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ABSTRACT 

In the present study, an analytical solution for transient 

airflow process across three vertical vents induced by stack- 

driven effect in un- stratified cross- ventilated rectangular 

building with an opposing flow in one of the upper opening 

was presented. An approximation of reduced gravity is taken 

into account in order to maintained thermal buoyancy effect. 

One dimensional Navier- Stokes Equations is utilized to 

model the airflow process in the building. Variation of 

parameter and separation of variable methods were employed 

to obtain the possible solutions of the model equations. The 

solutions predicts the following; velocity- and  temperature 

profiles together with volumetric airflow and mass transfer 

which evaluated numerically for several sets of values of 

effective thermal coefficient (𝜃0). 
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1. INTRODUCTION 
Generally, Natural ventilation of building provides 

improvement of internal comfort and air quality conditions 

leading to a significant reduction of cooling energy 

consumption. Design of natural ventilation systems for many 

types of building is based on buoyancy forces. However, 

external wind flow can have significant effects on stack- 

driven natural ventilation. Air flow distributions in buildings 

are considered to be as a result of the knowledge of the exact 

air supply to a building. This is necessary to determine its 

thermal performance and the concentration of the indoor 

pollutants. The exchange of air can be achieved either by 

mechanical means (Mechanical ventilation) or through the 

large opening of the building envelope (Natural ventilation). 

Exchanges between external ambience and interior space of 

buildings caused by flows that are driven by wind or by 

temperature differences are the foundation of natural 

ventilation process. However, natural ventilation is being 

pursued by humans, who are increasingly spending more time 

indoors, to extend the possibilities of living in uncongenial or 

squally conditions etc. The improvements of the quality of the 

interior space both in its attractiveness, spaciousness, 

luminosity, and more importantly its proper natural ventilation 

are major concerns for designers of modern structures.  Air 

flow modeling gives Architectures and Engineers the luxury 

to consider several design options in the minimum amount of 

time. As a result, the final design is not based on a tentative 

approach but on a professional design process considering 

several options and selecting the best design. Air flow models 

are used to simulate the rates of incoming and outgoing air 

flows for a domain with known leakages under given weather 

and shielding conditions. Air flow models can be divided into 

two main categories, single-zone models and multi-zone 

models. Single-zone models assume that the structure can be 

described by a single, well mixed zone. Many attempts to 

investigate this phenomenon have been made by some 

researchers. [4] Studied a simple basic theory of natural 

convection across openings in vertical partitions and 

generalized to include both heat and mass-transfer in a single-

sided ventilated domain. Displacement ventilation (where the 

interior is stratified) was studied by [7], and the mixing 

ventilation (where the interior has uniform temperature) by 

[2]. [1] Studied a convective heat and mass-transfer through 

large openings, which plays an important role in the thermal 

behavior of domains. [5] Considered building having two 

openings at different vertical level on opposite walls, the 

heights of the two openings are relatively small, and the areas 

of the top and bottom openings are 𝐴𝑡  and 𝐴𝑏  respectively. 

The study also considered an indoor source of heat 𝐸, and the 

wind force can assist or oppose the thermal buoyancy force, 

when the indoor temperature is uniform. [3] Considered 

natural ventilation in a full-scale building induced by 

combined wind and buoyancy forces. The overall objectives 

were to verify and validate a CFD model for the naturally 

ventilated buildings, collect high quality full-scale 

experimental data for CFD validation and formulate 

guidelines for modeling natural ventilation in design practice 

and a steady envelope flow model were applied to calculate 

mean ventilation rates. [6] Investigated the study on 

combination of natural ventilation methods. A test room of 

single-sided ventilation was equipped with a vertical vent. 

Ventilation rate through the openings was evaluated based on 

the air flow velocity measured at the surface area of the 

openings. The vertical vent was kept closed during the first 

run of the experiments then the same experiments repeated 

where the vent was in use. Based on the experimental results, 

the effects of the vertical vent on the ventilation rate were 

clarified and a model was suggested based on combination for 

the two ventilation methods. [8] Investigated air flow rate 

across a vertical opening induced by a thermal source in a 

room, various parameters were used in designing natural 

ventilation. [9] Considered wind-driven cross ventilation in 

building with small openings. [11] Studied airflow process 

across vertical vents induced by stack- driven effect with an 

opposing flow in one of the openings was presented. An 

investigation of stack- driven airflow through rectangular 
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cross- ventilated building with two openings using analytic 

technique was also recently presented by [12]. [10] Presented 

a simple mathematical model of stack ventilation flows in 

multi-compartment buildings, with a view to providing an 

intuitive understanding of the physical processes governing 

the movement of air and heat through naturally ventilated 

buildings. In which, the solution for the velocity, temperature 

distributions and volumetric airflow, mass- transfer rates were 

obtained. 

