
International Journal of Computer Applications (0975 – 8887) 

Volume 147 – No.13, August 2016 

29 

VHDL Implementation of an Efficient Context Adaptive 

Variable Length Coding Algorithm of H.264 Video Codec 

Waleed Ahmed El-Ghobashy 
Department of 

Electronics and Electrical 
Communications, 

Ain Shams University, Egypt 
 

 

Hossam O. Ahmed 
Department of Electronics and 

Electrical Communications, 
El Shorouk Academy, Egypt 

 

Osama EL-Mowafy 
Department of 

Electronics and Electrical 
Communications 

High institute of Engineering 
and  Technology, Egypt. 

Abdelhalim Zekry 
Department of 

Electronics and Electrical 
Communications, 

Ain Shams University, Egypt 

 

 
ABSTRACT 

H.264/MPEG-4 AVC video compression standard uses 

Context Adaptive Variable-Length Coding (CAVLC) for 

encoding the transformed coefficients after quantization.  The 

CAVLC is an important technique that used for reducing the 

bit stream realization of the coefficients. It is used for coding 

both Luminance and chrominance blocks. In this paper, an 

efficient VHDL implementation and verification of CAVLC 

coding is proposed. It increases the throughput and reduces 

the time of bit stream generation. The proposed VHDL 

architecture has been synthesized and simulated based on the 

cyclone II FPGA EP2C35F672C6 from Altera.     

Keywords 

H.264/AVC, entropy coding,  CAVLC, Luminance coding , 

Chrominance coding,  FPGA, cyclone II, video compression. 

1. INTRODUCTION 
In order to achieve the suitable compression ratio for data link 

communication, the communication devices uses many 

techniques to do that. One of the major techniques used is 

Context-Based Adaptive Variable Length Coding. CAVLC is 

adopted to be used as one of the H.264 standard techniques. 

The CAVLC is an entropy coding method which encodes the 

transformed quantized of residual data. It can achieve better 

coding efficiency, but the algorithm complexity is higher 

[1,2].  

In figure 1, the CAVLC lies after transformation and 

quantization which in turn the CAVLC receives the 4x4 

blocks that contain most of its coefficients zeros.  

 

Fig.1 H.264 encoder block diagram 

Most of previous works had introduced the implementation of 

CAVLC encoder. 

Arun et al [3] introduced a mechanism that scans the 

coefficients in inversed zigzag order and proposed a special 

buffer structure to maintain the buffer size at the size of one 
block. Parallel symbols encoding is an efficient method in 

terms of performance, however, it obviously double the area 

cost of symbol encoders. 

N. Keshaveni et al [4] proposed the implementation of 

CAVLC encoder by Veriloge, and integrated with other 

functional module such as Transformation and Quantization 

realized using Matlab this did not give an obviously area cost 

and power consumption of encoder. 

Some other authors presented an efficient method to 

overcome the bottleneck at the scan phase by scanning 

coefficients in parallel. This method halves the required time 

of the scan phase. Parallel coding of level and run-before is 

also applied.  

Finally, Chuan-Yung Tsai [5] has implemented a low power 

CAVLC encoder which can reduce up to 70% the power 

consumption but the total gate count is somewhat high. 

In this paper, an efficient implementation CAVLC algorithm 

is proposed for H.264/AVC video codec. This method will 

reduce the processing time of the frame and increase the 

throughput by reducing the waste time consumed during the 

input quantized transformed residual data of the 4x4 block 

and its output coded data. It exploits the time between the 

input coefficients of the current block and the output codes by 

scanning the next 16 coefficients of the next block 

sequentially 

This paper is organized as follows: the CAVLC entropy 

coding is introduced and the related works are surveyed in 

section 1. An overview on CAVLC technique is mentioned in 

section 2. Our proposed hardware architecture of CAVLC is 

described in Section 3. The implementation and simulation 

results are discussed in Section 4.  The results and conclusions 

are mentioned in the next two sections. 



