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ABSTRACT
In this paper, an application to the approximation by wavelets has
been obtained by using matrix-Cesàro (Λ · C1) method of
Jacobi polynomials. The rapid rate of convergence
of matrix-Cesàro method of Jacobi polynomials are
estimated. The result of Theorem (6.1) of this research paper is
applicable for avoiding the Gibbs phenomenon in intermediate
levels of wavelet approximations. There are major roles of wavelet
approximations (obtained in this paper) in computer applications.
The matrix-Cesàro (Λ·C1) method includes (N, pn)·C1 method
as a particular case. The comparison between the numerical results
obtained by the (N, pn) · C1 and matrix-Cesàro
(Λ · C1) summability method reveals a slight
improvement concerning the reduction of the
excessive oscillations by using the approach of present paper.
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1. INTRODUCTION
Approximation of Fourier series has been studied by several
researchers like Osilenker [1], Szegö [2], Zygmund [3] and Móricz
([4], [5]). Recently these results has been generalized for wavelet
expansions by researchers Lal and Sharma [6], Kelly ([7], [8]),
Mallat [9]. It is important to note that wavelet expansion exhibits
the same oscillatory behaviour as Fourier expansion and classical
summability methods can not be applied straight way in wavelet
expansions because the approximation is obtained by an infinite
partial sums. In this paper, a new application to the approximation
by wavelets based on the matrix-Cesàro (Λ ·C1) method of Jacobi
polynomials has been obtained. The matrix-Cesàro (Λ·C1) method
is linear and also a generalization of the (N, pn) · C1 method. It
depends on two parameters θ ∈ [0, π] and r ∈ (0, 1) and, this
additional degree of freedom makes possible to improve the

reduction of the Gibbs phenomenon in comparison with the
single parametric approach based on Cesàro summability and Abel
summability method (Walter and Sen [10]). The rapid rate of
convergence of the introduced method and the effect of the
matrix-Cesàro (Λ · C1) method of Jacobi polynomials on the
wavelet approximating expansions have been discussed.
This paper is mainly concerned with the following three
investigations:

(1) an application to the approximation by wavelets based on the
matrix - Cesàro (Λ · C1) summability method of the Jacobi
polynomials,

(2) the rapid rate of convergence by the matrix - Cesàro (Λ · C1)
summability method and

(3) the effect of the matrix - Cesàro (Λ · C1) summability
method of the Jacobi polynomials on the wavelet approximating
expansions.

Oscillatory behaviour in the neighbourhood of jump
discontinuities of a function which is approximated by using
these classical expansions. The excessive oscillations near the
jump are called Gibbs phenomena.

2. DEFINITIONS AND PRELIMINARIES

The trigonometric Fourier series f(x) =

∞∑
k=−∞

cke
ikx is associated

with a periodic real function f of coefficients

ck =
1

2π

∫ π

−π
f(x)e−ikxdx.

In this case, we consider the trigonometric polynomials

(snf) (x) =

n∑
k=−n

cke
ikx, (1)

where n is a non negative integer. These are called “partial sums”
of the Fourier series f . The (C, 1) means of the partial sums
(snf)∞n=o is given by

(σmf) (x) =
1

m+ 1

m∑
k=0

(skf) (x)
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=

m∑
k=−m

(
1− |k|

m+ 1

)
cke

ikx. (2)

The Gibbs phenomenon can be reduced by replacing the
corresponding partial sums {sk}mk=0 by their arithmetic means
{σm}∞m=0 . The Fourier coefficients are affected by a term, which
reduces their sizes and, as a consequence, the excessive oscillations
are avoided.
Matrix summability method
Consider an infinite lower triangular matrix

Λ = (an,k), n = 0, 1, 2, · · · , k = 0, 1, 2, · · · ,
where an,k = 0 for k > n. The conditions of regularity of

infinite lower triangular matrix Λ are
n∑
k=0

an,k → 1 as n → ∞,

an,k = 0 for k > n and
n∑
k=0

|an,k| ≤ M, a finite constant

(Silverman-Toeplitz [11]).

Let
∞∑
n=0

un be an infinite series having nth partial sum

sn =

n∑
ν=0

uν .