The main objective of this paper is to analytically determine 

the temperature-, velocity profiles together with volumetric 

airflow and mass transfer in a rectangular un- stratified cross- 

ventilated building with three openings on a vertical wall. 

Analytical results for the temperature-, velocity profiles 

together with volumetric airflow and mass transfer are 

presented and discussed graphically. This is the novel 

approach which will lead to better understanding of the 

phenomenon and help in optimizing the designs for better 

natural ventilation. 

2. DOMAIN DESCRIPTION 
The building considered, is un-stratified cross- ventilated 

rectangular building with three openings. In which the 

building has two upper and one lower rectangular opening. 

The two upper openings have an area of 0.7𝑚 ×  1.0𝑚, while 

the one lower opening is 0.7𝑚 × 2.0𝑚. Dimension of the 

building is 5.3𝑚 × 3.6𝑚 × 2.8𝑚 with air as the connecting 

fluid. The domain envelops were separated from one another 

by a vertical rectangular openings of height 𝑦∗ and width 𝑥𝑤 , 

which is illustrated in Figure 1. The density of air in the 

building is maintained at 𝜌0 with temperature at𝜃 ∗ and 

pressure 𝑃. 

 

Figure 1: Diagram of un-stratified cross ventilated 

rectangular building with three openings. 

3. MODEL FORMULATION 
In the present paper we discussed the temperature- velocity- 

profiles together with volumetric and mass transfer for 

transient Stack- driven airflow through rectangular openings 

in building with three openings in the presence of uniform 

interior temperature (see Figure 1). Schematic diagrams of 

airflow process inside the building and the one vertical upper 

vent are shown in Figure 2 and 3 below. The flow is transient 

that depends on the height of the opening on the vertical 

walls. Airflow is assumed to be at low speed so that it will 

behave like incompressible fluid. Internal heat source is 

negligible 𝑞 ≪ 1 (see Figure 2 and 3). An approximation of 

reduced gravity is invoked. One Navier Stokes Equations with 

appropriate boundary conditions will describe the problem. 

The model equations are written in a dimensionless form and 

solved analytically by means of separation of variable 

methods. 

 

Figure 2 Schematic diagram of airflow process inside un- 

stratified cross ventilated rectangular building with three 

openings. 

 

    𝑝 𝑥𝑤  𝜌0 𝜃 ∗ 𝑦∗, 𝑡∗  

                                                  

                                                         𝑈∗ 𝑦∗, 𝑡∗                   

                                                                         Ambient 

                                    𝑣0                       𝑦
∗

2
                      𝑔 

           Interior                                                             

 

Figure 3 Schematic diagram of airflow process across one 

of the vertical upper vent with an opposing flow in 

rectangular building with three openings. 

The convective motion induced by stack- driven effect as 

illustrated in Figure 2 and 3 is described by the conservation 

Equations for continuity, momentum and energy Equations 

given by, 

 𝜌0  
𝜕𝑢

𝜕𝑥𝑤
+

𝜕𝑣

𝜕𝑦
 = 0                                                                (1) 

𝜌0  
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥𝑤
+ 𝑣

𝜕𝑣

𝜕𝑦
 = −

𝜕𝑝

𝜕𝑥𝑤
+ 𝜇  

𝜕2𝑢

𝜕𝑥𝑤
2

+
𝜕2𝑢

𝜕𝑦2
                (2) 

𝜌0  
𝜕𝜃

𝜕𝑡
+ 𝑢

𝜕𝜃

𝜕𝑥𝑤
+ 𝑣

𝜕𝜃

𝜕𝑦
 =

𝜅

𝑐𝑝
 

𝜕2𝜃

𝜕𝑥𝑤
2

+
𝜕2𝜃

𝜕𝑦2
 +

𝑞

𝑐𝑝
𝜙𝜈                (3) 

