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ABSTRACT 

Finite Element method is a numerical method for finding 

approximate solution to boundary value problems for partial 

differential equations. It uses subdivision of a whole problem 

domain into simpler domain, called finite elements, and 

variation methods from the calculus of variations to solve the 

problem by minimizing an associated error function. 

Finite element method (FEM) is applied in engineering as a 

computational tool for performing engineering analysis. 

FEM form a global linear system of algebraic equations 

(homogenous/ non-homogenous) to find the solution of 

analysis problems. 

In structural dynamic problems the algebraic equations will 

of the form [K]{u}=ω2[M}{u}, [K] and [M] are stiffness and 

mass matrices. Solving this large order system will generate 

natural frequencies and mode shape of the structure. Since 

most of the analysis is carried out for first few frequencies 

and mode shape of the structure, solving the entire system is  

required iterative method  used to transform system into 

reduced system from where the eigenvalues are extracted in 

increasing order .(Lanczos/subspace). 

In the proposed work, the Lanczos algorithm implementation 

is modified to extract the natural frequencies and mode 

shapes of the structure in a given input frequency range. The 

eigenvalues and eigenvectors are computed in multiple 

passes to Lanczos reduction algorithm. In order to get faster 

converges of previously calculated eigenvectors and used 

subsequent reorthogonalization vectors. This reduced the 

overall time required to extract frequencies and mode 

shapes .This is one of requirements of in-house developed 

FEM based structural analysis software FEASTSMT. 
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1. INTRODUCTION 
FEAST (Finite Element Analysis of STructures) is the 

Indian Space Research Organisation (ISRO) structural 

analysis solver software based on Finite Element Method 
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(FEM) realized by Structures group of Vikram Sarabhai 

Space Centre (VSSC).Numerical methods are utilized to 

solve large dimension problems that in most cases belong to 

elliptic, parabolic and hyperbolic class of partial differential 

equations encountered in the field of solid mechanics, 

which is the theoretical basis for structural engineering.[1] 

Finite element method (FEM) is a very popular numerical 

method that has found use in finding practical solutions to 

field problems in solid mechanics, electro-magnetic thermal 

engineering etc. 

Lanczos algorithms are very attractive because the 

multiplication by is the only large-scale linear operation. 

Since weighted-term text retrieval engines implement just 

this operation, the Lanczos algorithm can be applied 

efficiently to text.                
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2. LANCZOS ALGORITHM FOR 

SOLVING LARGE ORDER 

PROBLEMS  
The basic Lanczos recurrence algorithm is a transformation 

process to a reduced tridiagonal form. The algorithm 

truncates the tridiagonalization process and provides 

approximations to the eigenpairs (eigenvalues and 

eigenvectors) of the original matrix.The tridiagonal reduction 

is an automatic matrix reduction scheme whereby the eigen 

solutions in the neighbourhood of a specified point in the 

eigen spectrum can be accurately extracted from a 

tridiagonal eigenvalue problem whose order is much lower 

than that of the full problem. Specifically, the order, m of the 

reduced problem is never greater than [4] 

  102  qm  

Where; q is the desired number of accurately computed 

eigenvalues. Thus, the intrinsic power of the method lies in 

the fact that the size of the reduced eigenvalue problem is of 

the same order of magnitude as the number of desired roots, 

even though the discredited system model may possess 

thousands of degrees of freedom. 

Tri-diagonal reduction method employs only a single initial 

shift of eigenvalues and hence usually requires only one 

matrix decomposition. The Lanczos tri-diagonal reduction 

method is implemented in FEASTSMT for real eigenvalue 

analysis as typified by structural vibration and buckling 

problems.[2] 

The usual first step in performing s dynamic analysis is 

determining the natural frequencies and mode shapes of the 

structure of the with damping neglected .these results 

characterize the basic dynamic behaviour of the structure and 

are an induction of how  the structure will respond dynamic 

loading . 

The natural frequencies of a structure are the frequencies at 

which the structure naturally tends to vibrate if it is subjected 

to a disturbance .for example, the strings of piano are each 

tuned to vibrate at a specific frequency .Some alternate terms 

for the natural frequency are characteristic, fundamental 

frequency, resonant frequency, and normal frequency.[2] 

The deformed shape of the structure at a specific natural 

frequency of vibration is termed its normal mode of 

vibration .Some other terms used to describe the normal 

mode are mode  shape ,characteristic shape ,and 

fundamental .each mode shape is associated with a specific  

natural frequency. 

Natural frequencies and mode shapes are functions of the 

structural properties and boundary conditions. If the 

structural properties change, the natural frequencies change, 

but the mode shapes  

The Lanczos algorithm is an iterative algorithm devised by 

Cornelius Lanczos that is an adaptation of power methods to 

find eigenvalues and eigenvectors of a square matrix or the 

singular value decomposition of a rectangular matrix. It is 

particularly useful for finding decompositions of very large 

sparse matrices. In latent semantic indexing, for instance, 

matrices relating millions of documents to hundreds of 

thousands of terms must be reduced to singular-value form. 

