
International Journal of Computer Applications (0975 – 8887)

Volume 147 – No.13, August 2016

10

Impact of Parallelism on Dualcore

Varsha Thakur
Research scholar

Pt.Ravishankar shukla
university,Raipur(C.G),India

Sanjay Kumar
Associate Professor

Pt.Ravishankar shukla
university,Raipur(C.G),India

ABSTRACT

This paper shows the effect of parallelism in multicore

architecture. Performance was evaluated on the basis of the

execution time of matrix multiplication between sequential

algorithm and parallel algorithm in multicore processors. To

implement matrix multiplication algorithms C programming

language with OpenMp Libraries was used under Linux

environment.

General Terms

Parallel and distributed computing.

Keywords

Matrix Multiplication, Parallel Algorithm, OpenMp

1. INTRODUCTION
A Multicore processor is an Integrated Circuit in which more

than one processor or core are included for performance

improvement and Simultaneous processing of parallel jobs.

Matrix multiplication is a well known mathematical term used

in a linear algebra. Many other important matrix problems can

be solved via matrix multiplication, e.g., finding the N th

power, the inverse, the determinant and eigenvalues etc. We

are living in the era of parallel computing where performance

and efficiency are of fundamental importance [1]. OpenMp is

used for parallelizing the sequential matrix multiplication. In

rest of paper we have define some basic concept of OpenMP,

Multicore Architecture and Matrix Multiplication Algorithms.

OPENMP

OpenMp is an API (Application Program Interface) that use

multithreaded and shared memory parallelism. Openmp is

basically divided into three parts Compiler directives, runtime

library routines and environment variable. It is an open

specification for multiprocessing. OpenMp worked as a

fork-join model where fork is master thread that use to

create a team of parallel thread and join is used when the

team of parallel threads complete their task they

synchronize and terminate and left the master thread to

execute sequential program. OpenMp visualize as parallel

programming model on multicore architecture [3].

Multicore Architecture

A multicore places multiple processors on a single chip and

each processor is called a core [2]. As we increase the

capacity of chip placing multiple processors on a single chip

became practical. These architectural designs are known as

Chip Multiprocessors (CMPs), chip Multiprocessors are

known as Multicore. A multi-core processor is a single with

two or more independent processors. The instructions on

multicore are ordinary CPU instructions, but the multiple

processors can run multiple processes parallel at the same

time by increasing the overall speed of the programs.

Multicore span threads which divide the tasks between cores.

It can execute multiple tasks at single time. Multicore is

shared memory processors, all processors shares the same

memory. Multicores are becoming popular for both server and

desktop processors. By the next decade, it is expected to have

processors with hundreds of cores on a chip.

Fig 1. Multicore Architecture

2. MATRIX MULTIPLICATION
Matrix multiplication is a mathematical binary operation that

takes input as pair of matrices, and gives output of another

matrix.

2.1 Sequential matrix Multiplication
The sequential matrix multiplication is the fundamental basis

for other matrix multiplication. Matrix multiplication is only

possible when width of first matrix match with height of

second matrix. The product of a X b matrix A with b X c

matrix B is an a X c matrix C where element is defined as

 b -1

Cij =∑ aik bkj where 0≤ i < a, 0 ≤ j <c

Sequential matrix multiplication requires a * b*c addition

and same number of multiplication so, time complexity of

multiplication of matrix using sequential algorithm is O (N3).

2.2 Parallel Matrix Multiplication
In last few decades various approaches has been proposed for

implementation of matrix multiplication on shared memory

architecture. All parallel algorithms are based on conventional

sequential matrix multiplication. For parallel matrix

multiplication consider two nxn matrix A and matrix B.

Partition the matrix in L blocks where (0<=i, j<root l) of size

(n/root l) x (n/root l) each small matrix the n this small matrix

mapped into root l X root l mesh of processors. The process

initially stores Aij and Bij and compute Cij of result matrix.

After computing the entire sub matrix, matrix A’s block

performed in each row and matrix B’s performed in each

coloum. Finally sub matrix multiplication and addition is

performed. In parallel algorithm each element of matrix C is

Core 1

re1

Core 2 Core 3 Core 4

One or more

level of cache

One or more

level of cache

One or more

level of

cache

One or more

level of

cache

Main Memory

Core1 Core 2 Core

3

Core 4

One or

more level

of cache

One or

more level

of cache

One or

more level

of cache

One or

more

level of

cache

International Journal of Computer Applications (0975 – 8887)

Volume 147 – No.13, August 2016

11

computed simultaneously. Time complexity of multiplication

of nxn matrix using parallel algorithm is O (N2).

