
International Journal of Computer Applications (0975 – 8887)

Volume 147 – No.12, August 2016

28

Variability Analysis in the Power Appetite of GPGPU

Applications

Winnie Thomas
V. J. Technological Institute

Department of Electrical Engineering
Mumbai, India.

Rohin Daruwala
V. J. Technological Institute

Department of Electrical Engineering
Mumbai, India.

ABSTRACT

Due to the high-performance demands, GPGPUs are designed

to be optimized for higher performance, even at the cost of

large power consumption. This article presents the variation in

the power appetite of GPGPU applications. It proposes a

method to predict the characteristics of an application through

the way power is consumed by different components of the

GPGPU. It is observed that certain components which are

over-used by one application may be under-used by another

application. This presents a challenge for the GPU architects

to design a favorable and balanced system for different types

of GPGPU applications. An architecture that improves power

efficiency is currently required but for time-constraint real

time system, performance cannot be compromised. This work

is an attempt to provide precious insights on designing a

reconfigurable system that fulfills the demand of end users.

General Terms

General purpose graphic processing units, power

consumption, CUDA, execution unit

Keywords

Variability analysis, power breakdown, cycle-accurate,

frequency scaling.

1. INTRODUCTION
The General purpose Graphics processing Unit (GPGPU)

based on Single Instruction Multiple Data (SIMD)

architecture has proved to be an efficient and cost-effective

platform for various high performance computing (HPC)

applications. Originally SIMD is popular among the

applications such as digital signal processing and 3D

rendering that deal with large data sets and do not demand

complex control flow. With the advent of programming

models like CUDA [1] and OpenCL [2], programming a

GPGPU has become easier. The HPC applications are now

written for such platforms to exploit parallelism and to

improve throughput. These applications however show

variation in terms of amount of parallelism, and affinity

towards specific resources [3], [4], [5]. Hence the amount of

power consumed by the applications also differs. A detailed

analysis of the power appetite of some representative GPGPU

applications (also shown in Fig 1) is presented. Not all the

resources within the system require the same share from the

total power. Analyzing individual application, it is found that

one or more of the total resources within the GPGPU can

consume a major lump of the total power relative to other

resources. Hence it is concluded that the power consumption

across the components in a GPGPU system is uneven.

Combating this irregularity presents a challenge for future

architects as power efficiency is to be enhanced without

trading the performance of the applications.

Fig 1: Power consumption of Applications normalized to

VADD

2. PRIOR WORK
GPU power analysis can be found in several prior works.

Huang et al. [6] evaluate the performance, energy

consumption and energy efficiency of commercial GPUs.

Hong and Kim [7] propose an integrated GPU power and

performance analysis that predicts the power consumptions of

GPU workloads based on the PTX instruction. Zhang et al. [8]

analyze the performance and power consumption of a typical

ATI GPU at the architectural level. They use micro-

benchmarks to study power consumption which can be seen

as a software management technique. Abe et al. in [9] show

that energy can be saved by scaling cores and memory system

of a GPU. Lee et al. [3] presented a method to apply DVFS

algorithms to the GPU. They particularly aimed at

maximizing performance under the given power constraint.

Wang et al. [10] propose a technique for saving static energy

in both L1 and L2 caches. They propose putting the L1 cache

(which is private to each core) in state-preserving low-leakage

mode when there are no threads that are ready to be

scheduled. Further, the L2 cache is transitioned to low-

leakage mode when there is no memory request. Lashgar et al.

[11] propose the use of a filter cache to save energy in GPUs

by reducing accesses to the instruction cache. A unified local

memory design for GPUs is presented by Gebhart et al. [12].

Before the launch of each kernel, the system reconfigures the

memory banks to change the partitioning of the memory. By

effectively using the local storage, their design reduces the

accesses to main memory.

We show that how the power appetite of different components

of the GPGPU system varies across the applications. This

variation in power appetite is the result of application

characteristic and it becomes a challenge for the architects to

build a system that runs the application with best performance

with high power efficiency in compliance with the demands

of users.

International Journal of Computer Applications (0975 – 8887)

Volume 147 – No.12, August 2016

29

3. BACKGROUND
This section provides salient information of GPGPU

architecture and GPGPU application.