International Journal of Computer Applications (0975 – 8887) 

Volume 147 – No.13, August 2016 

30 

2. OVERVIEW ON CAVLC   
The Macroblocks are ordered Luma and Chroma for 

encoding. CAVLC algorithm is used to encode transformed 

and quantized residual luminance and chrominance blocks in 

a macroblock. All the transformed and quantized 4x4 and 2x2 

blocks for a macro block are given as inputs to CAVLC 

algorithm. CAVLC algorithm processes each 4x4 block in 

zig-zag scan order and each 2x2 block in raster scan order. 

The main parameters for encoding block: 

1) Nonzero coefficients and Trailing ones. 

2) The pattern of Trailing ones. 

3) The nonzero coefficient. 

4) Number of zeros embedded in the non zero 

coefficients. 

5) The location of those embedded zeros. 

In the Fig.2, The quantized transformed 4X4 block introduced 

as an example of CAVLC input block. 

 

 

 

 

 

 

 

The reordered data (zig-zag scanning) of the block are in the 

form (1, 1, -2, -4, 0, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0) 

The five main parameters are encoded in sequence; and 

finally, the transmitted bit stream for this block is: Table 1 

(01101-000-1-00011-111-100-100-11-10-11-11-00) 

Table 1.  CAVLC Coding Processes Example 

Syntax element value code 

Coeff_token Total coeff=8 

Traillingones=3 

01101 

T1sign +,+,+ 000 

Level(4) 

Level(3) 

Level(2) 

Level(1) 

Level(0) 

1 

-4 

-2 

1 

1 

1 

00011 

111 

100 

100 

Total zeros 4 11 

Runb(7) 

Runb(6) 

Runb(5) 

Runb(4) 

1 

0 

0 

3 

10 

11 

11 

00 

Code (01101-000-1-00011-111-100-100-11-10-11-11-00) 

3. PROPOSED SCHEME 

3.1 CAVLC calculation Counters 
The CAVLC module contains a number of counters and 

registers units to collect the information exists in a block as a 

first step before encoding. Non-Zero Coefficients counter 

counts the number of non-zero coefficients (TotalCoeff). 

TrailingOnes counter stores the number of trailing ±1 values 

(TrailingOnes). TotalZeros counter counts the total number of 

zeros before the last non-zero coefficient (Total_Zeros). Level 

counter gets the number of non-zero coefficients other than 

the TrailingOnes. TrailingOnes register file is used to store the 

sign of each Trailing One coefficient. Level register file is 

used to store the level (sign and magnitude) of each non-zero 

coefficient other than the TrailingOnes. RunBefores register 

file is used to store the number of zeros preceding each non-

zero coefficient. CAVLC hardware begins the encoding for a 

4x4 or 2x2 block by reading the coefficients from the input 

buffer in reverse zig-zag order.  

In each clock cycle (during rising edge), CAVLC reads one 

coefficient from the input buffer then analyzes the coefficient 

and updates the information stored in the related counter and 

register file. After all inputs entered, the counters and register 

files contain all the information for the current block that will 

be encoded. Reverse zig-zag scanning enables us to determine 

the necessary information for encoding a 4x4 block by 

reading and analyzing each coefficient only once.  

3.2 Steps of generating CAVLC codes  
The CAVLC has five steps to encode one block which are:[4] 

3.2.1 Coding Coeff_Token step: 
The CAVLC gets the number of non-zero coefficients 

(TotalCoeff) and the number of trailing ±1 values 

(TrailingOnes) in a block. It generates coeff_token variable 

length code depending on TotalCoeff, TrailingOnes and the 

VLC tables. Since the highest non-zero coefficients after the 

zig-zag scan are often sequences of ±1, CAVLC algorithm 

encodes the number of high-frequency ±1 coefficients 

(TrailingOnes) in coeff_token. Since the number of non-zero 

coefficients in neighboring blocks is correlated, CAVLC 

algorithm generates coeff_token for a block context 

adaptively. Table 2 

Table 2.  Coeff_token mapping to TotalCoeff and 
TrailingOnes 

T
ra

il
in

g
o
n

es
 

(c
o
ef

f_
to

k
en

) 

T
o
ta

lc
o
ef

f 

(c
o
ef

f_
to

k
en

) 