3. PERFORMANCE MEASUREMENTS
Performance of a parallel algorithm is measured using two

factors speed-up and efficiency.

A. Speedup

In parallel computing, speedup refers to how much faster a

parallel algorithm is run in parallel.

Speed up = Sequential execution time

 Parallel execution time

Speed up depends on the ratio of the amount of time your

code spends communicating to the amount of time it spends

computing.

B. Efficiency

In parallel computing, efficiency refers to speed up divided by

number of processors. Efficiency is a measure of how much

of your available processing power is being used.

Efficiency = Sequential execution time

 Parallel execution time X processor used

4. EXPERIMENTAL SETUP
For Experiment a computer systems are taken with dual core

processor with 1.83 GHz speed and linux operating system.

We have run the sequential matrix multiplication and parallel

matrix multiplication and on dual core processor. Execution

time was recorded as shown in Table I for dual core and

analyzed graphically.

Table 1: Speed up of algorithms for dual core processors.

Matrix

Size

Sequential(ms) Parallel(ms) Speed up

10x10 .0012 .0023 0.521

50x50 0.06 0.071 .84

100x

100

0.01 .01 1.0

500x

500

2.23 1.38 1.61

800x

800

10.34 6.24 1.65

1000x

1000

20.85 12.41 1.68

1500x

1500

127.3 75.14 1.70

2000x

2000

177.1 103.26 1.72

10x10 .0012 .0023 0.521

Graph 1 was plotted for time taken during execution of

sequential and parallel algorithm in Linux platform in dual

core processor.

The horizontal axis represents size of matrix and vertical axis

represents execution time in milliseconds.

Graph 2 was plotted for Speedup in Linux platform in dual

core processor.

The horizontal axis represents size of matrix and vertical axis

represents execution time in milliseconds.

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Sequential

Parallel

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

1
0

x1
0

1
0

0
x

5
0

0
x

8
0

0
x

1
0

0
0

x

1
5

0
0

x

2
0

0
0

x

1
0

x1
0

Speed up

Speed up

International Journal of Computer Applications (0975 – 8887)

Volume 147 – No.13, August 2016

12

5. CONCLUSION
In this experiment execution time and speedup was calculated

for sequential and, parallel matrix multiplication. It is clear

from the graph as OpenMp parallaize sequential program

performance get increases for higer order matrix while for

lower order matrix execution time with parallalization is more

than sequential multiplication. Beyond a certain optimum

problem size only parallization is effective below that point

because of communication overhead sequential algorithm on

sequential machines will give better results. Below optimum

problem size following overheads like interprocess

communication overhead, synchronization and concurrency

prominently play their roles.

6. REFERENCES
[1] Keqin L., Yi P., Si Qing Z.,”Fast and Processor Efficient

Parallel Matrix Multiplication Algorithms on a Linear

Array With a Reconfigurable Pipelined Bus System”,

IEEE Transaction on parallel and distributed, VOL. 9,

AUG 1998, pp 705-720.

[2] Cameron, H., Tracy, H., Professional Multicore

programming, Wiley publication,2008.

[3] Venkatesan P., Harish B., S. Sarholz, Proceedings of the

3rd international workshop on OpenMP "A Practical

Programming Model for the Multi-core Era", 2008.

[4] Rose M. P., “A Parallel Approach for Matrix

Multiplication on the TMS320C4x DSP”, Digital

Signal Processing Semiconductor Group, Texas

Instruments, Feb 1994.

[5] http://en.wikipedia.org/wiki/Matrix_multiplication

[6] http://en.wikipedia.org/wiki/Strassen_algorithm

[7] Juby M., R. Vijaya K., “Comparative Study of Strassen’s

Matrix Multiplication algorithm”, International Journal

of Computer Science And Technology IJCST Vol. 3,

Issue 1, Jan. - March 2012.

[8] Sara R.,"Toward an Optimal Algorithm for Matrix

Multiplication", From SIAM News, Vol. 38, No. 9,

November 2005.

[9] Quin Michael J.”Parallel programming in C with MPI

and OpenMP”. McGraw Hill Inc., 2004.

[10] .Kai hwang, Naresh Motwani, Advanced computer

Architecture, pp 108 chapter 3

[11] Jaeyoung C., A New Parallel Matrix Multiplication

Algorithm on Distributed-Memory Concurrent

Computers

[12] Vijayalakshmi S., Mohan R., A.S.Basavesh ,”A

Comparative Study on Performance Benefits of Multi-

core CPUs using OpenMP”IJCSI International Journal of

Computer Science Issues, Vol. 9, Jan 2012.

IJCATM : www.ijcaonline.org