The power method for finding the largest eigenvalue of a 

matrix A can be summarized by noting that if 𝑥0 is a 

random vector and𝑥𝑛+1=𝐴𝑥𝑛  , then in the large n 

limit, 𝑥𝑛/ 𝑥𝑛   approaches the normalized eigenvector 

corresponding to the largest eigen value in magnitude. 
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Fig 1  : Tridiagonal Reduction Method 

3. MODIFIED LANCZOS 

ALGORITHM 
Step 1: Initialize converged modes and vector values  

 (√𝑖 )   = 0 and (∅) = null 

Step 2:  Declare the end frequency range. 

  E.g.:   m_freq =500(Input) 

Step 3: Find shift parameter (𝛼2
) for removing possible 

singularities in the eigen system. 

 
2

0
,

2

min
 MAX=

2
             

Where; 0;

max

10
2

n  =
2

min



 M ii

M ii

K iit
   

                    

M ii

K ii

min

 10
3
t-

=
2

0
      

K ii
 and M ii

 are the diagonal elements of   Kaa   and 

 M aa . n  is the number of  ua
 degrees of freedom, and t 

is the decimal digit carried by the computer. 

Step 4: Zero-out excessively small Elements of [M] matrix. 

a. Compare the magnitudes of all off-diagonal elements of 

[M] with the corresponding diagonal elements and determine 

whether 
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ji
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b. Set the 𝑚𝑖𝑗 =0 for every off-diagonal element for 

satisfying the condition. 

Step5:  Call the Lanczos algorithm, compute     eigensolution 

for nr modes  

            Input: 1.Converged vector (√𝑖 )   

                2. Requested modes (𝑞 ). 

     Output: 1.Computed eigenvalues (⋋𝑖 )   

                   2...Eigenvector (∅𝑖 )  

Step6: Call extracts Eigen modes  

             Input: 1.Number of modes (nr),  

                   2. Eigenvalues (⋋)  

                   3. Eigenvector ( ) 

Output: 1.converged modes(√𝑖 ) and computed frequencies 

(𝑓 ) 

             2. The Termination flag 

Step7:   If the termination flag is False go to Step 6 
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Step8: Write converged frequencies (f) and converged 

modes(√𝑖 )  

 A.     Lanczos Algorithm[2] 

Solve for eigen value and vectors(//K is assumed to be 

decomposed) 

Input: nr, p, converged modes(√𝑖 ) 𝒓  

 Step1   :  Establish the size of the reduced eigenvalue       

problem  

a. Count the number of non-null columns or rows in the 

matrix [M] 

pnr  Where; p is the number of previously 

computed eigensolutions 

b. Calculate the size of reduced eigenvalue problem 

 rqm ,102min   

Where, pqq   

q  = Total number of accurate eigenvalues            requested 

by the user 

Step2: Construct   factors of [K] Matrix  

a. Set 

i.    M aaK aaK 
2
0

  

ii.    M aaK aaK 
2  

iii.    K aaK   

 

b. Perform non-square root decomposition  

     L
T

dLK   

Step3: Initialize recurrence algorithm 

Initialize vector index, 0i and set   0
0
V  

Where is an 1n  “null”vector. 

Step 4: Generate a starting or restart vector 

and set     01 d i   

a. Construct an n-element vector  W  using 

pseudo random number generator. 

b. Solve for un-normalized trial vector from 

the equation 

                       wBvi 1
 

i.      LdL
TB

1
  

ii.       L
T

LB M 


1
 

iii.       L
T

K
d

LB



1

 

Forward and backward passes are used to perform the above 

inverse operations 

a.   Normalize the above vector 
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              Set   01 d i and proceed to step 5. 

   Step 5: Create one approximate Trial vector and one            diagonal 

coefficient. 

               The recurrence algorithm is: 
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Where;     BDB  and  vi

0

1
 is an approximation to 

new trial vector. 

Step 6: Perform first normalization test. 

        The test is: 

                             aii
t

di


 10
2

1
 

       Pass: Proceed directly to Step 5 

      Fail: Return back to Step 2. Generate a new restart vector 

for  Vi

0

1
 and proceed to Step 5. 

Step 7: Iterate to obtain orthogonalized vector 

                Designate {𝑋 j}; j = 1 to p, as previously calculated 

and stored eigenvectors ( ) and frequencies (𝑓). 

       Perform the iterations: 
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1
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1
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T
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
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If the orthogonality criterion is satisfied, proceed to Step 6. 

Otherwise, set problem size „m = i‟ and proceed to exit. 

 

Step 8: Normalize the orthogonalized trial vector. Compute 

     

    V
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iDV
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V
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This is the new orthogonalized and normalized trial vector. 

Step 9: Second normalization test and criteria of off-

diagonal coefficient 

a. Compute the next off-diagonal in the 

reduced tri-diagonal matrix form. 