The sequence to sequence transformation

tΛn :=

∞∑
k=0

an−ksn−k

defines the sequence {tΛn} as matrix means of the sequence {sn},

generated by the sequence of coefficients (an,k). The series
∞∑
n=0

un

is said to be summable to the sum s by matrix method if lim
n→∞
{tΛn}

exists and is equal to s (Zygmund [3], p. 74).
Cesàro means of order 1 or (C1) summability

If σn = 1
n+1

n∑
ν=0

sν → s as n→∞ then the series
∞∑
n=0

un is said

to be summable to s by Cesàro means of order 1 and write
∞∑
n=0

un = s(C1).

Matrix-Cesàro (Λ · C1) summability method
(Λ · C1)-means, tΛ·C1

n is given by

tΛ·C1
n :=

n∑
k=0

an,kσk =

n∑
k=0

an,k
1

k + 1

k∑
ν=0

sν (3)

If tΛ·C1
n → s as n → ∞, then the series

∞∑
n=0

un or the sequence

{sn} is said to be summable to the sum s by (Λ · C1) -method. It
is written as

sn → s(Λ · C1)

or
∞∑
n=0

un = s(Λ · C1),

(Dhakal [12]).
If the triangular matrix Λ-summability method is superimposed
on the Cesàro means of order 1, C1, another method of
summability (Λ · C1) i.e., Matrix-Cesàro summability method is
obtained. The triangular matrix Λ-summability method includes
several summability methods like

(C, 1) · C1, (C, δ) · C1, (N, pn) · C1, (N, p, q) · C1, (H, p) · C1

as particular cases.

(1) Harmonic C1 means when an,k = 1
(n−k+1) logn

.

(2) (H, p) · C1 means when

an,k =
1

(log)p−1(n+ 1)

p−1∏
q=0

logq(k + 1).

(3) (N, pn) · C1 means (Nörlund [13]) if an,k =
pn−k
Pn

where

Pn =

n∑
k=0

pk 6= 0.

(4) (N, p, q) · C1 means (Borwein [14]) if an,k =
pn−kqk
Rn

where Rn =

n∑
k=0

pkqn−k 6= 0.

(5) (C, δ) · C1 means if an,k =
(n−k+δ−1
δ−1

)

(n+δ
δ

)
.

Following Askey [15], the normalized Jacobi polynomials defined
as

R(α,β)
n (cosθ) =

P
(α,β)
n (cosθ)

Pα,βn (1)
,

where Pα,βn (1) = (n+α
n ) 6= 0, α, β > −1,

w(x) = (1 − x)α(1 + x)β , form a complete orthogonal
system in L2([0, π];w) and, for each n ≥ 0 and α ≥ − 1

2
, and∣∣R(α,β)

n (cosθ)
∣∣ ≤ 1.

Askey [15] proved the following theorem:

Theorem If
∞∑
n=0

an converges to s, then

u(r, θ) =

∞∑
n=0

anR
(α,β)
n (cosθ)rn

tends to s for r → 1, θ = O(1− r). If α > 1
2

then u(r, θ) tends to
s for r → 1, θ → 0, without the restriction θ = O(1− r).

Let
∞∑

m=0

am be an infinite series having mth partial sums

sm =

m∑
ν=0

aν ∀m ≥ 0.

If

am,k =

 R
(α,β)
k (cosθ)rk −R(α,β)

k+1 (cosθ)rk+1, k = 0, · · · ,m− 1

R
(α,β)
m (cosθ)rm, k = m

0, k ≥ m+ 1
(4)
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then this theorem shows that when

σm = 1
m+1

m∑
ν=0

sν → s as m → ∞, tΛ·C1
m → s as m → ∞. The

method tΛm :=

∞∑
k=0

am−ksm−k is regular. By letting,

Λ̃ = ãm,k = am,m−k,

(ãm,k) is also regular. Consequently, the matrix Λ̃ defines a regular
summability method of {σm}, given by

tΛ·C1
m (sm) = R(α,β)

m (cosθ)rms0

+

m∑
k=1

(
R

(α,β)
m−k (cosθ)rm−k −R(α,β)

m−k+1(cosθ)rm−k+1
)

1

k + 1

k∑
ν=0

sν

= R(α,β)
m (cosθ)rmσ0

+

m∑
k=1

(
R

(α,β)
m−k (cosθ)rm−k −R(α,β)

m−k+1(cosθ)rm−k+1
)
σk

(5)

Nörlund summability method

If
∞∑
n=0

un be an infinite series with the sequence of partial sums

{sn}. Let {pn} be a sequence of constants, real or complex. And
let us write

Pn = p1 + p2 + p3 + · · ·+ pn.

