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ABSTRACT

Traffic classification is an automatic method that categorizes
network traffic in line with varied parameters into variety of
traffic categories. Many supervised classification algorithms
and unsupervised clustering algorithms have been applied to
categorise web traffic. Traditional traffic classification
strategies embrace the port-based prediction strategies and
payload-based deep examination strategies. In current
network environment, the traditional strategies suffer from
variety of sensible issues, such as dynamic ports and
encrypted applications. In order to boost the classification
accuracy, Support Vector Machine (SVM) and Naive Bayes
estimator is planned to categorise the traffic by application. In
this, traffic flows are represented exploitation the discretized
statistical options and flow correlation data is sculptured by
bag-of-flow (BoF). This methodology uses flow statistical
feature primarily based traffic classification to boost feature
discretization. This approach for traffic classification
improves the classification performance effectively by
incorporating correlated data into the classification method.
The experimental results show that the proposed theme will
come through far better classification performance than
existing progressive traffic classification strategies.
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1. INTRODUCTION

Internet traffic classification is the method of distinctive
network applications and classifying the corresponding traffic,
which is thought of to be the foremost basic practicality in
trendy network management and security systems. OR Traffic
classification is an automatic procedure that classifies
computer network traffic consistent with varied constraints
into variety of traffic. Application related traffic classification
is basic technology for recent network security. The traffic
classification can be accustomed to resolve the worm
propagation, intrusions detection, and patterns indicative of
denial of service attacks (DOS attacks), and spam spread
methods. In current network environment, the traditional
strategies suffer from variety of sensible issues, such as
dynamic ports and encrypted applications. Recent research
efforts have been centered on the applying of machine
learning techniques to traffic classification supported flow
applied math options. Machine learning can mechanically
search for and describe helpful structural patterns in a very
equipped traffic knowledge set, which is useful to showing
intelligence conduct traffic classification. However, the
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problem of correct classification of current network traffic
supported flow applied math options has not been solved .

In this paper we illustrate the high level of accuracy possible

with the Naive bayes estimator. We more illustrate the
improved accuracy of refined variants of this calculator. Our
results indicate that with the simplest of Naive Bayes
estimator we tend to are ready to achieve regarding 65th
accuracy on per-flow classification and with two powerful
refinements we will improve this price to raised than 95%;
this is often an enormous improvement over ancient
techniques that achieve 50--70%. While our technique uses
training knowledge, with categories derived from packet-
content, all of our training and testing was done victimisation
header-derived discriminators. We emphasize this as a
powerful facet of our approach: victimisation samples of well-
known traffic to permit the categorization of traffic
victimisation normally offered info alone. The Internet
regularly evolves in scope and quality, much quicker than our
ability to characterize, understand, control, or predict it. The
field of Internet traffic classification analysis includes several
papers representing varied tries to classify no matter traffic
samples a given investigator has access to, with no systematic
integration of results. Here we give a rough taxonomy of
papers, and explain some problems and challenges in traffic
classification. The flow statistical feature-based traffic
classification will be achieved by victimisation supervised
classification algorithms or unsupervised  classification
(clustering) algorithms. In unsupervised traffic classification,
it is very tough to construct an application orienting traffic
classifier by victimisation the cluster results while not
knowing the important traffic categories.

1.1 Support Vector Machine (SVM)

A Support Vector Machine (SVM) may be a discriminative
classifier formally outlined by a separating hyperplane. In
different words, given labeled training  knowledge
(supervised learning), the rule outputs an optimum hyperplane
that categorizes new examples. SVM may be a new machine
learning technique supported SLT (Statistics Learning
Theory) and SRM (structural risk minimization). Compared
with different learning machine, SVM has some distinctive
deserves, like tiny sample sets, high accuracy and powerful
generalization performance etc. Classifiers supported machine
learning use a coaching dataset that consists of N tuples ( xi,
Yi ) and learn a mapping f (x) — y . within the traffic
classification context, samples of attributes embrace flow
statistics like length and total variety of packets. The terms
attributes and options square measure used interchangeably
within the machine learning literature. In our supervised net
traffic organization, Let X= be a group of flows. A flow



instance xi is characterised by a vector of attribute values, xi=
1<j <m, wherever m is that the variety of attributes, and xij
is that the price of the j-th attribute of the i-th flow, and xi is
named as a feature vector. Also, let Y= be the set of traffic
categories, wherever alphabetic character is that the variety of
categories of interest. to make a strong classifier, three factors
to be thought-about.

