)
X SNWRIZ —(0,0,0,8,2,3,14,0,9,0,0,8)

Step 4: Find the best lower and the worst upper for each
objective (payoff Table) see table 1

Table 1: Payoff Table of Example 1

1 1 1 1 2 2 2 2

fULRI fCNLRI fUURI fCNURI fULRI fCNLRI fUURI fCNURI
XULRIT 380 351 436 344 429 397 469 382
XCNLRIL 382 349 410 341 437 406 473 397
XUURIL 382 349 410 341 437 406 473 397
XCNURIL 382 349 410 341 437 406 473 397
XULRI2 516 487 582 487 370 3225 416 322

53



International Journal of Computer Applications (0975 — 8887)
Volume 147 — No.10, August 2016

XCENLRIZ 554 523 620 524 370 319.5 408 323
XUURIZ 516 487 572 487 370 322.5 406 322
XCENURI2 516 487 582 487 370 319.5 406 322
Upper bound 554 523 620 524 437 406 473 397
Lower bound 382 349 410 341 370 319.5 406 322
The difference 172 178 210 183 67 86.5 67 75
The linear model can be constructed based on the upper and lower bounds exist above as follows
max o Example 2
bi 3 4 3 4
subject to Minimize f*=>Ycix; ,f2=>Ycix,
TX g + 1% + X5+ 71X, + 10X, +17X,, +17X i<l =L i<l =l
+ 20X, +13X 5 + 5%, + 110, +4X 4, +1720 < 554 where ¢*and c’are
6.5x, +6.5X,, +6X,, +6.5%,, +10x ,, +16X ,, +16.5% ,, 7 7 6 7 8§ 10 11 5
+19.5% , +12X 5 +4X 5, +10X 5, + 35X, +1740 <523 c'=(10 16 17 20| , C%=(7 9 6 8
OX,, +9X,, +8X,5 +9x,, +10x,, +18x,, +19X,, 12 4 10 3 9 14 9 10
+22X 5, +14X 5, +6X 5, +12X 5, + 5%, + 21000 < 620
Ty + Ty + X+ TX,, +100,, +16%,, +165 subject to
X11+ X12+ X13+ X14+ X21+ X22+ 'X23 4 4
+19.5%,, +12x,, +4X 5, +10X, + 3, +1830 <524 > xy; =[[7,91:[6,1011 , Y x,; =[[17,21]:116,22]]
j=1 j=1
OX,, +11X,, +12X 5 + 6%, +8X, +10X,, +7X,, J4 '
9%y +10K 5 +15X 5, +10K 5, +11xy, + 670 <473 lesj =[[16,18]:[15,19]],
j=
81, +10.5%, +11.5X 5 +5X, +7X, +9.5X,, +6X,, 3 3
. =[[10,12]:[9,13 - =[[2,4]:[1,5
+8X,, +8K,, +14X, +9X 5, +10.5X, +86.50 < 406 ;Xu [110,12]:[9,13]], §X.z [[2,41:[L,5]]
10x,, +12x,, +13x,, + 6X,, +9X,, + 11X, + 8% 3 3
TR T T A e e > %, =[[13,15]:112,16]1 , > x,, =[[15,17]:[15,17]]
+11x,, +11X 5, +16% 5, +11X 5, +12X,, + 670 < 473 — —
8X,, 10X, +11.5X 5 +4.5X , +7X 5, +9X,, +6X X; 20
+8.5X,, +9X 5, +14X 5, + 9% 5, +10X ,, + 750 < 397 Convert the rough constraints into deterministic constraints
Xy +Xpy Xy + Xy, =8 Min f1(X )=7Xy, + 7%, +6X 5 + 7%, +10x, +16x ,,
X1 X5 +X g5 +X 5, =19 +17X 5 + 20X, +12X 5 +4X 5, +10X 5, +3X

Xy Xy +Xg+Xg =17 Min £ 2(x )= 8X, +10%, +11X5 +5X,, + 7%, +9X,,
Xy + Xy +Xy =11
nonH s +6X 53 +8X 5, +9X 5, +14X 5, +9X 5, +10x,,,
Xpp+Xp+X5 =3

Xy X+, =14 subject to

X1y +X 5+ X5 =16 6<Xy; Xy +X 45 +X, <10

x; 20 Vi,vj, 16 <X, +X ) +X 5 +X,, <22
Er)(/);?el\r;:r:g égia?ﬁg&/?i?f%?gvv;e Pareto optimal solution of the 15< Xy +X g +Xag +X g < 19
X=(0,0,0,8,11,1,7,0,0,2,7,8) 9 <Xy + Xy +Xy <13

1<X, +X, +X5 <5
12< X3+ X 3 +X5, <16
15<X,, +X,, +X,, <17
X; 20 Vi,vj,
As the 1, 2, 3 steps, the solution of each single objective
transportation problem

F'=[[367,432]:[308.491]], F’=[[304,383]:[251.419]]
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X *=(0,0,8,0,12,0,5,0,0,2,0,15)
X ?=(0,0,0,7,0,2,13,2,10,0,0, 6)

Find the best lower and the worst upper for each objective.