The sequence to sequence transformation, viz.,

tNn =
1

Pn

n∑
ν=0

pn−νsν =
1

Pn

n∑
ν=0

pnsn−ν , (Pn 6= 0), (6)

define the sequence
{
tNn
}

of Nörlund means of the sequence {sn} ,

generated by the sequence of constants {sn} . The series
∞∑
n=0

un or

the sequence {sn} is said to be summable by Nörlund means or
summable (N, pn) to s , if lim

n→∞
tNn exists and equals s.

The condition of regularity of the method of the summability
(N, pn) defined by (6) are

lim
n→∞

pn
Pn

= 0 (7)

and
n∑
k=0

|pk| = 0, as n→∞. (8)

If {pn} is real and non-negative, (8) is automatically satisfied and
then (7) is the necessary and sufficient condition for the regularity
of the method of summation (N, pn).

If σn =
1

n+ 1

n∑
ν=0

sν tends to s as n → ∞ then
∞∑
n=0

un or {sn}

is said to summable to s by Cesàro’s means of order 1, i.e. (C, 1)
method.
The product of (N, pn) summability with (C, 1) summability
defines (N, pn) · C1 summability. Thus the (N, pn) · C1 means
is given by

tNCn =
1

Pn

n∑
k=0

pkσn−k =
1

Pn

n∑
k=0

pk
1

(n− k + 1)

n−k∑
ν=0

sk. (9)

If tNCn → s as n → ∞ then the series
∞∑
n=0

un or the sequence

{sn} is said to be summable to the sum s by (N, pn) ·C1 method.

2.1 The Gibbs phenomenon in wavelet expansions

Wavelets have wide applications in the subject of orthogonal
series. It has effective applications in non-stationary signals due to
orthogonal and non-orthogonal sequences of wavelets.
Let the approximation space at level j be Vj and the collection
{Vj : j ∈ Z} be a multiresolution analysis for the space L2(R). A
scale relation between two consecutive subspaces is satisfied as

f(·) ∈ Vj ⇒ f(2·) ∈ Vj+1.

There exists a scaling function φ ∈ L2(R) such that

{φj,k(·) = 2j/2φ(2j · −k), k ∈ Z}

is an orthonormal basis of Vj . Let Wj are be the orthogonal
complement of Vj in Vj+1, given by

Vj ⊕Wj = Vj+1. (10)

The spaces Wj are usually called the detail spaces at level j.
Under these conditions, there exists a wavelet function ψ ∈ L2(R)
(Cohen [16], Daubechies [17], Keinert [18] and Mallat [9]), such
that {ψj,k(·) = 2j/2ψ(2j ·−k), k ∈ Z} is an orthonormal basis of
Wj . Since {Vj} is a multiresolution analysis, therefore

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ V3 · · · ⊂ Vj ⊂ Vj+1 ⊂ · · ·
(11)

and for a fixed level j, it follows that

Vj = V0 ⊕W0 ⊕W1 ⊕ · · · ⊕Wj−1

and

L2(R) = V0 ⊕j≥0 Wj .

Let Pj be the orthogonal projection of L2(R) on to Vj . If 〈·, ·〉
stands for the standard inner product in L2(R) and f ∈ L2(R),
then by equation (10),

Pj+1f = Pjf +
∑
k∈Z

dj,kψj,k, (12)

where dj,k = 〈f, ψj,k〉 are the wavelet or detail coefficients. For
each approximation level j, a sequence of j + 1 projections

{P0f, P1f, P2f, · · · , Pj−1f, Pjf} (13)

can be defined by using equation (11). Kelly [7] studied the
existence of the Gibbs phenomenon in approximations by
using equation (12) with some compactly supported wavelets and
a bounded variation function with a jump discontinuity. Working
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in the same direction, Shim and Volkmer [19] exihibited the same
phenomenon in wavelet expansion under non-restricted conditions
on the scaling function.

