Stability of Quartic Functional Equation in Random 2Normed Space

Roji Lather
Department of Mathematics, Maharshi Dayanand Univeristy, Rohtak

Kusum Dhingra
Department of Mathematics, Maharshi Dayanand University, Rohtak

Abstract

In this paper, we present the Hyers- Ulam- Rassias stability of quartic functional equation $f(2 x+y)+f(2 x-y)=4 . f(x+y)+4 f(x-y)+24 f(x)-6 f(y)$ in Random 2- Normed space.

Keywords

Hyers-Ulam-Rassias stability, Quartic functional equation , Random 2- Normed space.

1. INTRODUCTION

In 1941, D.H. Hyers [2] has been studied the stability of function for a function from normed space to Banach space. He solved the problem given by Ulam [16] in 1940. He proved that for a function $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$, a function between normed space X and Banach space Y satisfying
$\|f(x+y)-f(x)-f(y)\| \leq \delta$
for each $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and $\delta>0$. Then there exists a unique additive function $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{Y}$ such that
$\|f(x)-T(x)\| \leq \delta$ for each $x \in X$.
Above result is generalized by Aoki [18] and Rassias [19] for additive mappings and linear mappings, respectively. A generalization of Rassias theorem was obtained by Gavruta [11] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias approach.

In 1990, Rassias asked the question whether such a theorem can also be proved for $p \geq 1$. In 1991, Gajda [25] gave an affirmative solution to this question for $\mathrm{p}>1$. Gajda [25] as well Rassias and Semirl [20] investigated that one can not prove Rassias - type theorem when $\mathrm{p}=1$ (cf. the books of Czerwik [15], Hyers, Isac and Rassias [3]). In the similar way, using different methods, the stability problems for several functional equations have been extensively investigated by serval mathematicians([4-7], [12-14], [21-24]).

The functional equation

$$
\begin{align*}
& f(2 x+y)+f(2 x-y)= \\
& \quad 4 . f(x+y)+4 f(x-y)+24 f(x)-6 f(y) \tag{1.1}
\end{align*}
$$

is said to be quartic functional equation and every solution of quartic equation is said to quartic mapping. Karn Petapirak and Pasian Nakmahachalasint [9] proved the stability problem of quartic functional equation.

2. PRELIMINARIES

In this section, we recall some notations and basic definitions used in this article.

Definition 2.1 [1] : A distribution function is an element of Δ^{+}, where $\Delta^{+}=\{\mathrm{f}: \mathrm{R} \rightarrow[0,1] ; \mathrm{f}$ is left-continuous, non decreasing, $f(0)=0$ and $f(+\infty)=1\}$ and the subset
$\mathrm{D}^{+} \subseteq \Delta^{+}$is the set
$\mathrm{D}^{+}=\left\{\mathrm{f} \in \Delta^{+} ; l \mathrm{f}((+\infty)=1\}\right.$.
Here $l \mathrm{f}(+\infty)$ denotes the left limit of the function f at the point x . The space Δ^{+}is partially ordered by the usual pointwise ordering of functions, i.e., $f \leq g$ if and only if $f(x) \leq g(x)$ for all $x \in R$. For any $a \in R, H_{a}$ is a distribution function defined by
$H_{a}(x)=\left\{\begin{array}{lll}0 & \text { if } & x \leq a ; \\ 1 & \text { if } & x>a .\end{array}\right.$
The set Δ, as well as its subsets, can be partially ordered by the usual pointwise order : in this order, H_{0} is the maximal element in Δ^{+}.

A triangle function is a binary operation on Δ^{+}, namely a function $\mu: \Delta^{+} \times \Delta^{+} \rightarrow \Delta^{+}$that is associative, commutative, non decreasing and which has ε_{0} as unit, that is, for all f, g, h $\in \Delta^{+}$, we obtain :
i. $\quad \mu(\mu(f, g), \mathrm{h})=\mu(\mathrm{f}, \mu(\mathrm{g}, \mathrm{h}))$,
ii. $\quad \mu(\mathrm{f}, \mathrm{g})=\mu(\mathrm{g}, \mathrm{f})$,
iii. $\quad \mu(\mathrm{f}, \mathrm{g})=\mu(\mathrm{g}, \mathrm{f})$ whenever $\mathrm{f} \leq \mathrm{g}$,
iv. $\quad \mu\left(\mathrm{f}, \mathrm{H}_{0}\right)=\mathrm{f}$.

