
International Journal of Computer Applications (0975 – 8887) 

Volume 147 – No.12, August 2016 

28 

Variability Analysis in the Power Appetite of GPGPU 

Applications 

Winnie Thomas 
V. J. Technological Institute  

Department of Electrical Engineering 
Mumbai, India. 

Rohin Daruwala 
V. J. Technological Institute 

Department of Electrical Engineering 
Mumbai, India. 

 

 

ABSTRACT 

Due to the high-performance demands, GPGPUs are designed 

to be optimized for higher performance, even at the cost of 

large power consumption. This article presents the variation in 

the power appetite of GPGPU applications. It proposes a 

method to predict the characteristics of an application through 

the way power is consumed by different components of the 

GPGPU. It is observed that certain components which are 

over-used by one application may be under-used by another 

application. This presents a challenge for the GPU architects 

to design a favorable and balanced system for different types 

of GPGPU applications. An architecture that improves power 

efficiency is currently required but for time-constraint real 

time system, performance cannot be compromised. This work 

is an attempt to provide precious insights on designing a 

reconfigurable system that fulfills the demand of end users. 
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1. INTRODUCTION 
The General purpose Graphics processing Unit (GPGPU) 

based on Single Instruction Multiple Data (SIMD) 

architecture has proved to be an efficient and cost-effective 

platform for various high performance computing (HPC) 

applications. Originally SIMD is popular among the 

applications such as digital signal processing and 3D 

rendering that deal with large data sets and do not demand 

complex control flow. With the advent of programming 

models like CUDA [1] and OpenCL [2], programming a 

GPGPU has become easier. The HPC applications are now 

written for such platforms to exploit parallelism and to 

improve throughput. These applications however show 

variation in terms of amount of parallelism, and affinity 

towards specific resources [3], [4], [5]. Hence the amount of 

power consumed by the applications also differs. A detailed 

analysis of the power appetite of some representative GPGPU 

applications (also shown in Fig 1) is presented. Not all the 

resources within the system require the same share from the 

total power. Analyzing individual application, it is found that 

one or more of the total resources within the GPGPU can 

consume a major lump of the total power relative to other 

resources. Hence it is concluded that the power consumption 

across the components in a GPGPU system is uneven.  

Combating this irregularity presents a challenge for future 

architects as power efficiency is to be enhanced without 

trading the performance of the applications.  

 

Fig 1: Power consumption of Applications normalized to 

VADD 

2. PRIOR WORK 
GPU power analysis can be found in several prior works. 

Huang et al. [6] evaluate the performance, energy 

consumption and energy efficiency of commercial GPUs. 

Hong and Kim [7] propose an integrated GPU power and 

performance analysis that predicts the power consumptions of 

GPU workloads based on the PTX instruction. Zhang et al. [8] 

analyze the performance and power consumption of a typical 

ATI GPU at the architectural level. They use micro-

benchmarks to study power consumption which can be seen 

as a software management technique. Abe et al.  in [9] show 

that energy can be saved by scaling cores and memory system 

of a GPU. Lee et al. [3] presented a method to apply DVFS 

algorithms to the GPU. They particularly aimed at 

maximizing performance under the given power constraint.    

Wang et al. [10] propose a technique for saving static energy 

in both L1 and L2 caches. They propose putting the L1 cache 

(which is private to each core) in state-preserving low-leakage 

mode when there are no threads that are ready to be 

scheduled. Further, the L2 cache is transitioned to low-

leakage mode when there is no memory request. Lashgar et al. 

[11] propose the use of a filter cache to save energy in GPUs 

by reducing accesses to the instruction cache. A unified local 

memory design for GPUs is presented by Gebhart et al. [12]. 

Before the launch of each kernel, the system reconfigures the 

memory banks to change the partitioning of the memory. By 

effectively using the local storage, their design reduces the 

accesses to main memory. 

We show that how the power appetite of different components 

of the GPGPU system varies across the applications. This 

variation in power appetite is the result of application 

characteristic and it becomes a challenge for the architects to 

build a system that runs the application with best performance 

with high power efficiency in compliance with the demands 

of users. 
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3. BACKGROUND 
This section provides salient information of GPGPU 

architecture and GPGPU application. 