It assumed that the velocity and temperature fields are 

independent of the distance parallel to the surface, and if the 

gravitational field is aligned with the direction of air motion 

the pressure will be a component along the width of the 

opening in the building, and air as a non viscous fluid we can 

neglecting viscous dissipation as Φ𝑣 ≪ 1, and 𝑞 ≪ 1. So we 

have, 

𝑈 = 𝑢 𝑦, 𝑡 , 𝑣 = 𝑣0 = 𝑐𝑜𝑛𝑠𝑡.  𝜃 = 𝜃 𝑦, 𝑡 , 𝑃 = 𝑝 𝑥𝑤     (4) 

Navier-Stokes Equations are simplified by the above 

mentioned assumptions in E. In which Continuity Equation is 

satisfied identically then, Equations (2) and (3) can be reduced 

to one dimensional momentum and Energy Equation that 

describes the problems as, 

𝜕𝑈

𝜕𝑡
+ 𝑣0

𝜕𝑈

𝜕𝑦
= 𝑔𝛽Δ𝜃 + 𝜈

𝜕2𝑈

𝜕𝑦2
 .                                                (5)                                                   

𝜕𝜃 

𝜕𝑡
+ 𝑣0

𝜕𝜃 

𝜕𝑦
= 𝛼

𝜕2𝜃 

𝜕𝑦2
.                                                                (6) 

With the following dimensional boundary conditions as, 

0 ≤ 𝑦 ≤ 2, 𝑡 ≥ 0, 𝑈 0 = 0, 𝑈 2 = 0, 𝑈 0, 𝑡 = 0,
𝑈 2, 𝑡 = 0,, 𝜃 0 = −𝜃0, 𝜃 2 = 1 − 𝜃0, 𝜃 0, 𝑡 =
0, 𝜃 2, 𝑡 = 0.   



International Journal of Computer Applications (0975 – 8887) 

Volume 148 – No.1, August 2016 

6 

By scaling 𝑦 with 𝑦∗𝐿, velocity 𝑈 with 
𝑈

∗
𝑔𝛽∆𝜃𝐿

2

𝛼 ,  𝑣0 =
𝑣0

∗𝜈

𝐿
, 

𝑡 =
𝑡∗𝐿2

𝛼
, and introducing 𝜃  with 𝜃 ∗∆𝜃 + 𝜃0, where  ∆𝜃 = 𝜃 −

𝜃0. 

In dimensionless form the above Equations (5) and (6) may be 

expressed as, 

𝜕𝑈∗

𝜕𝑡∗
− 𝐶

𝜕𝑈∗

𝜕𝑦 ∗
= 𝑃𝑟

𝜕2𝑈∗

𝜕𝑦 ∗2 + 𝜃 ∗ 𝑦∗, 𝑡                                  (7) 

  
𝜕𝜃 ∗

𝜕𝑡∗
− 𝐶

𝜕𝜃 ∗

𝜕𝑦 ∗
=

𝜕2𝜃 ∗

𝜕𝑦 ∗2                                                    (8)                                                                                                                                                     

Where, −𝐶 = 𝑣0𝑃𝑟. 

With the following dimensionless boundary conditions as, 

0 ≤ 𝑦∗ ≤ 1, 𝑡∗ ≥ 0, 𝑈∗ 0 = 0, 𝑈∗ 1 = 0, 𝑈𝑢
∗ 0, 𝑡∗ = 0,

𝑈𝑢
∗ 1, 𝑡∗ = 0,

𝜕𝑈∗ 1,𝑡𝑚𝑎𝑥  

𝜕𝑦 ∗
= 𝑈0, 𝜃 ∗ 0 = −𝜃0, 𝜃 ∗ 1 = 1 −

𝜃0, 𝜃 𝑢
∗ 0, 𝑡∗ = 0, 𝜃 𝑢

∗ 1, 𝑡∗ = 0, 𝜃 𝑢
∗ 1, 𝑡𝑚𝑎𝑥  = 𝑆𝑖𝑛𝑡∗.   