A t -norm is a continuous mapping $*:[0,1] \times[0,1] \rightarrow[0,1]$ such that $\left([0,1]\right.$, a) is abelian monoid with unit one and $c^{*} \mathrm{~d} \geq$ $a * b$ if $c \geq a$ and $d \geq b$ for all $a, b, c, d \in[0,1]$.

The concept of 2-normed space was first introduced in [17].
Definition 2.2[10] : Let X be a linear space dimension greater than 1 . Suppose $\|.,$.$\| is a real-valued function on \mathrm{X} \times \mathrm{X}$ satisfying the following conditions :
i. $\quad\|\mathrm{x}, \mathrm{y}\|=0$ if and only if x, y are linearly dependent vectors,
ii. $\|x, y\|=\|y, x\|$ for all $x, y \in X$,
iii. $\|\lambda \mathrm{x}, \mathrm{y}\|=|\lambda|\|\mathrm{x}, \mathrm{y}\|$ for all $\lambda \in \mathrm{R}$ and for all x, y $\in X$,
iv. $\quad\|x+y, z\| \leq\|x, z\|+\|z, y\|$ for all $x, y, z \in X$.

Then $\|.,$.$\| is called a 2$-norm on X and the pair ($\mathrm{X},\|.,$.$\|)$ is called 2-normed linear space. Some of the basic properties of 2 -norm are that they are non-negative and $\|\mathrm{x}, \mathrm{y}+\lambda \mathrm{x}\|=\|$ $\mathrm{x}, \mathrm{y} \|$ for all $\lambda \in \mathrm{R}$ and all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$.

Example 2.2[10] : Let X be a linear space with inner product $<., .>$ and $\operatorname{dim}(X) \geq 2$. Then
$\|x, y\|=\left|\begin{array}{ll}<x, x\rangle & <x, y\rangle \\ \langle y, x\rangle & <y, y\rangle\end{array}\right|^{\frac{1}{2}}$ is a 2 -norm on X.

Gelet [8] and Mursaleen introduced the notion of random 2normed space (or in short RTN space).

Definition2.3[1] : Let X be a linear space of dimension greater than one, μ is a triangle function, and $\mathrm{F}: \mathrm{X} \times \mathrm{X} \rightarrow \Delta^{+}$. Then F is called a probabilistic 2-norm on X and (X, F, μ) a probabilistic 2-normed space if the following conditions are fulfilled :
(i) $\quad \mathrm{F}_{\mathrm{x}, \mathrm{y}}(\mathrm{t})=\mathrm{H}_{0}(\mathrm{t})$ if x and y are linearly dependent, where $F_{x, y}(t)$ denotes the value of $F_{x, y}$ at $t \in R$,
(ii) $\mathrm{F}_{\mathrm{x}, \mathrm{y}} \neq \mathrm{H}_{0}$ if x and y are linearly independent,
(iii) $F_{x, y}=F_{y, x}$ for every x, y in X,
(iv) $F_{\alpha x, y}(t)=F_{x, y}\left(\frac{t}{|\alpha|}\right)$ for every $t>0, \alpha \neq 0$ and $x, y \in X$,
(v) $F_{x+y, z} \geq \mu\left(F_{x, z}, F_{y, z}\right)$ whenever $x, y, z \in X$. If (v) is replaced by
(v^{\prime}) $F_{x+y, z}\left(t_{1}+t_{2}\right) \geq F_{x, z}\left(t_{1} * F_{y, z}\left(t_{2}\right)\right.$ for all $x, y, z \in X$ and t_{1}, $t_{2} \in R_{0}^{+}$, then triple $\quad(X, F, *)$ is called a random 2normed space.
Example 2.3[1] : Let $(X,\|.,\|$.$) be a 2-normed space with \|$ $\mathrm{x}, \mathrm{z}\|=\| \mathrm{x}_{1} \mathrm{z}_{2}-\mathrm{x}_{2} \mathrm{z}_{1} \|, \mathrm{x}=\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right), \quad \mathrm{z}=\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)$ and $\mathrm{a} * \mathrm{~b}=$ ab for $a, b \in[0,1]$. For all $x \in X, t>0$ and non zero $z \in X$, Consider
$F_{x, z}(t)=\left\{\begin{array}{lll}\frac{t}{t+\|x, z\|} & \text { if } & t>0 \\ 0 & \text { if } & t \leq 0 ;\end{array}\right.$
Then $(\mathrm{X}, \mathrm{F}, *)$ is a random 2-normed space.
Remark 2.3 : Every 2-normed space ($\mathrm{X}, \| .$, . $\|$) can be made a random 2 -normed space in natural way, by setting $\mathrm{F}_{\mathrm{x}, \mathrm{y}}(\mathrm{t})=$ $H_{0}(t-\|x, y\|)$, for every $x, y \in X, t>0$
and $\mathrm{a} * \mathrm{~b}=\min \{\mathrm{a}, \mathrm{b}\}, \mathrm{a}, \mathrm{b} \in[0,1]$.
Definition 2.4[1] : A sequence $x=\left(x_{k}\right)$ is convergent in $(X, F$, *) or simply F-convergent to l if for every $\epsilon>0$ and $\theta \in(0,1)$ there exists $\mathrm{k}_{0} \in \mathrm{~N}$ such that $\mathrm{F}_{\mathrm{x}_{\mathrm{k}}-l, \mathrm{z}}(\varepsilon)>1-\theta$ whenever $\mathrm{k} \geq \mathrm{k}_{0}$ and non zero $\mathrm{z} \in \mathrm{X}$. In this case, we write $\mathrm{F}-\lim _{\mathrm{k} \rightarrow \infty} \mathrm{x}_{\mathrm{k}}=l$ and l is called the F-limit of $x=\left(x_{k}\right)$.
Definition 2.5[1]: A sequence $x=\left(x_{k}\right)$ is said to be Cauchy sequence in $(X, F, *)$ for every $\epsilon>0, \theta>0$ and non-zero $z \in$ X there exist a number $N=N(\epsilon, z)$ such that $\lim \mathrm{F}_{\mathrm{x}_{\mathrm{n}}-\mathrm{x}_{\mathrm{m}}, \mathrm{z}}(\varepsilon)>1-\theta$ for all $\mathrm{n}, \mathrm{m} \geq \mathrm{N}$. RTN-space $\left(\mathrm{X}, \mathrm{F},{ }^{*}\right)$ is said to be complete if every F-Cauchy is F-convergent. In this case, $\left(\mathrm{X}, \mathrm{F},,^{*}\right)$ is called random 2-Banach space.