0<=nc<2 
2<=nc<

4 
4<=nc<8 8<nc 

0 0 1 11 1111 0000 11 

0 1 0001 01 0010 11 0011 11 0000 00 

1 1 01 10 1110 0000 01 

0 2 0000 

0111 

0001 11 0010 11 0001 00 

1 2 0001 00 0011 1 0111 1 0001 01 

2 2 001 011 1101 0001 10 

- - - - - - 

 

It uses one of the four different VLC tables for generating the 

coeff_token for a block based on the number of nonzero 

coefficients in the neighboring blocks as follows. Fig.3 shows 

the calculation of nC parameter based on the number of non-

zero coefficients in the left-hand and upper previously coded 

blocks, nA and nB respectively [6].  

nC = round ((nA + nB) /2). If both block is available.  

nC = nB;    If upper block is available.  

nC = nA;    If left block is available.  

nC = 0                   If neither is available.  

 

 

Fig. 2 4x4 quantized block 



International Journal of Computer Applications (0975 – 8887) 

Volume 147 – No.13, August 2016 

31 

Block A

ncnc

nB

nA

Block B

Block C
Current block

 

Fig.3 The relationship between block A, B and C 

After calculation of nC parameter the VLC table is selected 

that will be used for generating the coeff_token based on the 

value of nC . 

If nC = ( 0 or 1) the first column of table 2  will be used else if 

nC= (2 or 3) the second column will be used else if nC = (4 or 

5 or 6 or 7) the third column will be used else if nC = 8 or 

more the forth column will be used.   

As a special case, for 2x2 dc chroma blocks, nC is set to -1. 

3.2.2 Coding TrailingOne Sign step: 
It encodes the sign of each TrailingOne with a single bit in 

reverse order starting with the highest-frequency TrailingOne. 

If the sign is positive the sign code = 0, if the sign is negative 

the sign code =1.  

3.2.3  Coding LEVEL coefficient step: 
It encodes the level (magnitude and sign) of each remaining 

non-zero coefficient in the block in reverse order starting with 

the highest frequency coefficient and working back towards 

the DC coefficient. The code word for a level consists of a 

prefix and a suffix. It sets the suffix length for the first level to 

0. It then increments the current suffix length, if the 

magnitude of the current level is larger than a predefined 

threshold for this suffix length. CAVLC algorithm generates 

the code length and the codeword for the current level based 

on its suffix length. When the suffix length for a level is 0, its 

codeword does not include a suffix.  Otherwise, the codeword 

for the level includes a suffix. The next suffix length based on 

present non-zero coefficient. as shown in Table 3. 

Table 3. Suffix Length Value 

Non zero coefficient Suffix length to be set 

0 0 

1,2,3 1 

4,5,6 2 

7,8,9,10,11,12 3 

13-24 4 

25-48 5 

>48 6 

The codeword for a level always includes a prefix, but the 

prefix for a level is generated using different equations in the 

two cases; when the suffix length for the level is 0 and when 

the suffix length for the level is greater than 0. 

3.2.4  Coding Total_Zeros step: 
During this step the CAVLC counts the total number of zeros 

between the non-zero coefficients (Total_Zeros). It extracts 

the output code and its length depending on the total number 

of zeros and the total number of coefficients using a VLC 

tables. 

3.2.5 Coding Run_Before step: 
It encodes the number of zeros preceding each non-zero 

coefficient in reverse order starting with the highest frequency 

coefficient. The blocks contain zeros at highest frequency 

after transformation and quantization and the number of zeros 

decrease when directed to the DC level. CAVLC algorithm 

uses run level coding to represent strings of zeros compactly 

see Table 4. 

Table 4.  run_before code with number of zerosleft 

Run_before Zerosleft  

1 2 3 4 5 6 >6 

0 1 1 11 11 11 11 111 

1 0 01 10 10 10 000 110 

2 - 00 01 01 011 001 101 

3 - - 00 001 010 011 100 

4 - - - 000 001 010 011 

5 - - - - 000 101 010 

- - - - - - - - 

14 - - - - - - 00000000001 

 
The proposed input /output architecture is shown in fig. 4. The 

video encoder stores the residual data of Macroblock in a two 

types of buffers one for four luminance blocks and the other 

for two chrominance blocks. The luminance block is arranged 

by reverse scanning ordering and is fed to the CAVLC 

module. The CAVLC counters calculate the five main 

parameters of the block.  The CAVLC module uses these 

parameters to get out the codes. After coding the luminance 

blocks, the two chrominance blocks is encoded consecutively.   