3. ANALYSIS OF MATRIX-CESÀRO (Λ · C1)

SUMMABILITY METHOD OF JACOBI
POLYNOMIALS

3.1 Rate of convergence

Let
∞∑
n=0

un be an infinite series having its nth partial

sums sn =

n∑
ν=0

uν ,∀ n ≥ 0 such that σ1, σ2, · · · , σm, · · ·

converges to s, where σm =
1

m+ 1

m∑
ν=0

sν . In this paper, two new

theorems have been established to analyze the rate of convergence
of tΛ·C1

m (sm) to s in the following forms:

4. THEOREMS

4.1 Theorem
Let α ∈ (0, 1), such that

‖σm − s‖∞ =

∥∥∥∥∥ 1

m+ 1

m∑
k=0

(sk − s)

∥∥∥∥∥
∞

= O(αm).

(i) If α = r then there exists a positive constant K1 such that∥∥tΛ·C1
m (sm)− s

∥∥
∞ ≤ K1(1 +m)rm.

(ii) If r < α then there exists K2 > 0 such that∥∥tΛ·C1
m (sm)− s

∥∥
∞ ≤ K2α

m.

(iii) If α < r then there exists K3 > 0 such that∥∥tΛ·C1
m (sm)− s

∥∥
∞ ≤ K3r

m.

4.2 Theorem
Let α ∈ (0, 1), such that ‖σm − s‖∞ = O(αm).

(i) If α = r then∥∥tΛ·C1
m (sm)− s

∥∥
∞ = O

(
1− rm

1− r

)
.

(ii) If r < α then∥∥tΛ·C1
m (sm)− s

∥∥
∞ = O

(
1− αm

1− α

)
.

(iii) If α < r then∥∥tΛ·C1
m (sm)− s

∥∥
∞ = O

(
1− rm

1− r

)
.

5. PROOFS
5.1 Proof of Theorem 4.1

(i) From eq.(5) it follows that∥∥tΛ·C1
m (sm)− s

∥∥
∞ ≤

∣∣R(α,β)
m (cosθ)rms0

∣∣

+

m∑
k=1

∣∣∣R(α,β)
m−k (cosθ)rm−k −R(α,β)

m−k+1(cosθ)rm−k+1

∣∣∣∥∥∥∥∥ 1

k + 1

k∑
ν=0

(sν − s)

∥∥∥∥∥
∞

≤
∣∣R(α,β)

m (cosθ)rms0

∣∣
+

m∑
k=1

∣∣∣R(α,β)
m−k (cosθ)rm−k −R(α,β)

m−k+1(cosθ)rm−k+1

∣∣∣
C1r

k, C1 > 0

≤ |s0| rm + C1

m∑
k=1

(
rm−k + rm−k+1

)
rk

= |s0| rm + C1

m∑
k=1

rm(1 + r)

= |s0| rm + C1mr
m(1 + r)

= (|s0|+ C1m(1 + r)) rm

≤ (|s0|+ C1(m+ 1)(1 + r)) rm

≤ ((m+ 1) |s0|+ C1(m+ 1)(1 + r)) rm

= (m+ 1) (|s0|+ C1(1 + r)) rm

= K1(m+ 1)rm, where |s0|+ C1(r + 1) = K1

(ii) From eq.(5) it follows that∥∥tΛ·C1
m (sm)− s

∥∥
∞ ≤

∣∣R(α,β)
m (cosθ)rms0

∣∣
+

m∑
k=1

∣∣∣R(α,β)
m−k (cosθ)rm−k −R(α,β)

m−k+1(cosθ)rm−k+1

∣∣∣∥∥∥∥∥ 1

k + 1

k∑
ν=0

(sν − s)

∥∥∥∥∥
∞

≤
∣∣R(α,β)

m (cosθ)
∣∣ |s0| rm +

m∑
k=1

(∣∣∣R(α,β)
m−k (cosθ)

∣∣∣ rm−k
+

∣∣∣R(α,β)
m−k+1(cosθ)

∣∣∣ rm−k+1
)
C2α

k, C2 > 0

≤ αm |s0|+ C2

m∑
k=1

rm−k(1 + r)αk

≤ αm |s0|+ C2

m∑
k=1

(
r

α

)m−k
αm(1 + α)

=

(
|s0|+ C2

(
1−
(
r
α

)m
(1 + α)

1− r
α

))
αm

≤
(
|s0|+ C2

α(1 + α)

α− r

)
αm

= K2α
m, where K2 = |s0|+ C2

α(1 + α)

α− r
.