1. agroup of discriminating options like protocols, ports, IP
address.

2. an efficient classification algorithm; the SVM is chosen,
that systematically outperformed all others.

3. an accurate and complete coaching set for building the
classifier model. Support Vector Machine (SVM),
supported statistical learning theory, is understood united
of the most effective machine learning algorithms for
classification purpose and has been with success applied
to several classification issues like image recognition,
text categorization, diagnosis, remote sensing, and
motion classification. SVM technique is chosen as
classification rule as a result of its ability for at the same
time minimizing the empirical classification error and
increasing the geometric margin classification house.
These properties cut back the structural risk of over-
learning with minimum samples.

1.2 Naive Bayes

One of the recent approaches classifies the traffic by
mistreatment the easy and effective probabilistic Naive bayes
(NB) classifier. It employs the Bayes’theorem with naive
feature independence assumptions. main reason for the
underperformance of variety of ancient classifiers as well as
NB is that the lack of the feature discretization method. NB
algorithmic program is employed to supply a collection of
posterior chances as predictions for every testing flow. it's
totally different to the traditional NB classifier that directly
assigns a testing flow to a category with the most posterior
chance. Considering correlative flows, the predictions of
multiple flows are aggregated to create a final prediction.

Naive bayes has been studied extensively since the 1950s. it
had been introduced below a special name into the text
retrieval community within the early 1960s, and remains a
preferred (baseline) technique for text categorization, the
matter of judgment documents as happiness to at least one
class or the opposite (such as spam or legitimate, sports or
politics, etc.) with word frequencies because the options. With
applicable pre-processing, it's competitive during this domain
with a lot of advanced strategies as well as support vector
machines. It additionally finds application in automatic
diagnosis.

Naive bayes classifiers square measure extremely climbable,
requiring range|variety} of parameters linear within the
number of variables (features/predictors) during a learning
downside. Maximum-likelihood coaching are often done by
evaluating a closed-form expression, that takes linear time,
instead of by expensive repetitious approximation as used for
several different kinds of classifiers.

An advantage of naive bayes is that it solely needs alittle
quantity of training knowledge to estimate the parameters
necessary for classification.

1.3 Supervised Methods

The supervised traffic categoryification strategies analyze the
supervised coaching knowledge and turn out an inferred
operate which may predict the output class for any testing
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flow. In supervised traffic classification, adequate supervised
training knowledge may be a general assumption. to deal with
the issues suffered by payload-based traffic classification, like
encrypted applications and user knowledge privacy, Moore
and Zuev applied the supervised naive bayes techniques to
classify network traffic supported flow applied mathematics
options. Williams et al. evaluated the supervised algorithms as
well as naive bayes with discretization, naive bayes with
kernel density estimation, C4.5 decision tree, theorem
network, and naive bayes tree. Nguyen and Armitage planned
to conduct traffic classification supported the recent packets
of a flow for time period purpose. Auld et al. extended the
work of with the applying of bayesian neural networks for
correct traffic classification.

1.4 Unsupervised Methods

The unsupervised methods attempt to realize cluster structure
in unlabelled traffic data and assign any testing flow to the
application-based category of its nearest cluster. McGregor et
al. planned to cluster traffic flows into atiny low range of
clusters mistreatment the expectation maximization (EM)
formula and manually label every cluster to an application.
Zander et al. used AutoClass to cluster traffic flows and
planned a metric known as intraclass homogeneity for cluster
analysis. Bernaille et al. applied the k-means formula to traffic
agglomeration and labeled the clusters to applications
employing a payload analysis tool. Erman et al. evaluated the
k-means, DBSCAN and AutoClass algorithms for traffic
agglomeration on two empirical knowledge traces. The
enquiry showed that traffic clustering will turn out high-purity
clusters once the amount of clusters is about the maximum
amount larger than the amount of real applications. Generally,
the cluster techniques will be accustomed discover traffic
from antecedently unknown applications . Wang et al. planned
to integrate applied mathematics feature-based flow clustering
with payload signature matching methodology, thus on
eliminate the need of supervised coaching knowledge.
Finamore et al. combined flow applied mathematics feature-
based clustering and payload applied mathematics feature-
based clustering for mining unidentified traffic. However, the
clustering strategies suffer from a problem of mapping from

an outsized range of clusters to real applications.