Table 2: Payoff Table example 2
2

fl f
Xt 306 380
X2 487 297
Upper 487 380
Lower 306 297
Difference 181 83
max u
subject to

TXy + X, +6X 5+ 7X,, +10X , +16X,, +17X
+20X 5, +12X 5 +4X 5, +10X 43 +3X 5, +181 < 487
8, +10X, +11X 5 +5X,, + 77X, +9X 5, +6X 5,
+8X,, +9X 4, +14X 4, + 9% 5, +10x,, 8312 <380
6SX11+X12+X13+X14510
16 <Xy + X, + Xy +X,, <22
15<X 5 +X g + X 5 +X5, <19
9<Xy + X, +X4 <13
1<X, +X 0 +X5 <5
12<X 53+ X 5+ X453 <16
15<X,, +X,, +X,, <17
X; 20 Vi, j,u>0

[/ —

the Pareto optimal solution of the problem using fuzzy

technique is obtained as:
X=(0,1,1,5,10,0,7,0,0,1,5,10) F'=356, F?=317

Example 3:

Min f* :izn:c,?”xu

i=1 j=1
H 2 ShY RI2
Min 2 =>">"¢ %,
i=1 j=1
subject to

ixu =[[7,9]:[6,101] , ixzj =[[17,21]:[16,22]]

j=1

ZA:X“ =[[16,18]:[15,19]],
qu =[[10,12]:[9,13]], inz =[[2,4]:[1,5]]
ix,a =[[13,15]:[12,16]] , Zglx“, =[[15,17]:[15,17]]
: X >0 7

where c®'*and c®'? are

67:5.9  [67:591  [57:48]  [[67):[59]
CM=| [041:812]] [[1517):[14,18]) [[16.17):[14.19]] [[18,21]:(17,22]]
[ML13]:[1024]] [B51:[260  [O10:[812]]  [13.41:1L5T]
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[[7,91:[6,101] [[10,11:[8,12]] [[1112]:[20.13]] [[4,6]:[3,6]]
c=| [681:(591  [OA0:[7.11]  [B7):[480  [[7.91:[6.11]]
[18.10):[7,01]] [[1315]:[12,16]] [[8.10:[7,11)] [[0,11]:[8,12]]

Convert the rough objective into deterministic objective
Min ey (X)=7Xgy + Xy, +7X 5+ 7X g, +11X 5 +17X 5,

+17X 55 + 21X ,, +13X 5 +5X 5, +11X 55 + 4X

Min G (X )= 65Xy, +6.5%,, +6X,; +6.5%, +10X 5, +16X ,,
+16.5X 5, +19.5X ,, +12X 5, +4X,, +10X 53 +3.5X 4,

Min e (X)=9X,, +9X,, +8X,; +9X,, +10X ,, +18X,,
+19X 53 + 22X 5, +14X 5, +6X 5, +12X 43 +5X 4,

Min f Goar (X )= 7Xqy + X, 46X, + 7%y, +10X ,, +16X ,,
+16.5X 5, +19.5X ,, +12X 5, +4X 5, +10X 43 +3X 5,

Min 2o (X )=9Xy, +11X,, +12X 5 +6X y, +8X ,, +10X 5,
+7X 3 +9X 5, +10X 5, +15X 5, +10% 53 +11x,,

Min  f e (X)= 8%y, +10.5X, +11.5X 5 +5X, + 77X, +9.5% ,,
+06X 53 +8X,, +8X 4 +14X 5, + 9%, +10.5%

Min  f e, (X)=10X, +12X 5, +13X 5 +6X, +9X 5 +11X
+8X 55 +11X,, +11X 5, +16X ,, +11X 55 +12X

Min e (X )= 8Ky +10X, +115X 5 +4.5X , + 77X, +9X
+6X 53 +8.5X,, +9X 5 +14X 5, + 9% 5, +10X 5,