3. MAIN RESULT

In this section, we shall suppose that X and Y are linear spaces; $\left(\mathrm{X}, \mathrm{F},{ }^{*}\right)$ and $\left(\mathrm{Z}, \mathrm{F}^{\prime},{ }^{*}\right)$ are random 2 -normed spaces; and $\left(\mathrm{Y}, \mathrm{F},{ }^{*}\right)$ is a random 2-Banach space. Let ϕ be a function from $X \times X$ to Z. A mapping $f: X \rightarrow Y$ is said to be ϕ-approximately quartic mapping if
$F_{E_{x, y}, z}(t) \geq F_{\varphi(x, y), z}^{\prime}(t)$
Theorem 3.1 : Let us assume that a function ϕ : $\mathrm{X} \times \mathrm{X} \rightarrow \mathrm{Z}$ satisfies $\phi(2 \mathrm{x}, 2 \mathrm{y})=\alpha \phi(\mathrm{x}, \mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}$ and
$\alpha \neq 0$. Let $\mathrm{f}: \mathrm{X} \rightarrow \mathrm{Y}$ be a function. For some
ϕ-approximately quartic $0<\alpha<16$,
$\mathrm{F}_{\psi(2 \mathrm{x}, 2 \mathrm{y}) \mathrm{z}}^{\prime}(\mathrm{t}) \geq \mathrm{F}_{\alpha \psi(\mathrm{x}, \mathrm{y}), \mathrm{z}}^{\prime}(\mathrm{t})$
and $\quad \lim _{n \rightarrow \infty} F_{\psi\left(2^{n} x, 2^{n} y\right), z}^{\prime}\left(16^{n} t\right)=1$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{t}>0$ and non-zero $\mathrm{z} \in \mathrm{X}$. Then there exists a unique quartic mapping $\mathrm{C}: \mathrm{X} \rightarrow \mathrm{Y}$ such that

$$
\begin{equation*}
\mathrm{F}_{\mathrm{C}(\mathrm{x})-\mathrm{f}(\mathrm{x}), \mathrm{z}}(\mathrm{t}) \geq \mathrm{F}_{\psi(\mathrm{x}, 0), \mathrm{z}}^{\prime}((16-\alpha) \mathrm{t}) \tag{3.3}
\end{equation*}
$$