(iii) From eq.(5) it follows that∥∥tΛ·C1
m (sm)− s

∥∥
∞

4
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≤

∣∣∣∣∣R(α,β)
m (cosθ)rms0 +

m∑
k=1

R
(α,β)
m−k (cosθ)rm−k

−R(α,β)
m−k+1(cosθ)rm−k+1

∣∣∣ ∥∥∥∥∥ 1

k + 1

k∑
ν=0

(sν − s)

∥∥∥∥∥
∞

≤

∣∣∣∣∣R(α,β)
m (cosθ)rms0 +

m∑
k=1

R
(α,β)
m−k (cosθ)rm−k

−R(α,β)
m−k+1(cosθ)rm−k+1

∣∣∣C3α
k, C3 > 0

≤ C4

∣∣∣∣∣R(α,β)
m (cosθ)rm +

m∑
k=1

R
(α,β)
m−k (cosθ)rm−k

−R(α,β)
m−k+1(cosθ)rm−k+1αk

∣∣∣ , C4 = max {|s0| , C3}

= C4

∣∣∣∣∣αm +

m−1∑
k=0

R
(α,β)
m−k (cosθ)(αk − αk+1)rm−k

∣∣∣∣∣
≤ C4

∣∣∣∣∣αm + rm
m−1∑
k=0

(
α

r

)k
(1− α)

∣∣∣∣∣
= C4

(
αm + rm

(
1−
(
α
r

)m)(
1− α

r

) (1− α)

)

≤ C4

(
rm + rm

r(1− α)

(r − α)

)
= C4

(
1 +

r(1− α)

(r − α)

)
rm

= K3r
m, where K3 = C4

(
1 +

r(1− α)

(r − α)

)
.

5.2 Proof of Theorem 4.2

(i) From eq.(5) it follows that∥∥tΛ·C1
m (sm)− s

∥∥
∞ ≤

∣∣R(α,β)
m (cosθ)rms0

∣∣
+

∣∣∣∣∣
m∑
k=1

R
(α,β)
m−k (cosθ)rm−k −R(α,β)

m−k+1(cosθ)rm−k+1

∣∣∣∣∣∥∥∥∥∥ 1

k + 1

k∑
ν=0

(sν − s)

∥∥∥∥∥
∞

≤
∣∣R(α,β)

m (cosθ)
∣∣ rm |s0|+

m∑
k=1

∣∣∣R(α,β)
m−k (cosθ)rm−k−

R
(α,β)
m−k+1(cosθ)rm−k+1

∣∣∣( 1

k + 1

k∑
ν=0

‖sν − s‖∞

)

≤
∣∣R(α,β)

m (cosθ)
∣∣ rm |s0|+

m∑
k=1

∣∣∣R(α,β)
m−k (cosθ)rm−k−

R
(α,β)
m−k+1(cosθ)rm−k+1

∣∣∣( 1

k + 1

k∑
ν=0

C1r
ν

)
, C1 > 0

≤ rm|s0|+ C1

m∑
k=1

(
rm−k + rm−k+1

)(1 + r + r2 + · · ·+ rk

k + 1

)
= rm|s0|+ C1

m∑
k=1

rm−k(1 + r)

(
1 + r + r2 + · · ·+ rk

k + 1

)
= rm|s0|+ C1(1 + r)

m∑
k=1

1

k + 1

(
rm−k + rm−k+1 + · · ·+ rm

)
≤ rm|s0|+ C1(1 + r)

m∑
k=1

(
rm−k + rm−k + · · ·+ rm−k

k + 1

)
= rm|s0|+ C1(1 + r)

m∑
k=1

(
(k + 1)rm−k

k + 1

)
≤ rm−k|s0|+ C1(1 + r)

m∑
k=1

rm−k

≤ (|s0|+ C1(1 + r))

m∑
k=1

rm−k

≤ (|s0|+ C1(1 + r))
(

1− rm

1− r

)
= O

(
1− rm

1− r

)
.