4. SOLUTION OF THE 

DIMENSIONLESS MODEL 

EQUATIONS 

4.1 Dimensionless temperature profiles 
Steady solution for dimensionless temperature profiles 

The steady state Equation and boundary condition for 

dimensionless temperature profiles is, 

  
𝑑2𝜃 ∗

𝑑𝑦 ∗2 + 𝐶
𝑑𝜃 ∗

𝑑𝑦 ∗
= 0                                                                 (9) 

0 ≤ 𝑦∗ ≤ 1, 𝜃 ∗ 0 = −𝜃0, 𝜃 ∗ 1 = 1 − 𝜃0   

The resulting solution is, 

𝜃 𝑠
∗ 𝑦∗ = −𝜃0 +

𝑒𝐶

1−𝑒𝐶
 𝑒−𝐶𝑦 − 1                                        (10) 

Time dependent solution for dimensionless temperature 

profiles 

The Equation for the temperature profiles is one given in 

Equation (8) as, 

  
𝜕𝜃 ∗

𝜕𝑡∗
− 𝐶

𝜕𝜃 ∗

𝜕𝑦 ∗
=

𝜕2𝜃 ∗

𝜕𝑦 ∗2  

The separation between the steady and unsteady part of 

solution are as follows, 

𝜃 ∗ 𝑦∗, 𝑡 = 𝜃 ∗𝑠 𝑦
∗ + 𝜃 𝑢

∗ 𝑦∗, 𝑡∗                                        (11) 

The Equation (8) is also valid for the unsteady part of the 

solution as, 

  
𝜕𝜃 𝑢

∗

𝜕𝑡∗
− 𝐶

𝜕𝜃 𝑢
∗

𝜕𝑦 ∗
=

𝜕2𝜃 𝑢
∗

𝜕𝑦 ∗2                                                              (12) 

With the following boundary condition for dimensionless 

temperature profiles as, 

0 ≤ 𝑦∗ ≤ 1, 𝜃 𝑢
∗ 0, 𝑡∗ = 0, 𝜃 𝑢

∗ 1, 𝑡∗ = 0, 𝜃 𝑢
∗ 1, 𝑡𝑚𝑎𝑥  =

𝑆𝑖𝑛𝑡∗.   

The separation given by, 

𝜃 𝑢
∗ 𝑦∗, 𝑡∗ = 𝑌 𝑦∗ 𝑇 𝑡∗                                                      (13) 

Leads with Equation (12) to the eigen value problem as, 

 
𝑇 ′

𝑇
=

𝑌 ′′

𝑌
+

𝐶𝑌 ′

𝑌
= −𝑃1

2 for 𝑃1 > 0.                                         (14) 

With generalized solution of the form, 

𝜃 𝑢
∗ 𝑦∗, 𝑡∗ = 𝑒

− 𝑃1
2𝑡∗+

𝐶

2
  𝐾1𝑐𝑜𝑠ℎ𝑎𝑦

∗ + 𝐾2𝑠𝑖𝑛ℎ𝑎𝑦
∗           (15) 

Equation (15), together with the homogeneous dimensionless 

boundary conditions yields to, 

𝜃 𝑢
∗ 𝑦∗, 𝑡∗ = 𝐾2𝑒

− 𝑃1
2𝑡∗+

𝐶

2
 
𝑐𝑜𝑠ℎ𝑎𝑦∗                                    (16) 

Where, 𝐾1 = 0, 𝐾2 =
𝑠𝑖𝑛 𝑡∗

𝑐𝑜𝑠ℎ𝑎
𝑒𝑃1

2𝑡𝑚𝑎𝑥 +
𝐶

2 , 𝑎 =
 𝐶2−4𝑃1

2

2
 at 

𝜃 𝑢
∗ 1, 𝑡𝑚𝑎𝑥  = 𝑆𝑖𝑛𝑡∗, 𝑡∗ ≥ 0. 