The CAVLC architecture is pipelining architecture in which 

when processing the first block it scanning the second block. 

Two-stage pipeline architecture requires double buffer size to 

store all the statistic information of one block before the data 

is encoded. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 147 – No.13, August 2016 

32 

 

Fig.4 the CAVLC calculation stages 

In the proposed method there are three stages and two clocks 

(CLOCK_2) and (CLOCK_1= 2 CLOCK_2 ) used for 

calculation. The first stage is the input stage which receive the 

input coefficients and the second stage is the processing stage 

and the third stage is the output stage which get out the output 

codes.  The 4x4 luminance block, is entered by 16 CLOCK_2 

cycles for calculating and initializing the internal counters.  

As shown in fig.5. 

The processing stage uses about 21 CLOCK_2 cycles for 

calculating all the coefficients needed.  

The output stage gets the output codes about 8 CLOCK_1 

cycles (or 16 CLOCK_2). So the total number of cycles used 

for encoding 4x4 blocks is about 42 or 44 cycles. The 2x2 

luminance block, is entered by 4 CLOCK_2 cycles for 

calculating and storing, so the total number of cycles used for 

encoding 2x2 blocks is about 20 or 21 CLOCK_2 cycles. 

 

 

Fig.5 CAVLC processing stages 

The proposed method can handling with the first 16 

coefficients for the first block to get the code during scanning 

the second 16 coefficients for the second block. This method 

will lead to reduce the time of calculation and increase the 

throughput of coding CAVLC [7,8]. 

 

4. PROPOSED SCHEME SIMULATION 
The CAVLC architecture is implemented by VHDL language 

and  simulated using Modelsim 6.5f and Quartus 13 from 

Altera. Fig.6 shows the timing simulation of CAVLC 

architecture. The delay time between rising edge clock and its 

output is 8 ns. The proposed architecture can work with max 

frequency 100 MHz [9]. 

The proposed scheme tested by different types of videos.  

High texture sequences (such as Mobile and container), low 

motion sequences (such as mother-daughter and Hall) and 

high motion sequences (such as foreman and coastguard). The 

bitstream and compression ratio results of coding the first 

frame (352x288) of six types is organized in tables and graphs 

as shown in figures (6, 7). 

 

 

 

 

 

 
 

Fig.6 Timing simulation waveform



International Journal of Computer Applications (0975 – 8887) 

Volume 147 – No.13, August 2016 

33 

 

Fig 6. Compression ratio vs. quantization parameter 

 

Fig 7. Bit stream vs. quantization parameter 

5. RESULTS 
The proposed entropy coding engine with pipelined 

architecture is synthesized and simulated process technology 

by using Quartus 13 and Modelsim 6.5f tools.  

To achieve full hardware utilization by the dual-buffer 

architecture, two block statistic buffers are required. Two 

types of memories are required. The coefficient memory and 

bit stream memory are used as input and output buffers for 

system consideration. The 2x2 block for chrominance is used 

to process 2x2 block. The 4x4 block for luminance is used to 

process the 4x4 block. Table 5 listed the utilization parameters 

from Altera FPGA. Table 6  mention the power analyzer 

summary[10].  

Table 5. Utilization Parameters Of Altera Device 

Flow summary Available  Our proposal 

Used  Utilizatio

n  

Total logic elements 33216 1961 6% 

Total combinational 

functions 

33216 1692 5% 

Dedicated logic 

registers 

33216 696 2% 

Total pins 475 51 11% 

Total memory bits 483840 384 <1% 

 

Table 6.  Power analyzer summary 

Power parameters The value 

Thermal power dissipation 74.26 mW 

Core static thermal power dissipation 47.36 mW 

I/O thermal power dissipation 26.90 mW 

6.  CONCLUSIONS  
In this paper, the CAVLC implementation algorithm and its 

timing simulation is proposed.  This implementation focused 

on the high throughput of the CAVLC encoder. It is achieved 

with a low-cost memory requirement and hardware 

complexity. A complex CAVLC hardware encoder due to the 

data dependency in CAVLC. 