3.1 GPGPU Application Structure 
The applications for this work are written in CUDA. A CUDA 

application consists of many kernels. Kernels implement 

specific functions of an application [13]. The execution on 

GPUs starts with the launch of a kernel. Due to which, threads 

are generated, collectively called as a grid. When all the 

threads complete their execution, the grid formed by threads 

also ends for that kernel [13]. The remaining non-kernel part 

of the program is executed on host till the next kernel is called 

by host. 

The threads on CUDA are organized into a hierarchy of 

threads, warps, CTAs and grid of CTAs. Once a kernel is 

launched, the grid corresponding to the threads is generated. 

To assign the threads to execution resources, they are grouped 

into CTAs. Execution of CTAs can be performed in any order. 

CTAs are scheduled in the pipeline of cores in the form of 

warps which are made up of 32 threads. For our target 

architecture the warps are scheduled with greedy-then-oldest 

technique into the pipeline by the warp scheduler in each core 

which prioritizes a warp until it stalls and then oldest warp is 

selected for execution. 

For this work, one kernel is active at a time. Once the kernel 

is launched the CTA scheduler assigns CTAs to all the 

available cores [14]. The assignment of CTAs are carried in 

round-robin and load balanced fashion [15], [16].The first 

CTA is assigned to core 0, then next CTA to core 1 and so on. 

If a core is capable to run multiple CTAs then next round of 

assignment begins if there are enough CTAs. The maximum 

number of CTAs that a core can execute depends on the 

available on-chip resource requirement of each thread which 

includes register file size, number of ALU units, shared 

memory size. Hence this process of CTA allocation continues 

till all the cores get the maximum number of CTAs a core can 

run.  

 
Fig 2: GPGPU Architecture 

3.2 Baseline GPGPU Architecture 
A GPGPU consists of many simple in-order cores. Each core 

has 8 to 32 Single Instruction Multiple Thread (SIMT) lanes. 

Our target system shown in Fig. 2 consists of computing cores 

with 32 SIMT lanes each. Each core has a private L1 data 

cache and a high bandwidth on-chip shared memory that can 

be shared by threads from the same CTA. If the requested data 

is not present in shared memory or in L1 data cache, the 

memory request is forwarded to one of the memory partitions 

through the crossbar interconnection network. There are 8 

memory partitions in our target system.  The baseline 

configuration used in this work is described briefly in Table 1.  

3.3 Application Suite  
The applications for this work include Vector Addition 

(VADD), Clock (CLK), Scalar Product (SP) from CUDA 

NVIDIA SDK application suite [17].  Colombic Potential 

(CP) is from [14] and the two kernels of Back Propagation 

(BP1 and BP2) are from Rodinia [18] application suite. The 

evaluation of the techniques was carried on GPGPU-Sim 

v3.2.2 [14], a publicly-available cycle-accurate GPGPU 

simulator. The configuration described in Table 1 was 

modeled in GPGPU-Sim. Each application is run till 

completion or 1 billion instructions, whichever comes first. 

Power consumption is estimated using GPUWattch [19] 

assuming 65 nm technology. 

Table 1: Baseline Architectural Configurations 

Number of 

Shader cores 
30 , 650MHz each 

Warp size 32 

Resource per 

core 

Max.1024 threads,16kB shared memory, 

16384 registers 

Caches  

(per core) 

2KB 4-way L1 inst. cache, 16KB 4-way 

L1data cache, 8KB 2-way constant cache, 

12 KB, 128B cache line size except const 

cache of 64B line size. 

L2 cache 
128KB/memory sub-partition, 8-way, 128B 

cache line size 

Scheduling 

policies 

Greedy then oldest for warps, round robin 

and Load-balanced scheme for CTAs. 

Interconnect 
Crossbar, 32B channel byte, destination tag 

routing mechanism, 625MHz 

DRAM 

model 

Out-of-order FR-FCFS,8 Memory 

partitions,4B Bus width,4B Burst Length, 

GDDR3 

timing 

800 MHz, tCL = 10, tRP = 10, tRC = 40, tRAS 

= 25, tRCD = 12, tRRD = 8, tCDLR = 6,            

tW R = 11 

 

4. POWER APETITE ANALYSIS 
Prior work [5], [15] and [16] have categorized the applications 

using various parameters as throughput, L1 cache miss rate, 

congestion in the network, amount of off- chip DRAM usage 

and even amount of branch divergence exhibited by the 

applications. The characteristic of an application is 

determined by leveraging the power consumption of different 

architectural components of the GPGPU. This work also 

investigates the potential of saving the power with different 

techniques without trading the performance of the application. 