The resulting Equation (16) becomes, 

𝜃 𝑢
∗ 𝑦∗, 𝑡∗ =

𝑠𝑖𝑛 𝑡∗

𝑐𝑜𝑠ℎ𝑎
𝑒𝑃1

2 𝑡𝑚𝑎𝑥 −𝑡∗ 𝑐𝑜𝑠ℎ𝑎𝑦∗                             (17)                          

The general time dependent solution for dimensionless 

temperature profiles is, 

𝜃 ∗ 𝑦∗, 𝑡∗ =

−𝜃0 +
𝑒𝐶

1−𝑒𝐶
 𝑒−𝐶𝑦 ∗

− 1 +
𝑠𝑖𝑛 𝑡∗

𝑐𝑜𝑠ℎ𝑎
𝑒𝑃1

2 𝑡𝑚𝑎𝑥 −𝑡∗ 𝑐𝑜𝑠ℎ𝑎𝑦∗.     (18) 

4.2 Dimensionless velocity profiles 

Steady state solution for dimensionless velocity profiles 

The steady state Equation and boundary condition for 

dimensionless velocity profiles is, 

−𝐶
𝑑𝑈∗

𝑑𝑦 ∗
= 𝑃𝑟

𝑑2𝑈∗

𝑑𝑦 ∗2 + 𝜃 ∗ 𝑦∗                                                 (19) 

0 ≤ 𝑦∗ ≤ 1, 𝑈∗ 0 = 0, 𝑈∗ 1 = 0.  

Plugging the Equation (10) in Equation (19) yields to, 

−𝐶
𝑑𝑈∗

𝑑𝑦 ∗
= 𝑃𝑟

𝑑2𝑈∗

𝑑𝑦 ∗2 − 𝜃0 +
𝑒𝐶

1−𝑒𝐶
 𝑒−𝐶𝑦 ∗

− 1 .                      (20) 

Starting with the homogeneous part of Equation (19), one 

obtained the complementary solution as, 

𝑈𝑐 𝑦
∗ = 𝐶1 + 𝐶2𝑒

𝑣0𝑦
∗
.                                                      (21) 

By employing the variation of parameter methods, one can 

write the particular solution as, 

𝑈𝑃 𝑦
∗ =

1

𝐶2 1−𝑒−𝐶 
  𝜃0 1 − 𝑒−𝐶 − 1 𝐶𝑦∗ − 𝑒−𝐶𝑦 ∗

 1 +

𝑃𝑟

1−𝑃𝑟
 + 𝑃𝑟 1 − 𝜃0 1 − 𝑒−𝐶   .                                         (22) 

The general solution is given by, 

𝑈𝑠
∗ 𝑦∗ = 𝐶1 + 𝐶2𝑒

𝑣0𝑦
∗

+
1

𝐶2 1−𝑒−𝐶 
  𝜃0 1 − 𝑒−𝐶 −

1 𝐶𝑦∗ − 𝑒−𝐶𝑦 ∗
 1 +

𝑃𝑟

1−𝑃𝑟
 + 𝑃𝑟 1 − 𝜃0 1 − 𝑒−𝐶           (23) 

The resulting solution for steady dimensionless velocity 

profiles is, 

𝑈𝑠
∗ 𝑦∗ =

1

𝐶2 1−𝑒−𝐶  1−𝑒𝑣0 
  1 +

𝑃𝑟

1−𝑃𝑟
  𝑒−𝐶 − 𝑒𝑣0 −

𝑒𝑣0𝑦
∗
 𝑒−𝐶 − 1 − 𝑒−𝐶𝑦 ∗

 1 − 𝑒𝑣0  +  1 − 𝜃0 1 −

𝑒−𝐶   𝐶 − 𝑃𝑟 1 − 𝑒𝑣0 − 𝐶𝑒𝑣0𝑦
∗

+  1 − 𝑒𝑣0  𝑃𝑟 − 𝐶𝑦∗   .                                          

                                                                                             (24) 

Where, 𝐶1 =

 1+
𝑃𝑟

1−𝑃𝑟
  𝑒−𝐶−𝑒

−
𝐶
𝑃𝑟  + 1−𝜃0 1−𝑒−𝐶   𝐶−𝑃𝑟 1−𝑒

−
𝐶
𝑃𝑟    

𝐶2 1−𝑒−𝐶  1−𝑒
−

𝐶
𝑃𝑟  

, 𝐶2 =

−
1

𝐶2 1−𝑒−𝐶  1−𝑒
−

𝐶
𝑃𝑟  

  1 +
𝑃𝑟

1−𝑃𝑟
  𝑒−𝐶 − 1 + 𝐶 1 −

𝜃0 1 − 𝑒−𝐶    
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Time- dependent solution for dimensionless velocity 

