Abstract

Improving power quality has been the major research topic in last few decades due to flooding of semiconductor and other non-linear devices. The power quality of any source is determined by some indexes defined by international bodies such as harmonics factor, telephonic interference level (TIF) etc. Use different harmonic compensation schemes we must be able to meet those index limits. Power filters are widely used in modern electrical distribution systems to eliminate harmonic associated with it. The most popular technique that has been used is Active Power Filter (APF); The APF needs an accurate control algorithm that provides robust performance under source and load unbalances thus, compensation of harmonics depends largely on the algorithm adopted.

In this work both PI and ANN controller are used in three-phase shunt active power filter to compensate harmonics and reactive power produces by nonlinear loads to improve power quality is implemented for three-phase three wire systems. PI and ANN-based technique is implemented in shunt active power filters depending on the requirement of one of the controller,
used to produce controlled pulses required for IGBT inverter. The MATLAB program has been
developed to simulate system operation. Various simulation results are presented in steady
state condition and performance of PI and ANN controllers is compared. Simulation result
obtained shows that performance of ANN controller found is better than PI controller.

References

1. W. Mackgrady, S. Santoso, Understanding power system harmonics, IEEE power Eng.
 Rev. 21(November (11)) (2001) 8-11.
2. A novel and analytical model for design and implementation of active power filter’ IEE
3. Nasser Mondale and Kamala Al-Haddad Modelling and Nonlinear Control of Shunt Active
 Power Filter in the Synchronous Reference Frame.2000 IEEE.
 625–630.
 on a shunt active power filter for harmonics and reactive power compensation,” Electrical Power
 which simultaneously compensates power factor and unbalanced loads,” IEEE Transactions on
 with fixed switching frequency for reactive power and current harmonics compensation,” IEEE
10. Active power filter for reactive power compensation and Harmonic suppression by
 Hurng- Liahng job.
13. Simulink–Model-Based and System-Based Design, Modelling, Simulation,
15. IEEE Working Group on Non sinusoidal Situations: Effects on Meter Performance and
 Definitions of Power, “Practical definitions for powers in systems with non sinusoidal waveforms
 Jan. 1996.
16. Yash Pal , A. Swarup , and Bhim Singh, “Applications of APF for Power Quality

20. R Rajalakshmi, Dr V Rajasekaran, “Improvement ofEnergy Efficiency through power quality by compensation of harmonics with shunt active power filter”2011 International Conference advancements in electrical, electronics and control engineering IEEE.

Index Terms

Computer Science

Circuits and Systems

Keywords

Shunt Active Power Filter(SAPF), Power filter topology, Passive filters, Ann controller.