for all $\mathrm{x} \in \mathrm{X}, \mathrm{t}>0$ and non-zero $\mathrm{z} \in \mathrm{X}$.
Proof : Taking $y=0$ in equation (3.1). Then for all $x \in X, t>$ 0 and non-zero $\mathrm{z} \in \mathrm{X}$
$\mathrm{F}_{\frac{\mathrm{f}(2 \mathrm{x})}{16}-\mathrm{f}(\mathrm{x}), \mathrm{z}}\left(\frac{\mathrm{t}}{32}\right) \geq \mathrm{F}_{\psi(\mathrm{x}, 0)}^{\prime}(\mathrm{t})$
Replacing x by $2^{n} x$ in (3.4) and applying (3.2), we have
$F_{\frac{f\left(2^{n+1} x\right)}{16^{n+1}}-\frac{f\left(2^{n} x\right)}{16^{n}}, z}\left(\frac{t}{32.16^{n}}\right) \geq F_{\psi\left(2^{n} x, 0\right), z}^{\prime}(t) \geq F_{\psi(x, 0), z}^{\prime}\left(\frac{t}{\alpha^{n}}\right)$
for all $x \in X, t>0$ and non-zero $z \in X$; and for all $n \geq 0$. By replacing t by $\alpha^{n} t$, we obtain $F_{\frac{f\left(2^{n+1} x\right)}{16^{n+1}}-\frac{f\left(2^{n} x\right)}{16^{n}}, z}\left(\frac{\alpha^{n} \cdot t}{32 \cdot 16^{n}}\right) \geq F_{\psi(x, 0), z}^{\prime}(t)$
It follows from $\frac{f\left(2^{n} x\right)}{16^{n}}-f(x)=\sum_{k=0}^{n=1}\left(\frac{f\left(2^{k+1} x\right.}{16^{k+1}}-\frac{f\left(2^{k} x\right)}{16^{k}}\right)$ and (3.5) that
 (3.6)
for all $x \in X, t>0$ and $n>0$ where $\prod_{j=1}^{n} a_{j}=a_{1} * a_{2} * \ldots . a_{n}$ By replacing x with $2^{\mathrm{m}} \mathrm{x}$, we obtain

$$
\begin{aligned}
& \mathrm{F}_{\frac{\mathrm{f}\left(2^{n+m} x\right)}{16^{n+m}}-\frac{f\left(2^{m} x\right)}{16^{m}}, z}\left(\sum_{k=0}^{n-1} \frac{\alpha^{k} t}{32(16)^{k+m}}\right) \geq \mathrm{F}_{\psi\left(2^{m} \times, 0\right), z}^{\prime}(t) \geq F_{\psi(x, 0), z}^{\prime}\left(\frac{t}{\alpha^{m}}\right) \text { Then } \\
& \mathrm{F}_{\frac{\mathrm{f}\left(2^{n+m} x\right)}{16^{n+m}}-\frac{f\left(2^{m} x\right)}{16^{m}}, z}\left(\sum_{k=m}^{n+m-1} \frac{\alpha^{k} t}{32(16)^{k}}\right) \geq F_{\psi(x, 0), z}^{\prime}(t)
\end{aligned}
$$

for all $\mathrm{x} \in \mathrm{X}, \mathrm{t}>0, \mathrm{~m}>0, \mathrm{n} \geq 0$ and non-zero $\quad \mathrm{z} \in \mathrm{X}$. Hence

$$
\begin{equation*}
F_{\frac{f\left(2^{n+m} x\right)}{16^{n+m}}-\frac{f\left(2^{m} x\right)}{16^{m}}, z}(t) \geq F_{\psi(x, 0), z}^{\prime}\left(\frac{t}{\sum_{k=m}^{n+m-1} \frac{\alpha^{k}}{32(16)^{k}}}\right) \tag{3.7}
\end{equation*}
$$

for all $x \in X, t>0, m>0, n \geq 0$ and non-zero $\quad z \in X$. Since $0<\alpha<16$ and $\sum_{k=0}^{\infty}\left(\frac{\alpha}{16}\right)^{k}<\infty$, the Cauchy criterion for convergence proves that $\left(\frac{\mathrm{f}\left(2^{\mathrm{n} x} \mathrm{x}\right)}{16^{\mathrm{n}}}\right)$ is a Cauchy sequence in $(\mathrm{Y}, \mathrm{F}, *)$. Since $(\mathrm{Y}, \mathrm{F}, *)$ is complete, this sequence converges
to some point $\mathrm{C}(\mathrm{x}) \in \mathrm{Y}$. Fix $\mathrm{x} \in \mathrm{X}$ and put $\mathrm{m}=0$ in (3.7) to obtain
$F_{\frac{f\left(2^{n} x\right)}{16^{n}}-f(x), z}(t) \geq F_{\psi(x, 0), z}^{\prime}\left(\frac{t}{\sum_{k=0}^{n-1} \frac{\alpha^{k}}{32(16)^{k}}}\right)$
for all $\mathrm{t}>0, \mathrm{n}>0$ and non-zero $\mathrm{z} \in \mathrm{X}$. Thus we get