profiles 

Plugging the Equation (18) in Equation (7) yields to, 

𝜕𝑈∗

𝜕𝑡∗
− 𝐶

𝜕𝑈∗

𝜕𝑦 ∗
= 𝑃𝑟

𝜕2𝑈∗

𝜕𝑦 ∗2 − 𝜃0 +
𝑒𝐶

1−𝑒𝐶
 𝑒−𝐶𝑦 ∗

− 1 +

𝑠𝑖𝑛 𝑡∗

𝑐𝑜𝑠ℎ𝑎
𝑒𝑃1

2 𝑡𝑚𝑎𝑥 −𝑡∗ 𝑐𝑜𝑠ℎ𝑎𝑦∗.                                                  (25) 

The separation between the steady and unsteady part of 

solution are as follows, 

𝑈∗ 𝑦∗, 𝑡∗ = 𝑈𝑠
∗ 𝑦∗ + 𝑈𝑢

∗ 𝑦∗, 𝑡∗                                       (26) 

The Equation (25) is also valid for the unsteady part of the 

solution as, 

𝜕𝑈𝑢
∗

𝜕𝑡∗
− 𝐶

𝜕𝑈𝑢
∗

𝜕𝑦 ∗
= 𝑃𝑟

𝜕2𝑈𝑢
∗

𝜕𝑦 ∗2 − 𝜃0 +
𝑒𝐶

1−𝑒𝐶
 𝑒−𝐶𝑦 ∗

− 1 +

𝑠𝑖𝑛 𝑡∗

𝑐𝑜𝑠ℎ𝑎
𝑒𝑃1

2 𝑡𝑚𝑎𝑥 −𝑡∗ 𝑐𝑜𝑠ℎ𝑎𝑦∗.                                                  (27)                                                                                 

With the following boundary condition for velocity profiles 

as, 

0 ≤ 𝑦∗ ≤ 1, 𝑈𝑢
∗ 0, 𝑡∗ = 0, 𝑈𝑢

∗ 1, 𝑡∗ = 0,
𝜕𝑈∗ 1,𝑡𝑚𝑎𝑥  

𝜕𝑦 ∗
= 𝑈0.   

Starting with the homogeneous part of Equation (25), one 

obtain 

𝑑𝑈∗

𝑑𝑡∗
− 𝐶

𝑑𝑈∗

𝑑𝑦 ∗
− 𝑃𝑟

𝑑2𝑈∗

𝑑𝑦 ∗2 = 0.                                                 (28) 

The separation is given by the complementary solution as, 

𝑈𝑐
∗ 𝑦∗, 𝑡∗ = 𝑌 𝑦∗ 𝑇 𝑡∗                                                     (29) 

Leads with Equation (28) to the eigen value problem as, 

 
𝑇 ′

𝑇
= 𝑃𝑟

𝑌 ′′

𝑌
+

𝐶𝑌 ′

𝑌
= −𝑃1

2 for 𝑃1 > 0.                                    (30) 

The generalized complementary solution is of the form, 

𝑈𝐶
∗ 𝑦∗, 𝑡∗ = 𝑒

− 𝑃1
2𝑡∗−

1

2
𝑣0𝑦

∗  𝐶3𝑐𝑜𝑠ℎ𝐾𝑦∗ + 𝐶4𝑠𝑖𝑛ℎ𝐾𝑦∗    (31)                        

Using the boundary condition for unsteady velocity profiles, 

one obtain, 

𝑈𝐶
∗ 𝑦∗, 𝑡 =

𝑈0𝑠𝑖𝑛ℎ𝐾𝑦 ∗𝑒
𝑃1

2  𝑡𝑚𝑎𝑥 −𝑡∗ −
1
2
𝑣0 1−𝑦∗  

𝐾𝑐𝑜𝑠ℎ𝐾−
𝐶

2𝑃𝑟
𝑠𝑖𝑛𝐾

                         (32) 

Where,  𝐶3 = 0, 𝐶4 =
𝑈0𝑒

 𝑃1
2𝑡𝑚𝑎𝑥 −

1
2
𝑣0 

𝐾𝑐𝑜𝑠ℎ𝐾−
𝐶

2𝑃𝑟
𝑠𝑖𝑛𝐾

 , 𝐾 =
 𝐶2−4𝑃𝑟𝑃1

2

2𝑃𝑟
 .           