(ii) From eq.(5) it follows that∥∥tΛ·C1
m (sm)− s

∥∥
∞

≤ |R(α,β)
m (cosθ)|rm|s0|+

m∑
k=1

(
|R(α,β)
m−k (cosθ)|rm−k

+|R(α,β)
m−k+1(cosθ)|rm−k+1

)∥∥∥∥∥ 1

k + 1

k∑
ν=0

(sν − s)

∥∥∥∥∥
∞

≤ |R(α,β)
m (cosθ)|rm|s0|+

m∑
k=1

(
|R(α,β)
m−k (cosθ)|rm−k

+|R(α,β)
m−k+1(cosθ)|rm−k+1

)
1

k + 1

k∑
ν=0

‖sν − s‖∞

≤ |R(α,β)
m (cosθ)|rm|s0|+

m∑
k=1

(
|R(α,β)
m−k (cosθ)|rm−k

+|R(α,β)
m−k+1(cosθ)|rm−k+1

)(
1

k + 1

k∑
ν=0

C2α
ν

)
, C2 > 0

≤ |s0|rm + C2

m∑
k=1

(rm−k + rm−k+1)

(
1 + α+ · · ·+ αk

k + 1

)
= |s0|rm + C2

m∑
k=1

(1 + r)rm−k
(

1 + α+ · · ·+ αk

k + 1

)
≤ |s0|αm + C2(1 + r)

m∑
k=1

αm−k
(

1 + α+ · · ·+ αk

k + 1

)
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= |s0|αm + C2(1 + r)

m∑
k=1

(
αm−k + αm−k+1 + · · ·+ αm

k + 1

)
≤ |s0|αm + C2(1 + r)

m∑
k=1

(
αm−k + αm−k + · · ·+ αm−k

k + 1

)
= |s0|αm + C2(1 + r)

m∑
k=1

(k + 1)αm−k

(k + 1)

≤ (|s0|+ C2(1 + r))

m∑
k=1

αm−k

= (|s0|+ C2(1 + r))
(

1− αm

1− α

)
= O

(
1− αm

1− α

)
.

(iii) From eq.(5) it follows that∥∥tΛ·C1
m (sm)− s

∥∥
∞

≤

∣∣∣∣∣R(α,β)
m (cosθ)rms0 +

m∑
k=1

(
R

(α,β)
m−k (cosθ)rm−k

−R(α,β)
m−k+1(cosθ)rm−k+1

)∣∣∣ ∥∥∥∥∥ 1

k + 1

k∑
ν=0

(sν − s)

∥∥∥∥∥
∞

≤

∣∣∣∣∣R(α,β)
m (cosθ)rms0 +

m∑
k=1

(
R

(α,β)
m−k (cosθ)rm−k

−R(α,β)
m−k+1(cosθ)rm−k+1

)∣∣∣( 1

k + 1

k∑
ν=0

‖sν − s‖∞

)

≤

∣∣∣∣∣R(α,β)
m (cosθ)rms0 +

m∑
k=1

(
R

(α,β)
m−k (cosθ)rm−k

−R(α,β)
m−k+1(cosθ)rm−k+1

)∣∣∣( 1

k + 1

k∑
ν=0

C3α
ν

)
, C3 > 0

≤ |R(α,β)
m (cosθ)|rm|s0|+ C3

m∑
k=1

(|R(α,β)
m−k (cosθ)|rm−k

+|R(α,β)
m−k+1(cosθ)|rm−k+1)

(
1

k + 1

k∑
ν=0

αν

)

≤ rm|s0|+ C3

m∑
k=1

(rm−k + rm−k+1)

(
1

k + 1

k∑
ν=0

rν

)

= rm|s0|+ C3

m∑
k=1

(1 + r)rm−k
(

1 + r + r2 + · · ·+ rk

k + 1

)
= rm|s0|+ C3(1 + r)

m∑
k=1

(
rm−k + rm−k+1 + · · ·+ rm

k + 1

)
≤ rm|s0|+ C3(1 + r)

m∑
k=1

(
rm−k + rm−k + · · ·+ rm−k

k + 1

)

= rm|s0|+ C3(1 + r)

m∑
k=1

(k + 1)rm−k

(k + 1)

≤ (|s0|+ C3(1 + r))

m∑
k=1

rm−k

= (|s0|+ C3(1 + r))
(

1− rm

1− r

)
= O

(
1− rm

1− r

)
.

6. EFFECT OF THE MATRIX-CESÀRO (Λ, C1)

METHOD OF JACOBI POLYNOMIALS ON THE
WAVELET EXPANSIONS

A system of orthogonal wavelet functions is considered in this
study fixing approximation level j. A sequence of j + 1 associated
projections is defined by equation (13). This plays the role of partial
sums in the mathematical analysis.