2. RELATED WORKS

SVM Based Network Traffic Classification Using
Correlation Information, In this paper they explain, Traffic
classification is an automated process which categorizes
computer network traffic according to various parameters into
a number of traffic classes. Many supervised classification
algorithms and unsupervised clustering algorithms have been
applied to categorize Internet traffic. Traditional traffic
classification methods include the port-based prediction
methods and payload-based deep inspection methods. In
current network environment, the traditional methods suffer
from a number of practical problems, such as dynamic ports
and encrypted applications. In order to improve the
classification accuracy, Support Vector Machine (SVM)
estimator is proposed to categorize the traffic by application.
In this, traffic flows are described using the discretized
statistical features and flow correlation information is
modeled by bag-of-flow (BoF). This methodology uses flow
statistical feature based traffic classification to enhance
feature discretization. This approach for traffic classification
improves the classification performance effectively by
incorporating correlated information into the classification
process. The experimental results show that the proposed



scheme can achieve much better classification performance
than existing state-of-the-art traffic classification methods.

Network Traffic Classification Using Correlation
Information, During this paper they explain, traffic
classification has wide applications in network management,
from security observance to quality of service measurements.
Recent analysis tends to use machine learning techniques to
flow statistical feature primarily based classification ways.
The closest neighbor (NN)-based methodology has exhibited
superior classification performance. It conjointly has many
vital benefits, like no needs of training procedure, no risk of
overfitting of parameters, and naturally having the ability to
handle a large range of categories. However, the performances
of NN classifier are often severely affected if the scale of
training data is small. During this paper, we tend to propose a
unique nonparametric approach for traffic classification,
which  might improve the classification performance
effectively by incorporating related info into the classification
method. We tend to analyze the new classification approach
and its performance has the benefit of each theoretical and
empirical perspectives. An oversized range of experiments are
distributed on two real-world traffic data sets to validate the
proposed approach. The results show the traffic classification
performance are often improved considerably even beneath
the extreme tough circumstance of only a few training
samples.

Naive Bayes Based Network Traffic Classification Using
Correlation Information during this paper they justify,
Traffic classification is of basic importance to various
alternative network activities, from security monitoring to
accounting, and from Quality of Service to providing
operators with helpful forecasts for long-run provisioning.
Naive Bayes estimator is applied to categorise the traffic by
application. Uniquely, this work capitalizes on hand-classified
network information, victimization it as input to a supervised
Naive Bayes estimator. a unique traffic classification theme is
employed to boost classification performance once few
coaching information are accessible. Within the planned
theme, traffic flows are described using the discretized
applied math options and flow correlation data is modeled by
bag-of-flow (BoF). a unique parametric approach for traffic
classification, which might improve the classification
performance effectively by incorporating related to data into
the classification method. Then analyze the new classification
approach and its performance enjoys each theoretical and
empirical views. Finally, an oversized variety of experiments
are applied on large-scale real-world traffic datasets to judge
the projected theme. The experimental results show that the
planned theme are able to do far better classification
performance than existing state-of-the-art traffic classification
ways.

An Overview of Network Traffic Classification Methods,
In this paper they explain, Network traffic classification may
be accustomed identify totally different applications and
protocols that exist in a very network. Actions like obseving,
discovery, control and optimization may be performed by
using classified network traffic. the general goal of network
traffic classification is rising up the network performance.
Once the packets are classified as belonging to a selected
application, they're marked. These markings or flags facilitate
the router verify acceptable service policies to be applied for
those flows. This paper provides an outline of obtainable
network classification strategies and techniques. Researchers
will utilize this paper for approaching real time network
traffic classification. Traffic classification using payload,
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statistical analysis, deep packet review, naive theorem
estimator and bayesian neural networks are reviewed during
this paper.

State of the Art Review of Network Traffic Classification
based on Machine Learning Approach, In this Paper they
explain, Network traffic classification is extensively required
primarly for many network management tasks such as flow
prioritization, traffic shaping/policing, and diagnostic
monitoring. Similar to network management tasks, many
network engineering problems such as workload
characterization and modeling, capacity planning, and route
provisioning also benefit from accurate identification of
network traffic .This paper presents review on all the work
done related to Network Traffic Management since 1993 to
2013 in various fields like artificial intelligence, neural
network, ATM and wireless networks.