$$
\begin{array}{r}
\mathrm{F}_{\mathrm{C}(\mathrm{x})-\mathrm{f}(\mathrm{x}), \mathrm{Z}}(\mathrm{t}) \geq \mathrm{F}_{\mathrm{C}(\mathrm{x})-\frac{\mathrm{f}\left(2^{\mathrm{n} x}\right)}{16^{n}}, \mathrm{z}}\left(\frac{\mathrm{t}}{2}\right) * \mathrm{~F}_{\frac{\mathrm{f}\left(2^{n} \mathrm{x}\right)}{16^{n}}-\mathrm{f}(\mathrm{x}), \mathrm{z}}\left(\frac{\mathrm{t}}{2}\right) \\
\\
\geq \mathrm{F}_{\psi(\mathrm{x}, 0), z}^{\prime}\left(\frac{\mathrm{t}}{\sum_{\mathrm{k}=0}^{\mathrm{n}-1} \frac{\alpha^{k}}{16.16^{k}}}\right)
\end{array}
$$

for large n . Taking the limit as $\mathrm{n} \rightarrow \infty$ and applying the definition of Random 2-Normed Space, we get
$\mathrm{F}_{\mathrm{C}(\mathrm{x})-\mathrm{f}(\mathrm{x}), \mathrm{z}}(\mathrm{t}) \geq \mathrm{F}_{\psi(\mathrm{x}, 0), \mathrm{z}}^{\prime}((16-\alpha) \mathrm{t})$
Change x and y by $2^{n} x$ and $2^{n} y$, respectively, in (3.1), we obtain
$F_{\frac{E 2^{n} x, 2^{n} y}{16^{n}}, z}(t) \geq F_{\psi\left(2^{n} x, 2^{n} y\right), z}^{\prime}\left(16^{n} t\right)$
for all $\mathrm{x}, \mathrm{y} \in \mathrm{X}, \mathrm{t}>0$ and non-zero $\mathrm{z} \in \mathrm{X}$.
Since $\quad \lim _{n \rightarrow \infty} \mathrm{~F}_{\psi\left(2^{\mathrm{n}} x, 2^{\mathrm{n}} y\right), Z^{\prime}}^{\prime}\left(16^{\mathrm{n}} \mathrm{t}\right)=1$,
We conclude that C satisfy (1.1). To prove the uniqueness of the quartic function C , let us suppose that there exist a quartic function $\mathrm{Q}: \mathrm{X} \rightarrow \mathrm{Y}$ which satisfy (3.3). For fix $\mathrm{x} \in \mathrm{X}$, clearly $C\left(2^{\mathrm{n}} \mathrm{x}\right)=16^{\mathrm{n}} \mathrm{C}(\mathrm{x})$ and
$\mathrm{Q}\left(2^{\mathrm{n}} \mathrm{x}\right)=16^{\mathrm{n}} \mathrm{Q}(\mathrm{x}) \quad$ for all $\mathrm{n} \in \mathrm{N}$.
It follows from (3.3) that

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{C}(\mathrm{x})-\mathrm{Q}(\mathrm{x}), \mathrm{z}}(\mathrm{t})=\mathrm{F}_{\frac{\mathrm{C}\left(1^{\mathrm{n} x}\right)}{16^{n}}-\frac{\mathrm{Q}\left(2^{\mathrm{n} x}\right), 2}{16^{n}}}(\mathrm{t}) \\
& \quad \geq \mathrm{F}_{\frac{\mathrm{C}\left(2^{\mathrm{n}} x\right)}{16^{n}}-\frac{\mathrm{f}\left(2^{\mathrm{n} x}\right), \mathrm{z}}{16^{n}}}\left(\frac{\mathrm{t}}{2}\right) * \mathrm{~F}_{\frac{\mathrm{f}\left(2^{\mathrm{n} x}\right)}{16^{n}}}-\frac{\mathrm{Q}\left(2^{\mathrm{n} x}\right), z}{16^{n}, z}\left(\frac{\mathrm{t}}{2}\right) \\
& \quad \geq \mathrm{F}_{\psi\left(2^{\mathrm{n} x, 0), z}\right.}^{\prime}\left(\frac{16^{\mathrm{n}}(16-\alpha) \mathrm{t}}{2}\right) \\
& \quad \geq \mathrm{F}_{\psi(x, 0), z}^{\prime}\left(\frac{16^{\mathrm{n}}(16-\alpha) \mathrm{t}}{2 \alpha^{\mathrm{n}}}\right)
\end{aligned}
$$