6.1 Theorem
Under the previous assumptions, it follows that

tΛ·C1
j (Pjf) =

P0f

k + 1
+

j−1∑
k=0

k∑
ν=0

∑
n∈Z

(
1−R(α,β)

j−k (cos θ)rj−k

k + 1

)
dν,nψν,n.

(14)

6.2 Proof of Theorem 6.1

From equation(5) it follows that

tΛ·C1
j (Pjf) = R

(α,β)
j (cosθ)rj

P0f

k + 1

+

j∑
k=1

(
R

(α,β)
j−k (cosθ)rj−k −R(α,β)

j−k+1(cosθ)rj−k+1
)

(
1

k + 1

k∑
ν=1

Pνf

)

= R
(α,β)
j (cosθ)rj

P0f

k + 1
+

j∑
k=1

R
(α,β)
j−k (cosθ)rj−k

(
1

k + 1

k∑
ν=1

Pνf

)

−
j∑

k=1

R
(α,β)
j−k+1(cosθ)rj−k+1

(
1

k + 1

k∑
ν=1

Pνf

)

=

j∑
k=0

R
(α,β)
j−k (cosθ)rj−k

(
1

k + 1

k∑
ν=0

Pνf

)

−
j−1∑
k=0

R
(α,β)
j−k (cosθ)rj−k

(
1

k + 1

k∑
ν=0

Pν+1f

)

=
1

j + 1

j∑
ν=0

Pνf +

j−1∑
k=0

R
(α,β)
j−k (cosθ)rj−k

(
1

k + 1

k∑
ν=0

Pνf

)

−
j−1∑
k=0

R
(α,β)
j−k (cosθ)rj−k

(
1

k + 1

k∑
ν=0

Pν+1f

)

6
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=
1

j + 1

j∑
ν=0

Pνf +

j−1∑
k=0

R
(α,β)
j−k (cosθ)rj−k(

1

k + 1

k∑
ν=0

Pνf −
1

k + 1

k∑
ν=0

Pν+1f

)
(15)

Since Pj+1f = Pjf +
∑
k∈Z

dj,kψj,k. Therefore

1

j + 1

j∑
ν=0

Pν+1f =
1

j + 1

j∑
ν=0

Pνf +
1

j + 1

j∑
ν=0

∑
k∈Z

dν,kψν,k.

This can be written as

1

k + 1

k∑
ν=0

Pν+1f =
1

k + 1

k∑
ν=0

Pνf +
1

k + 1

k∑
ν=0

∑
n∈Z

dν,nψν,n,

(16)
⇒

1

k + 1

k∑
ν=0

Pν+1f −
1

k + 1

k∑
ν=0

Pνf =
∑
n∈Z

k∑
ν=0

dν,nψν,n
k + 1

. (17)

Also, from eq.(16),

1

j + 1

j∑
ν=0

Pνf =
P0f

k + 1
+

j−1∑
k=0

∑
n∈Z

k∑
ν=0

dν,nψν,n
k + 1

. (18)

Substituting eqs.(17) and (18) in eq.(15),

tΛ·C1
j (Pjf) =

P0f

k + 1
+

j−1∑
k=0

∑
n∈Z

k∑
ν=0

dν,nψν,n
k + 1

−
j−1∑
k=0

R
(α,β)
j−k (cosθ)rj−k

(∑
n∈Z

k∑
ν=0

dν,nψν,n
k + 1

)

=
P0f

k + 1
+

j−1∑
k=0

∑
n∈Z

k∑
ν=0

dν,nψν,n
k + 1

−
j−1∑
k=0

∑
n∈Z

k∑
ν=0

R
(α,β)
j−k (cosθ)rj−k

k + 1
dν,nψν,n

=
P0f

k + 1
+

j−1∑
k=0

∑
n∈Z

k∑
ν=0

(
1−R(α,β)

j−k (cosθ)rj−k

k + 1

)
dν,nψν,n.

(19)

Thus the proof of the theorem 6.1 is complete.

7. REMARKS

(1) If λj,k(r, θ) = 1−R(α,β)
j−k (cosθ)rj−k = 1, then

tΛ·C1
j (Pjf) = σj(Pjf)

and if P0f exihibits the Gibbs phenomenon, the excessive
oscillations are not avoidable when λj,k(r, θ) ≈ 0. The

oscillations are reduced under the condition λj,k(r, θ) ∈ (0, 1)
for suitable values of r and θ.