4.1 Vector Addition (VADD) 

With the GPGPU configuration described in Table 1 the 

execution time of VADD is shortest among all the 

applications because of few instructions in its kernel. The 

throughput of the application is 26.6% of the peak throughput 

of the GPGPU [5]. High throughput represents the high 

computational power of an application. The low throughput of 

VADD signals underutilization of compute resources as 

floating point units (FPU), Special function units (SFUs) that 

collectively form execution unit. Fig 3 depicts the average 

power consumption of each micro architectural component of 

the application. 
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The major share of the total power is consumed by the 

memory with 54% of the total power. The memory system of 

GPGPU includes interconnection network between cores and 

L2 cache partitions also termed network-on-chip (NOC); the 

memory controller and the DRAMs. The percentage of power 

consumed by compute resource comprising execution units 

and register files are only 19%. Dynamic constant power is 

14% which is represented by “Constant” in Fig 3. 

Next, when the number of compute resources was doubled 

there is a slight increase in power consumption as shown in 

Fig 4. But there is degradation in the performance as shown in 

Fig 5. Clearly this application is memory intensive as adding 

more number of cores increases the number of memory 

requests saturating the memory system. As power dissipation 

of a component and frequency are directly proportional, third 

bar C-Freq-Down in Fig 4 corresponds to power consumption 

when the frequency of all cores in baseline is reduced by 50%. 

In this case the performance is enhanced by 67.8% and power 

saving relative to baseline is 15.3%. The last bars in Fig 4 and 

5 show power and performance when the frequency of cores 

is reduced by 50% and that of DRAMs increased by 50% 

represented as C-Down-M-Up. In this case the performance 

improvement is 85.39% but power saving is 7.53% relative to 

baseline. 

Hence the last two cases are favorable configurations for 

applications like VADD that requires the strength of the 

computational resources to be reduced. This can be 

accomplished by decreasing the population of processing 

cores or by reducing the operating frequency of the 

application. If speed is the priority as in real-time system then 

the last case should be preferred. 

 

Fig 3: Average power breakdown of VADD 

 

Fig 4: Average Power consumption of VADD with 

different configuration 

 

Fig 5: Performance of VADD normalized to baseline 

4.2 Clock (CLK) 

Clock (CLK) is an application with 64 CTAs and the 

performance of 52% relative to the peak performance of the 

baseline GPGPU. Fig 6 shows the power consumption when 

run on baseline configuration. The highest power consumer is 

the register bank which forms the part of the compute 

resources. 

The performance of CLK in case of 60 cores is improved by 

16.7% whereas power consumption also increases by 28.6% 

which is high. When the frequency of cores is reduced, 5.3% 

performance improvement is observed and power saving of 

31.55% relative to baseline is seen. Hence for such 

applications the last two configurations are favorable as the 

performance improvement is limited due to few CTAs. Thus 

configuration that saves the power should be preferred for 

applications like CLK. 

 

Fig 6: Average power breakdown of CLK 

 

Fig 7: Average Power consumption of CLK 
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Fig 8: Performance of CLK normalized to baseline 

4.3 Scalar Product (SP) 

Number of CTAs that execute the kernel of SP is 196. Fig 9 

shows that 39% of total power is consumed by memory 

system and execution unit consumes 10% and register file 

consumes 15% of the total power. Relative to VADD the 

application suffers higher idle periods. As each core at a time 

accommodates 3 CTAs in first round and remaining 38 CTAs 

wait for their turn. By the end of execution many cores would 

be idle as no more CTAs are to be scheduled. This creates 

significant amount of idle periods. Doubling the compute 

resources would not only degrade the performance by 26.11% 

as shown in Fig 10 but also increases the power consumption 

by 3.9% as shown in Fig 9. 