3. PROPSED METHODLOLGY

The problems suffered by payload-based traffic classification,
like encrypted applications and user data privacy, Moore and
applied the supervised naive techniques to classify network
traffic supported flow applied math choices.Evaluated the
supervised algorithms along side naive Thomas Bayes with
discretization, naive Thomas Bayes with kernel density
estimation, C4.5 decision tree, Bayesian network, and naive
Thomas Bayes tree. Nguyen and Armitage planned to conduct
traffic classification supported the recent packets of a flow for
amount of your time purpose. Extended the work of with the
appliance of Bayesian neural networks for proper traffic
classification. Used unidirectional statistical choices for traffic
classification inside the network core associate degreed
projected an formula with the potential of estimating the
missing options. planned to use only the size of the first
packets of associate degree SSL affiliation to acknowledge the
encrypted applications projected to analyze the message
content randomness introduced by the secret writing method
victimisation Pearson’s chi-Square test-based technique. The
likelihood density perform (PDF)-based protocol fingerprints
to specific 3 traffic statistical properties throughout a compact
approach. Their work is extended with a continuing

improvement procedure.

Advantages

These works use constant machine learning algorithms, that
require an intensive coaching procedure for the classifier
parameters and need the training for latest discovered
applications.

e Evaluated three supervised ways for an ADSL
provider managing many points of presence, the
results of that are corresponding to deep review

solutions.

e Applied one class SVMs to traffic classification and
given a straightforward improvement formula for
each set of SVM in operation parameters projected
to classify P2P-TV traffic using the count of packets
modified with completely different peers throughout

the insufficient time windows.

4. RESULT ANALYSIS

Table 1 shows classification accuracy and training time of
five ML classifiers namely MLP, RBF, C4.5, Bayes Net and
Naive Bayes for Dataset 1 which has been developed by
considering packet capture duration of 2 seconds only. It is
clear from this table and figure 5 that  maximum



classification accuracy is provided by Bayes Net classifier
for Dataset 1 which is 88.125 % with training time or model
building time of 0.7 seconds only.

From table I, it's additionally clear that MLP algorithmic rule
provides very poor performance in terms of classification
accuracy and coaching time. moreover, classification accuracy
is of RBF Neural internetwork Classifier is additionally lesser
than that of different ml classifiers and its coaching time is
incredibly massive as compared to Bayes Net, C4.5 and Naive
Bayes which make it inappropriate for efficient IP traffic
classification. Therefore MLP and RBF algorithms are not
taken into consideration for further discussion.

ML Classifiers | MLP | RBF C4.5 Naive

Bayes

Bayes
Net

Classification 27.75 | 81.25 | 83.75 | 88.125

Accuracy (%)

88.875

Training Time | 17.79 | 6.14 1.34 0.7 0.16

(Seconds)

5. IMPLEMENTATION DETAILS:

o Network T

Data
Center

Figure 1: Welcome page
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Figure 4: Classify Preprocessed dataset



6. CONCLUSION

In this paper, firstly real time internet traffic has been
captured using Wireshark software for packet capture
durations of 2 seconds. After that, Internet traffic from this
dataset is classified using five ML classifiers. Results show
that Naive Bayes Net Classifier gives better performance with
classification accuracy of 88.125%. But the problem with this
technique is large training time which makes it ineffective of
real time and online IP traffic classification. Solution of this
problem is reduction in number of features characterizing
each internet application sample. For this Correlation based
FS algorithm is better choice with which a reduced feature
dataset has been developed. Using this new dataset,
performance of five ML classifiers has been analyzed. Results
show that Bayes Net classifier gives better performance
among all other classifiers in terms classification accuracy of
91.875 %, training time of ML algorithms and recall and
precision values of individual internet applications. Thus it is
evident that Bayes Net is an effective ML techniques for near
real time and online IP traffic classification with reduction in
packet capturing time and reduction in number of features
characterizing application samples with Correlation based FS
algorithm.

In this research work, the packet capturing duration is reduced
to 2 seconds to make this approach suitable for implementing
real time IP traffic classification. For this purpose, the packet
capturing duration should be as less as possible. This can be
further reduced to fraction of seconds which will make this
classification technique more real time compatible. Secondly,
this internet traffic dataset can be extended for many other
internet applications which internet users use in their day to
day life and it can also be captured from various different
real time environments such as university or college campus,
offices, home environments and other work stations etc.
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