                   Vi
BV i

T

di 11 



 

b. Verify whether the following test is met: 

  aii
t

d i 10
2

1
  

If it has, set 1 ii and return to step 3 for the continuation 

of recurrence algorithm. If   the test fails, set in  to reduce 

the problem size and proceed to exit and issue message to the 

user that only '' i modes can be obtained. More than r-f 

modes may have been requested. 

Step 10: Solve reduced eigenvalue problem. 

a. Find the diagonal elements and off -diagonal 

elements of reduced tridiagonal  matrix [A] 

b. The mth
 order eigenvalue problem  

                       yyA   

c. The reduced system eigenvectors are 

normalized. 

                  mIyiy
T

,1,1       

Step 11: Compute maximum eigenvalue errors. 

a. The maximum absolute relative errors in the computed 

physical  eigenvalues are    

a.                     

  
   mi

ii

ymi
i

d m
,1;

0
1

1








  

b. where ;   

a.  d m 1
is the last off -diagonal term and 

 ymi
is the last element in the vector {𝒚𝒊}.  If the   

physical eigenvalue  


0
0

1
  is corresponds to the 

rigid body mode, the above computation is invalid. A 

rigid body mode is assumed to occur 

10
3

0
0

1 t




is denoted by setting the relative 

error  𝜺𝒊equal to flat zero  

b. The eigenvalues are processed in order of increasing 

distance from the center of range of interest,  0
 , to 

determine whether their associated 𝜺𝒊 values meet an 

acceptable relative error tolerance. (The default value is 

.001/n where n is the order of the stiffness matrix). The 

first Eigen value not meeting the tolerance test. As well 

as subsequent eigenvalues further removed from t the 

center of interest are considered to lack sufficient 

accuracy and are therefore rejected 

c. Acceptances Eigen values are obtained in the above 

manner are reordered in terms of       increasing physical 

values. 

Step 12: Compute the physical Eigenvalues ( ⋋i) and 

Eigen vectors (∅𝑖  ). 

Output:   

1. 




i
i

1
 (Buckling) 

2. { ∅ 𝒊}  =  [𝒄−𝟏]𝑻{V} {𝒚𝒊}(Buckling or Un-

shifted vibration mode Problems 

             Where,  i
(shift in Physical eigenvalues) 

i.e 




i
i

1
  

                       ∅𝑖(Eigenvectors)  and 

Natural frequencies (𝜔2) 

           [V]= {v1},{v2}, ………………{𝑣𝑚 }  

Step1:  \\Extract the modes\values.  

                Input:  1. ⋋𝒊  , I = 1 to nr 
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                             2. Eigen values ( ⋋𝑖 ) 

                              3. Endfreq (m_freq) 

                              4. nr (number of Modes)  

                    bool termination = false  

Step2: Frequency (f) calculation  

   f = sqrt 
⋋𝑖

2𝜋
  

For I = 0 to nr 

begin 

f = sqrt 
⋋𝑖

2𝜋
  

If (f   ≥ m_freq) 

         termination = True; 

           break; 

 𝑓    .add (p); 

√𝑖 .add ( ); 

           End  

Step3:    Return (termination flag,𝒇  ,√𝒊)  

          Save the values 

      Step 1: Save the values 

               Input: f, √𝑖  

                      nmode =   f. no ( ); 

               For   I =0 to nmode do 

    begin 

        Set V to dof and   Save the Dof Values, 

End 

4. RESULTS 
Model 1 

 

Figure 1 : Eigen values extraction usingLanczos solver 

 

Figure.2 Extracting frequencies and modes of a structure 

using Lanczos algorithm 

 

Figure.3 Vibration modes of a structure 

 

Figure.4 :Eigen values extraction using modified Lanczos 

solver 

 

Figure.5.Frequencies and mode shape extraction using 

modified Lanczos Algorithm 
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Figure.6  List of Vibration Modes within user input range 

 

Figure.7  Modes and frequencies within user input range 

5. CONCLUSION 
Launch vehicle structural components are analyzed with vary 

large size FE Model. In this thesis, various aspects for the 

eigenvalues and eigenvectors extraction methods were 

familiarized. The details of Lanczos algorithm for solving 

large order system of homogeneous equations implemented 

in FEASTSMT solver are studied. Since Lanczos method is a 

tridiagonal reduction method, with reduced size depends on 

the number of modes to be extracted, a modified version is 

implemented for users interested in structural frequencies in 

a given range. Lanczos algorithm is used multiple passes, 

which eliminates vector re-orthogonalization. Converged 

vectors of previous passes are retained and used for 

subsequent passes, ensuring speedy convergence of 

orthogonalized vectors. In order to enable users to feed 

frequency range, necessary changes are done in pre/post 

processor of FEASTSMT to accept inputs. 

The modified implementation is tested for various launch 

vehicle models and results are discussed in the thesis. 
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