As can be seen from the pie chart significant power is 

consumed by compute resources decreasing just the core 

frequency does not enhance the performance of the 

application. However certainly there is a significant power 

saving of 25% relative to baseline. The performance 

improvement of 23.498% is experienced as shown in Fig 11 

depicted by C-DOWN-M-UP when memory frequency is 

increased. The power consumption is reduced by 20.3% 

relative to baseline. Clearly the GPGPU with the 

configuration corresponding to C-DOWN-M-UP is the 

suitable most for applications exhibiting the characteristics 

like that of SP. 

 

Fig 9: Average power breakdown of SP 

 

Fig 10: Average Power consumption of SP 

 

Fig 11: Performance of SP normalized to baseline 

4.4 Colombic Potential (CP) 

 Previous work in [15] and [16] has established CP as a 

computationally intensive application and this is further 

substantiated here by the major power consuming components 

as shown in Fig 12, 71.92% of power is alone consumed by 

the execution unit. Doubling the cores definitely increases the 

power consumption the improvement in the performance is by 

70.5%. In the next two cases where frequency of the cores are 

scaled down the performance is not affected but a power 

saving of 46% is observed. Increasing the frequency of 

memory depicted as C_Down_M_Up in Figures 13 and 14 

saves no power and presents approximately similar 

performance relative to baseline configuration. Thus third 

case can be preferred due to the ability of the configuration to 

save maximum power without any loss of performance. The 

other way to get performance equivalent to second case would 

be to double the computation resource and reduce the 

frequency of each core to have a significant reduction in 

power consumption. 

 

Fig 12: Average power breakdown of CP 
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Fig 13: Average Power consumption of CP 

 

Fig 14: Performance of CP normalized to baseline 

4.5 Back Propagation-1 (BP1) 

The first kernel of Back Propagation (BP1) shows a very high 

demand of power from execution unit (60%) and 14% from 

register bank as shown in Fig 15. Clearly providing additional 

amount of compute resource will enhance its performance as 

shown in Fig 17 by second bar.  An 85.3% of performance 

improvement is experience by application relative to baseline 

configuration. Accordingly the power consumption also 

increases by 81.9% as shown in Fig 16. In the next two cases 

an improvement of only 1.3% is observed but the amount of 

power saved is approximately 46% with frequency scaling. 

Hence second and third configurations (C_Freq_Down) can 

be preferred for the speed and power-efficiency respectively 

of applications like BP1. 

 

Fig 15: Average power breakdown of BP1 

 

Fig 16: Average Power consumption of BP1 

 

Fig 17: Performance of BP1 normalized to baseline 

4.6 Back Propagation-2 (BP2) 

From power breakdown pie chart of BP2 as shown in Fig. 18 

both DRAM and execution unit consumes equal amount of 

power. The requirement of application is both compute 

resources and memory resource in equal proportion. On 

increasing population of compute resources the performance 

improves by 40.8% (Fig 20) and the power consumption 

increases by 36.68% as shown in Fig 19. When the frequency 

of baseline is reduced by 50% the 41.71% of power can be 

saved relative to baseline. If further the memory frequency is 

increased 41.1% power is saved and performance improves by 

5.82% relative to baseline configuration. Thus the third case 

of reduced core frequency should be preferred due to 

improved performance and significant power saving for the 

applications like BP2 that have balanced power demand from 

execution and memory resources. 

 

Fig 18: Average power breakdown of BP2 
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Fig 19: Average Power consumption of BP2 

 

Fig 20: Performance of BP2 normalized to baseline 

5. CONCLUSIONS 
The article presents the variation in the power consumption of 

GPGPU applications. It makes an attempt to predict the 

characteristics of an application through the way power is 

consumed by different components of GPGPU. It is observed 

that how certain components which are over-used by one 

application may be under-used by another application. This 

presents a challenge for the GPU architects to design a 

favorable and a balanced system for all kinds of GPGPU 

application. An architecture that saves power is always good 

but for time-constraint real time system, performance cannot 

be compromised. Hence this work can provide some insights 

on designing a reconfigurable system that fulfills the demand 

of end users. In a multi-GPU environment with the different 

types of GPUs, predicting the behavior of an application 

through the power-appetite during run-time and porting the 

application to the appropriate GPU is the potential future 

scope of this work. 
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