Reverse zig-zag scanning from the lower right to the upper 

left  of the block is used to reduce the encoding data. The 

CAVLC architecture had three stages reading, processing and 

output stages. This reduces the power consumption by 

reducing the switching activity on the input buffer address and 

data signals. The proposed architecture is implemented in 

VHDL based on the latest cyclone II FPGA EP2C35F672C6 

from Altera. The VHDL RTL code is verified to work at 100 

MHz. 

7. REFERENCES 
[1] ITU-T, H.264 ‘Advanced Video Coding for Generic 

Audiovisual Service’, JAN 2012. 

[2] Iain E. Richardson.  ‘The H.264 Advanced Video 

Compression Standard’, 2nd edition. John Wiley & Son, 

2010. 

[3] Arun Kumar Pradhan, Lalit Kumar Kanoje, Biswa Ranjan 

Swain, ‘FPGA based High Performance CAVLC 

Implementation for H.264 Video Coding’,   International 

Journal of Computer Applications (0975 – 8887) Volume 

69– No.10, May 2013. 

[4] N. Keshaveni, S. Ramachandran and K.S. Gurumurthy 

‘Implementation of Context Adaptive Variable Length 

Coder for H.264 Video Encoder’ , International Journal of 

Recent Trends in engineering, Vol 2, No. 5, November 

2009. 

[5] Tung-Chien Chen, Yu-Wen Huang, Chuan-Yung Tsai, 

Bing-Yu Hsieh, and Liang-Gee Chen : ‘Architecture 

Design of Context-Based Adaptive Variable-Length 

Coding for H.264/AVC’ , IEEE Transactions on circuits 

and systems—ii: express briefs, vol. 53, no. 9, September 

2006. 

[6] Ngoc-Mai Nguyen, Xuan-Tu Tran, Pascal Vivet, Suzanne 

Lesecq, ‘An Efficient Context Adaptive Variable Length 

Coding Architecture for H.264/AVC Video Encoders’, 

The International Conference on Advanced Technologies 

for Communications (ATC 2012). 

[7] Tung-Chien Chen, Yu-Wen Huang, Chuan-Yong Tsai, 

Bing-Yu Hsieh, and Liang-Gee Chen:’ Dual-Block-

Pipelined VLSI Architecture Of Entropy Coding For 

H.264/Avc Baseline Profile’, International Symposium on 

VLSI Design, Automation and Test, Conference, 2005 

[8] P.Soundarya, Solomon Gotham, ‘CAVLC Video coding 

Technique for MPEG-4’, International Journal of 

Engineering and Advanced Technology (IJEAT) ISSN: 

2249 – 8958, Volume-1, Issue-6, November 2012. 

[9] Asma Ben Hmida, Salah Dhahri, and Abdelkrim Zitouni, 

‘A High Performance Architecture Design of CAVLC 

Coding Suitable for Real-Time Applications’ , 

Association of Computer Electronics and Electrical 

Engineers, 2013. 

[10] Chuan-Yung Tsai, Tung-Chien Chen and Liang-Gee 

Chen ‘Low Power Entropy Coding Hardware Design For 

H.264/AVC Baseline Profile Encoder’. In Proceedings of 

IEEE International Conference on Multimedia and Expo, 

2006, pp. 1941-1944.   

0
10
20
30
40
50
60

30 35 40 45

co
m

p
re

ss
io

n
 r

at
io

Quantiation Parameter Qp

mother -
dauter
coastgurd

container

foreman

hall

0
2000
4000
6000
8000

10000
12000

30 35 40 45

n
o

 o
f 

b
it

s 

Quantiation parameter (Qp)

mother- dauter

coastgurd

container

foreman

hall

IJCATM : www.ijcaonline.org 

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10013
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10013
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10013