3.1 GPGPU Application Structure
The applications for this work are written in CUDA. A CUDA

application consists of many kernels. Kernels implement

specific functions of an application [13]. The execution on

GPUs starts with the launch of a kernel. Due to which, threads

are generated, collectively called as a grid. When all the

threads complete their execution, the grid formed by threads

also ends for that kernel [13]. The remaining non-kernel part

of the program is executed on host till the next kernel is called

by host.

The threads on CUDA are organized into a hierarchy of

threads, warps, CTAs and grid of CTAs. Once a kernel is

launched, the grid corresponding to the threads is generated.

To assign the threads to execution resources, they are grouped

into CTAs. Execution of CTAs can be performed in any order.

CTAs are scheduled in the pipeline of cores in the form of

warps which are made up of 32 threads. For our target

architecture the warps are scheduled with greedy-then-oldest

technique into the pipeline by the warp scheduler in each core

which prioritizes a warp until it stalls and then oldest warp is

selected for execution.

For this work, one kernel is active at a time. Once the kernel

is launched the CTA scheduler assigns CTAs to all the

available cores [14]. The assignment of CTAs are carried in

round-robin and load balanced fashion [15], [16].The first

CTA is assigned to core 0, then next CTA to core 1 and so on.

If a core is capable to run multiple CTAs then next round of

assignment begins if there are enough CTAs. The maximum

number of CTAs that a core can execute depends on the

available on-chip resource requirement of each thread which

includes register file size, number of ALU units, shared

memory size. Hence this process of CTA allocation continues

till all the cores get the maximum number of CTAs a core can

run.

Fig 2: GPGPU Architecture

3.2 Baseline GPGPU Architecture
A GPGPU consists of many simple in-order cores. Each core

has 8 to 32 Single Instruction Multiple Thread (SIMT) lanes.

Our target system shown in Fig. 2 consists of computing cores

with 32 SIMT lanes each. Each core has a private L1 data

cache and a high bandwidth on-chip shared memory that can

be shared by threads from the same CTA. If the requested data

is not present in shared memory or in L1 data cache, the

memory request is forwarded to one of the memory partitions

through the crossbar interconnection network. There are 8

memory partitions in our target system. The baseline

configuration used in this work is described briefly in Table 1.

3.3 Application Suite
The applications for this work include Vector Addition

(VADD), Clock (CLK), Scalar Product (SP) from CUDA

NVIDIA SDK application suite [17]. Colombic Potential

(CP) is from [14] and the two kernels of Back Propagation

(BP1 and BP2) are from Rodinia [18] application suite. The

evaluation of the techniques was carried on GPGPU-Sim

v3.2.2 [14], a publicly-available cycle-accurate GPGPU

simulator. The configuration described in Table 1 was

modeled in GPGPU-Sim. Each application is run till

completion or 1 billion instructions, whichever comes first.

Power consumption is estimated using GPUWattch [19]

assuming 65 nm technology.

Table 1: Baseline Architectural Configurations

Number of

Shader cores
30 , 650MHz each

Warp size 32

Resource per

core

Max.1024 threads,16kB shared memory,

16384 registers

Caches

(per core)

2KB 4-way L1 inst. cache, 16KB 4-way

L1data cache, 8KB 2-way constant cache,

12 KB, 128B cache line size except const

cache of 64B line size.

L2 cache
128KB/memory sub-partition, 8-way, 128B

cache line size

Scheduling

policies

Greedy then oldest for warps, round robin

and Load-balanced scheme for CTAs.

Interconnect
Crossbar, 32B channel byte, destination tag

routing mechanism, 625MHz

DRAM

model

Out-of-order FR-FCFS,8 Memory

partitions,4B Bus width,4B Burst Length,

GDDR3

timing

800 MHz, tCL = 10, tRP = 10, tRC = 40, tRAS

= 25, tRCD = 12, tRRD = 8, tCDLR = 6,

tW R = 11

4. POWER APETITE ANALYSIS
Prior work [5], [15] and [16] have categorized the applications

using various parameters as throughput, L1 cache miss rate,

congestion in the network, amount of off- chip DRAM usage

and even amount of branch divergence exhibited by the

applications. The characteristic of an application is

determined by leveraging the power consumption of different

architectural components of the GPGPU. This work also

investigates the potential of saving the power with different

techniques without trading the performance of the application.