So, $\quad F_{\psi(x, 0), z}^{\prime}\left(\frac{16^{\mathrm{n}}(16-\alpha) \mathrm{t}}{2 \alpha^{\mathrm{n}}}\right)=1$
Thus, $\left.\mathrm{F}_{\mathrm{C}(\mathrm{x})-\mathrm{Q}(\mathrm{x}), \mathrm{z}} \mathrm{t}\right)=1$ for all $\mathrm{x} \in \mathrm{X}, \mathrm{t}>0$ and \quad non-zero $\mathrm{z} \in$ X. Hence $C(x)=Q(x)$.

4. REFERENCES

[1] A. Alotaibi, S.A. Mohiuddine; On the stability of a cubic functional equation in random 2-normed spaces, Advances in Difference Equations, 1,39 (2012) pp. 1-10.
[2] D.H. Hyers; On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941) 222224.
[3] D.H. Hyers, G. Isac and Th. M. Rassias; Stability of functional equations in several variables, Birkhauser, Basel, (1998).
[4] E. Elqorachi; Y. Manar and Th. M. Rassias; Hyers-Ulam stability of the quadratic functional equation, Int. J. Non linear Anal. Appl. 1(2010) 11-20.
[5] E. Elqorachi, Y. Manar and Th. M. Rassias; Hyers-Ulam stability of quadratic and Jensen functional equations on unbounded domains, J. Math. Sci. Advances and Applications 4(2010) 287-301.
[6] G.L. Forti; An existence and stability theorem for a class of functional equations, Stochastica 4(1980) 23-30.
[7] G.L. Forti; Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50(1995) 143190.
[8] I. Golet; On probabilistic 2-normed spaces, Novi Sad J. Math. 35, (2006) 95-102.
[9] K. Petapirak and P. Nakmahachalasint; A quartic functional equation and its generalized Hyers-UlamRassias stability, Thai. J. of Maths. Spec, Issue (Annual Meeting in Math.) (2008) 77-84.
[10] M .Kumar, Anil; Stability of Cubic Functional Equations in 2- Normed Space, 2, 3 (2015) 55-58.
[11] P. Gavruta; A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184(1994) 431-436.
[12] S.M. Jung; Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, springer, New York, (2011).
[13] S.M. Jung; Stability of the quadratic equation of Pexider type, Abh. Math. Sem Univ. Hamburg 70(2000) 175190.
[14] S.M. Jung and B. Kim; Local stability of the additive functional equation and its applications, IJMMS (2003) 15-26.
[15] S. Czerwik; On the stability of the quadratic mapping in normed spaces, abh. Math. Sem. Univ. Hamburg. 62 (1992) 59-64.
[16] S.M. Ulam; A collection of Mathematical Problems, Interscience Publ. New York, 1961. Problems in Modern Mathematics, Wiley, New York, 1964.
[17] S. Gahler; Linear 2-normierte R aumen, Math. Nachr, (28) (1964)1-43.
[18] T. Aoki; On the stability of the linear transformation n Banach Spaces, J. Math. Soc. Japan 2 (1950) 64-66.
[19] Th. M. Rassias; On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297300.
[20] Th. M. Rassias and P. Semrl; On the behaviour of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 114(1992) 989-993.
[21] Th. M. Rassias; On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991) 106-113.
[22] Th. M. Rassias; The problem of S.M. Ulam for approximately multiplicative mapping, J. Math. Anal. Appl. 246 (2000) 352-378.
[23] Th. M. Rassias; On the stability of the functional equations and a problem of Ulam, Acta Appl. Math. 62 (2000) 23-130.
[24] Th. M. Rassias; On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251(2000) 264284.
[25] Z. Gajda; On stability of additive mappings, Internat. J. Math. Math. Sci. 14(1991) 431-434.