(2) For a collection of j + 1 projections of the form
{Pjf, Pj+1f, · · · , P2jf}, Theorem 6.1 can be established in
the following form

tΛ·C1
2j (P2jf) =

Pjf

k + 1

+

2j−1∑
k=j

2k−1∑
ν=k

∑
n∈Z

(
1−R(α,β)

2j−k (cosθ)r2j−k

k + 1

)
dν,nψν,n.

(20)

8. APPLICATIONS
(1) Considering the function

f(x) =

{
(x−2)2

35
, −1 < x < 0;

(x− 1
3
)3, 0 ≤ x < 1,

(21)

with the size of the jump Jf = |f(0−)− f(0+)| = 0.15132.
The projection P8f obtained by the symlet system sym4 (Mallat
[9], p. 253) exihibits the Gibbs phenomenon at 0, (Figure 1) where

|JP8f − Jf | = 0.0290 (approx.).

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.1

0

-0.1

0.3

Fig. 1. Projection P8f performed by using the wavelet sym4

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.1

0

-0.1

0.3

Fig. 2. tΛ·C1
8 (P8f): Application of the matrix-Cesàro summability

method of Jacobi polynomials on the projection.
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-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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0
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0.4

0.6

0.8

1

Fig. 3. Projection P8u performed by using the wavelet db4.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.2

0.4

0

-0.2

0.6

0.8

1

1.2

Fig. 4. t
[J]
8 (P8u): Application of the matrix-Cesàro (Λ ·C1) summability

method of Jacobi polynomials on the projection.

The matrix-Cesàro (Λ, C1) method of Jacobi polynamials has been
applied on the projections {P4f, P5f, P6f, P7f, P8f} with

{λ8,k(0.4580, 0.135)}7k=4 = {0.9466, 0.8918, 0.7750, 0.5260}

and α = β = 1, r = 0.4580, θ = 0.135. In this case,

|J
t
Λ·C1
8

(P8f)
− Jf | = 4.6957e− 0.05 (approx.)

is minimum and the values r and θ are optimal. The Gibbs
phenomenon has been reduced by using the matrix-Cesàro (Λ, C1)
method of Jacobi polynamials performed on the projection P8f(x)
which is shown in Figure 2.
In particular, by taking

an,k =
pn−k
Pn

, Pn =

n∑
k=0

pk 6= 0

in considered summability method (Λ, C1), it reduces to
(N, pn) · C1 method tNC8 has been applied on the projections
{P4f, P5f, P6f, P7f, P8f} and it is observed that

|JtNC
8

(P8f) − Jf | = 5.2841e− 0.05 (approx.)

is minimum with the optimal value r = 0.4580.
(2) Considering the unitary step function, u, defined by

u(x) =

{
0, x < 0;
1, x ≥ 0,

(22)

with a jump discontinuity at 0. The Daubechies wavelet system
db4, (Daubechies [17], p.195), has been used to compute the

projections {P4u, P5u, P6u, P7u, P8u} (Figure 3). The
application of the (N, pn) · C1 method for r = 0.450 gives

|JtNC
8

(P8u)− Ju| = 1.0877e− 004 (approx.).

For the computation of equation (20), the values

{λ8,k(0.4552, 0.015)}7k=4 = {0.9573, 0.9058, 0.7931, 0.5452}

are obtained by applying the matrix-Cesàro (Λ · C1) method
of Jacobi polynomials with α = β = 1

3
, r = 0.4452 and

θ = 0.015. The effect of the matrix-Cesàro (Λ · C1) method
of Jacobi polynomials on the projection P8u is more clear and
effective as shown in Figure 4. Thus

|J
t
[J]
8

(P8u)
− Ju| = 7.1724e− 0.045 (approx.).

Consequently, in this paper, a better approximation to the Jump
Ju is obtained by using the optimal values of r and θ in the
matrix-Cesàro (Λ · C1) method of Jacobi polynomials.

9. CONCLUSION

In this paper, the matrix-Cesàro (Λ · C1) summability method of
Jacobi polynomials is studied and it is applied to reduce the Gibbs
phenomenon in wavelet analysis. The suitable estimators for the
wavelet approximation of the functions belonging to generalized
Lipschitz class are to be obtained using the idea of this paper.
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