4.1 Vector Addition (VADD)

With the GPGPU configuration described in Table 1 the

execution time of VADD is shortest among all the

applications because of few instructions in its kernel. The

throughput of the application is 26.6% of the peak throughput

of the GPGPU [5]. High throughput represents the high

computational power of an application. The low throughput of

VADD signals underutilization of compute resources as

floating point units (FPU), Special function units (SFUs) that

collectively form execution unit. Fig 3 depicts the average

power consumption of each micro architectural component of

the application.

International Journal of Computer Applications (0975 – 8887)

Volume 147 – No.12, August 2016

30

The major share of the total power is consumed by the

memory with 54% of the total power. The memory system of

GPGPU includes interconnection network between cores and

L2 cache partitions also termed network-on-chip (NOC); the

memory controller and the DRAMs. The percentage of power

consumed by compute resource comprising execution units

and register files are only 19%. Dynamic constant power is

14% which is represented by “Constant” in Fig 3.

Next, when the number of compute resources was doubled

there is a slight increase in power consumption as shown in

Fig 4. But there is degradation in the performance as shown in

Fig 5. Clearly this application is memory intensive as adding

more number of cores increases the number of memory

requests saturating the memory system. As power dissipation

of a component and frequency are directly proportional, third

bar C-Freq-Down in Fig 4 corresponds to power consumption

when the frequency of all cores in baseline is reduced by 50%.

In this case the performance is enhanced by 67.8% and power

saving relative to baseline is 15.3%. The last bars in Fig 4 and

5 show power and performance when the frequency of cores

is reduced by 50% and that of DRAMs increased by 50%

represented as C-Down-M-Up. In this case the performance

improvement is 85.39% but power saving is 7.53% relative to

baseline.

Hence the last two cases are favorable configurations for

applications like VADD that requires the strength of the

computational resources to be reduced. This can be

accomplished by decreasing the population of processing

cores or by reducing the operating frequency of the

application. If speed is the priority as in real-time system then

the last case should be preferred.

Fig 3: Average power breakdown of VADD

Fig 4: Average Power consumption of VADD with

different configuration

Fig 5: Performance of VADD normalized to baseline

4.2 Clock (CLK)

Clock (CLK) is an application with 64 CTAs and the

performance of 52% relative to the peak performance of the

baseline GPGPU. Fig 6 shows the power consumption when

run on baseline configuration. The highest power consumer is

the register bank which forms the part of the compute

resources.

The performance of CLK in case of 60 cores is improved by

16.7% whereas power consumption also increases by 28.6%

which is high. When the frequency of cores is reduced, 5.3%

performance improvement is observed and power saving of

31.55% relative to baseline is seen. Hence for such

applications the last two configurations are favorable as the

performance improvement is limited due to few CTAs. Thus

configuration that saves the power should be preferred for

applications like CLK.

Fig 6: Average power breakdown of CLK

Fig 7: Average Power consumption of CLK

International Journal of Computer Applications (0975 – 8887)

Volume 147 – No.12, August 2016

31

Fig 8: Performance of CLK normalized to baseline

4.3 Scalar Product (SP)

Number of CTAs that execute the kernel of SP is 196. Fig 9

shows that 39% of total power is consumed by memory

system and execution unit consumes 10% and register file

consumes 15% of the total power. Relative to VADD the

application suffers higher idle periods. As each core at a time

accommodates 3 CTAs in first round and remaining 38 CTAs

wait for their turn. By the end of execution many cores would

be idle as no more CTAs are to be scheduled. This creates

significant amount of idle periods. Doubling the compute

resources would not only degrade the performance by 26.11%

as shown in Fig 10 but also increases the power consumption

by 3.9% as shown in Fig 9.

As can be seen from the pie chart significant power is

consumed by compute resources decreasing just the core

frequency does not enhance the performance of the

application. However certainly there is a significant power

saving of 25% relative to baseline. The performance

improvement of 23.498% is experienced as shown in Fig 11

depicted by C-DOWN-M-UP when memory frequency is

increased. The power consumption is reduced by 20.3%

relative to baseline. Clearly the GPGPU with the

configuration corresponding to C-DOWN-M-UP is the

suitable most for applications exhibiting the characteristics

like that of SP.

