Abstract

Automation of spoken languages become the need of the hour, and the advances in global communication have increased the importance of Language Identification, making feasible the availability of multilingual information services, such as checking into a hotel, arranging a meeting, or making travel arrangements, which are difficult actions for non native speakers. In this paper a comprehensive review of the approaches used in identifying spoken languages and the methods used for extracting speech dependent features are presented. In addition, different modeling techniques such as SVM, GMM, and PPRLM are reviewed, and how the change in speech feature characteristics can result change in the accuracy and performance of the system is also reviewed.

References

1. W.M. Campbell, J.P. Campbell, D.A. Massachusetts Institute of Technology, Lincoln Laboratory, 244 Wood Street, Lexington, MA 02420, USA _ 2005 Elsevier Ltd.
2. Bo Yin1, Eliathamby Ambikairajah1, Fang Chen2 “Combining Cepstral and Prosodic Features in Language Identification School of Electrical Engineering and Telecommunications UNSW1, National ICT Australia Ltd. The 18th International Conference on Pattern Recognition (ICPR’06) © 2006 IEEE

3. Yan Deng, Jia Liu “Automatic Language Identification using support vector machine & Phonetic N-gram” Tsinghua National Laboratory for Information Science and Technology Department of Electronic Engineering, Tsinghua University, Beijing 100084, China E-mail: y-deng05@mails.tsinghua.edu.cn ©2008 IEEE

5. Vicky Kumar Verma and Nitin Khanna “Indian Language Identification Using K-Means Clustering and Support Vector Machine (SVM) Graphic Era University, Dehradun, Uttarakhand-248002, India (e-mail: vickyverma7133@gmail.com). ©2013 IEEE

10. Namrata Dave “Feature extraction methods LPC, PLP & MFCC in speech Recognition” GHPCE, Gujarat Technological University, IJANET, July 2013.

Index Terms

Computer Science Pattern Recognition

Keywords

LID-language Identification, SVM-Support vector Machine, GMM- Gaussian Mixture model, MFCC-Mel frequency cepstral co-efficient, PLP-Perceptual linear Prediction.