Convert the rough constraints into deterministic constraints

subject to

B<Xy +Xpp+Xp+X,, <10

14 =
16 <X, + X,y +Xp +X,, <22
15 <X +X g + X5+ X5, <19
<Xy + X, +X4y <13
1<X, Xy +X45 <5
12 <X+ X5 +X43 <16

15 <Xy, + X,y + X5, <17

X; 20 Vi, j

As the 1, 2, 3 steps, the solution of each single objective
transportation problem

X YRt =(0,0,7,0,11,0,6,0,0,2,0,15)
X NHRIT - (0,0,8,0,12,0,5,0,0,2,0,15)
X YRt —(0,0,9,0,12,1,4,0,0,1,0,15)
X CNURIL — (0,0,8,0,12,0,5,0,0,2,0,15)
X U2 = (0,0,0,7,0,2,13,2,10,0,0,6)
X NR2 - (0,0,0,7,0,2,13,2,10,0,0,6)
X YR'?-(0,0,0,7,2,2,13,0,8,0,0,8)
X N2 (0,0,0,7,2,2,13,0,8,0,0,8)

Find the best lower and the worst upper for each objective by
solving the classical multiobjective transportation problem.
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Table 3: Payoff Table Example 3

1 1 1 1 2 2 2 2
fULRI fCNLRI fUURI fCNURI fULRI fCNLRI fUURI fCNURI

XULRIL 342 3115 367 304 416 382.5 443 368

XCNLRIL 343 311 366 303.5 430 395.5 456 380

XUURIL 345 3125 365 305 431 397 455 380

XCNURIL 382 311 366 303.5 430 395.5 456 380

XULRI2 500 472 556 472.5 337 201 472 294.5

XCNLRI2 500 472 556 472.5 337 201 472 294.5

XUURI2 462 436 514 4355 337 294 370 293.5

XCNURI2 462 436 514 4355 337 294 370 293.5

Upper bound 500 372 556 472.5 431 397 456 380

Lower bound 342 311 365 303.5 337 291 370 293.5

The 158 161 191 169 94 106 86 86.5

difference
The linear model can be constructed Based on the upper and 6. CONCLUSION
lower bounds exist above as follows: The different types of rough interval multiobjective
max o transportation problem are introduced and the solution
subject to approach is presented. The concept of solving conventional

TX g+ TX g + T+ 7%, + 116, +17X, +17X

+ 21X, +13X 5 +5X 5, +11X 5, +4X 5, +1580 <500

6.5X,, +6.5x,, +6X,, +6.5x,, +10x ,, +16X 5, +16.5X ,,

+19.5X,, +12X 5 +4X 5, +10X 5, +3.5%,, +1610 <372

OX,; +9X, +8X,5 +9x,, +10x,, +18X,, +19X

+22X 5, +14X 5 +6X 4, +12X 5 + 5%, +1910 < 556

TXyy + X, +6X 5 +7X,, 10X, +16X ), +16.5X

+19.5X,, +12X 5 +4X 5, +10X 5, + 3X 5, +1690 < 472.5

X,y +11X, +12X 5 +6X , +8X,, +10X,, +7X 55

+9X 5, +10X 5, +15X 5, +10X 3 +11X 5, + 940 < 431

8, +10.5%, +11.5X 5 + 5%, + 7%, +9.5%,, +6X,,

+8X,, +8X 4, +14X,, +9X 5, +10.5% 5, +1060 <397
10x ,, +12x,, +13X 5 + 6%, + 9%, +11X,, +8X

+11x,, +11x, +16X 5, +11X 5, +12X ,, + 86w < 456
8X,; +10X , +11.5X,; +4.5X, +7X,, +9X,, +6X

+8.5X ,, +9X 5, +14X,, +9X 55 +10x 5, +86.50 < 380

B <Xy +Xp+ X5 +X, <10
<22

24 —

<19

34 =

16 <X, + Xy +X 5 +X
15 <X 4 +X g +X g5 +X
Q<X +X, +X4 <13
1< X, +Xp+X5 <5
12<X 3+ X3 +X53<16
15< Xy, +X, +X5, <17
Xy 20, Vi,j,020

The Pareto optimal solution of the problem using fuzzy
programming technique is obtained as following:

X=(0,0,6,1,10,1,6,0,0,1,1,14)
Fl= ([291,350]:[231.397), F’=([310,389]:[275.428])

interval programming combined with fuzzy programming is
used to build the solution approach for RIMOTP. The
proposed approach can be applied for solving different types
of transportation problem such as rough interval fixed charge
transportation  problem, and rough interval solid
transportation problem.
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