Fig 9: Average power breakdown of SP

Fig 10: Average Power consumption of SP

Fig 11: Performance of SP normalized to baseline

4.4 Colombic Potential (CP)

 Previous work in [15] and [16] has established CP as a

computationally intensive application and this is further

substantiated here by the major power consuming components

as shown in Fig 12, 71.92% of power is alone consumed by

the execution unit. Doubling the cores definitely increases the

power consumption the improvement in the performance is by

70.5%. In the next two cases where frequency of the cores are

scaled down the performance is not affected but a power

saving of 46% is observed. Increasing the frequency of

memory depicted as C_Down_M_Up in Figures 13 and 14

saves no power and presents approximately similar

performance relative to baseline configuration. Thus third

case can be preferred due to the ability of the configuration to

save maximum power without any loss of performance. The

other way to get performance equivalent to second case would

be to double the computation resource and reduce the

frequency of each core to have a significant reduction in

power consumption.

Fig 12: Average power breakdown of CP

International Journal of Computer Applications (0975 – 8887)

Volume 147 – No.12, August 2016

32

Fig 13: Average Power consumption of CP

Fig 14: Performance of CP normalized to baseline

4.5 Back Propagation-1 (BP1)

The first kernel of Back Propagation (BP1) shows a very high

demand of power from execution unit (60%) and 14% from

register bank as shown in Fig 15. Clearly providing additional

amount of compute resource will enhance its performance as

shown in Fig 17 by second bar. An 85.3% of performance

improvement is experience by application relative to baseline

configuration. Accordingly the power consumption also

increases by 81.9% as shown in Fig 16. In the next two cases

an improvement of only 1.3% is observed but the amount of

power saved is approximately 46% with frequency scaling.

Hence second and third configurations (C_Freq_Down) can

be preferred for the speed and power-efficiency respectively

of applications like BP1.

Fig 15: Average power breakdown of BP1

Fig 16: Average Power consumption of BP1

Fig 17: Performance of BP1 normalized to baseline

4.6 Back Propagation-2 (BP2)

From power breakdown pie chart of BP2 as shown in Fig. 18

both DRAM and execution unit consumes equal amount of

power. The requirement of application is both compute

resources and memory resource in equal proportion. On

increasing population of compute resources the performance

improves by 40.8% (Fig 20) and the power consumption

increases by 36.68% as shown in Fig 19. When the frequency

of baseline is reduced by 50% the 41.71% of power can be

saved relative to baseline. If further the memory frequency is

increased 41.1% power is saved and performance improves by

5.82% relative to baseline configuration. Thus the third case

of reduced core frequency should be preferred due to

improved performance and significant power saving for the

applications like BP2 that have balanced power demand from

execution and memory resources.

Fig 18: Average power breakdown of BP2

International Journal of Computer Applications (0975 – 8887)

Volume 147 – No.12, August 2016

33

Fig 19: Average Power consumption of BP2

Fig 20: Performance of BP2 normalized to baseline

5. CONCLUSIONS
The article presents the variation in the power consumption of

GPGPU applications. It makes an attempt to predict the

characteristics of an application through the way power is

consumed by different components of GPGPU. It is observed

that how certain components which are over-used by one

application may be under-used by another application. This

presents a challenge for the GPU architects to design a

favorable and a balanced system for all kinds of GPGPU

application. An architecture that saves power is always good

but for time-constraint real time system, performance cannot

be compromised. Hence this work can provide some insights

on designing a reconfigurable system that fulfills the demand

of end users. In a multi-GPU environment with the different

types of GPUs, predicting the behavior of an application

through the power-appetite during run-time and porting the

application to the appropriate GPU is the potential future

scope of this work.

6. REFERENCES
[1] CUDA C Programming Guide. Retrieved February 3,

2016 from docs.nvidia.com/cuda/cuda-c-programming-

guide

[2] Stone, J.E., Gohara, D. and Shi, G., 2010. OpenCL: A

parallel programming standard for heterogeneous

computing systems. Computing in science &

engineering, 12(1-3), pp.66-73.

[3] Lee, J., Sathisha, V., Schulte, M., Compton, K. and Kim,

N.S., 2011, October. Improving throughput of power-

constrained GPUs using dynamic voltage/frequency and

core scaling. In Parallel Architectures and Compilation

Techniques (PACT), 2011 International Conference on

(pp. 111-120). IEEE.

[4] Sethia, Ankit, and Scott Mahlke. "Equalizer: Dynamic

tuning of gpu resources for efficient execution."

Proceedings of the 47th Annual IEEE/ACM International

Symposium on Microarchitecture. IEEE Computer

Society, 2014.

[5] Thomas, W. and Daruwala, R.D., 2015, December.

Investigations into techniques to accelerate memory

intensive GPGPU applications. In 2015 Annual IEEE

India Conference (INDICON) (pp. 1-6). IEEE.

[6] Huang, S., Xiao, S. and Feng, W.C., 2009, May. On the

energy efficiency of graphics processing units for

scientific computing. In Parallel & Distributed

Processing, 2009. IPDPS 2009. IEEE International

Symposium on (pp. 1-8). IEEE.

[7] Hong, S. and Kim, H., 2010, June. An integrated GPU

power and performance model. In ACM SIGARCH

Computer Architecture News (Vol. 38, No. 3, pp. 280-

289). ACM.

[8] Zhang, Y., Hu, Y., Li, B. and Peng, L., 2011, July.

Performance and power analysis of ati gpu: A statistical

approach. In Networking, Architecture and Storage

(NAS), 2011 6th IEEE International Conference on (pp.

149-158). IEEE.

[9] Abe, Y., Sasaki, H., Peres, M., Inoue, K., Murakami, K.

and Kato, S., 2012. Power and performance analysis of

GPU-accelerated systems. In Presented as part of the

2012 Workshop on Power-Aware Computing and

Systems.

[10] Wang, W., Duan, B., Tang, W., Zhang, C., Tang, G.,

Zhang, P. and Sun, N., 2012, February. A coarse-grained

stream architecture for cryo-electron microscopy images

3D reconstruction. In Proceedings of the ACM/SIGDA

international symposium on Field Programmable Gate

Arrays (pp. 143-152). ACM.

[11] Lashgar, A., Baniasadi, A. and Khonsari, A., 2013,

February. Inter-warp instruction temporal locality in

deep-multithreaded GPUs. In International Conference

on Architecture of Computing Systems (pp. 134-146).

Springer Berlin Heidelberg.

[12] Gebhart, M., Johnson, D.R., Tarjan, D., Keckler, S.W.,

Dally, W.J., Lindholm, E. and Skadron, K., 2011, June.

Energy-efficient mechanisms for managing thread

context in throughput processors. In ACM SIGARCH

Computer Architecture News (Vol. 39, No. 3, pp. 235-

246). ACM.

[13] Kirk, D.B. and Wen-mei, W.H., 2012. Programming

massively parallel processors: a hands-on approach.

Newnes.

[14] Bakhoda, A., Yuan, G.L., Fung, W.W., Wong, H. and

Aamodt, T.M., 2009, April. Analyzing CUDA workloads

using a detailed GPU simulator. In Performance Analysis

of Systems and Software, 2009. ISPASS 2009. IEEE

International Symposium on (pp. 163-174). IEEE.

[15] Kayıran, O., Jog, A., Kandemir, M.T. and Das, C.R.,

2013, October. Neither more nor less: optimizing thread-

level parallelism for GPGPUs. In Proceedings of the

22nd international conference on Parallel architectures

and compilation techniques (pp. 157-166). IEEE.

International Journal of Computer Applications (0975 – 8887)

Volume 147 – No.12, August 2016

34

[16] Jog, A., Kayiran, O., Chidambaram Nachiappan, N.,

Mishra, A.K., Kandemir, M.T., Mutlu, O., Iyer, R. and

Das, C.R., 2013, March. OWL: cooperative thread array

aware scheduling techniques for improving GPGPU

performance. In ACM SIGPLAN Notices (Vol. 48, No. 4,

pp. 395-406). ACM.

[17] NVIDIA CUDA Toolkit 4.1.-Archive. Retrieved July 3,

2016 from https://developer.nvidia.com/cuda-toolkit-31-

downloads

[18] Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W.,

Lee, S.H. and Skadron, K., 2009, October. Rodinia: A

benchmark suite for heterogeneous computing. In

Workload Characterization, 2009. IISWC 2009. IEEE

International Symposium on (pp. 44-54). IEEE.

[19] Leng, J., Hetherington, T., ElTantawy, A., Gilani, S.,

Kim, N.S., Aamodt, T.M. and Reddi, V.J., 2013, June.

GPU Wattch: enabling energy optimizations in GPGPUs.

In ACM SIGARCH Computer Architecture News (Vol.

41, No. 3, pp. 487-498). ACM.

IJCATM : www.ijcaonline.org