The particular solution for Equation (25) is given by,  

  𝑈𝑃
∗ 𝑦∗, 𝑡∗ =

−𝑒𝑃1
2 𝑡𝑚𝑎𝑥 −𝑡∗ 𝑠𝑖𝑛 𝑡∗

2𝑐𝑜𝑠ℎ𝑎
 

𝑒𝑎𝑦∗

1+𝑃1
2+𝑎𝑐

+
𝑒−𝑎𝑦∗

1+𝑃1
2−𝑎𝑐

 −

𝜃0𝑡
∗ + 𝐶𝜃0𝑦

∗ +
𝑃𝑟𝑦 ∗2

𝜃0

2
+

𝑒𝐶

 1−𝑒𝐶 
 𝑡∗ − 𝐶𝑦∗ −

𝑃𝑟𝑦 ∗2

2
         (33)                      

The generalized solution of unsteady velocity profiles is of the 

form, 

𝑈𝑢
∗ 𝑦∗, 𝑡∗ = 𝑈𝐶

∗ 𝑦∗, 𝑡∗ + 𝑈𝑃
∗ 𝑦∗, 𝑡∗   

This yield to, 

𝑈𝑢
∗ 𝑦∗, 𝑡∗ =

𝑈0𝑠𝑖𝑛ℎ𝐾𝑦 ∗𝑒
𝑃1

2  𝑡𝑚𝑎𝑥 −𝑡∗ −
1
2
𝑣0 1−𝑦∗  

𝐾𝑐𝑜𝑠ℎ𝐾−
𝐶

2𝑃𝑟
𝑠𝑖𝑛𝐾

−
−𝑒𝑃1

2 𝑡𝑚𝑎𝑥 −𝑡∗ 𝑠𝑖𝑛 𝑡∗

2𝑐𝑜𝑠ℎ𝑎
 

𝑒𝑎𝑦∗

1+𝑃1
2+𝑎𝑐

+

𝑒−𝑎𝑦∗

1+𝑃1
2−𝑎𝑐

 − 𝜃0𝑡
∗ + 𝐶𝜃0𝑦

∗ +
𝑃𝑟𝑦 ∗2

𝜃0

2
+

𝑒𝐶

 1−𝑒𝐶 
 𝑡∗ − 𝐶𝑦∗ −

𝑃𝑟𝑦 ∗2

2
                                                                                   (34) 

Therefore, the general time dependent solution for 

dimensionless velocity profiles given in Equation (27) yields 

to, 

𝑈∗ 𝑦∗, 𝑡∗ =
1

𝐶2 1−𝑒−𝐶  1−𝑒𝑣0 
  1 +

𝑃𝑟

1−𝑃𝑟
  𝑒−𝐶 − 𝑒𝑣0 −

𝑒𝑣0𝑦
∗
 𝑒−𝐶 − 1 − 𝑒−𝐶𝑦 ∗

 1 − 𝑒𝑣0  +  1 − 𝜃0 1 −

𝑒−𝐶   𝐶 − 𝑃𝑟 1 − 𝑒𝑣0 − 𝐶𝑒𝑣0𝑦
∗

+  1 − 𝑒𝑣0  𝑃𝑟 −

𝐶𝑦∗   +
𝑈0𝑠𝑖𝑛ℎ𝐾𝑦 ∗𝑒

𝑃1
2  𝑡𝑚𝑎𝑥 −𝑡∗ −

1
2
𝑣0 1−𝑦∗  

𝐾𝑐𝑜𝑠ℎ𝐾−
𝐶

2𝑃𝑟
𝑠𝑖𝑛𝐾

−

𝑒𝑃1
2 𝑡𝑚𝑎𝑥 −𝑡∗ 

2𝑐𝑜𝑠ℎ𝑎
𝑠𝑖𝑛𝑡∗  

𝑒𝑎𝑦∗

1+𝑃1
2+𝑎𝑐

+
𝑒−𝑎𝑦∗

1+𝑃1
2−𝑎𝑐

 − 𝜃0𝑡
∗ + 𝐶𝜃0𝑦

∗ +

𝑃𝑟𝑦 ∗2
𝜃0

2
+

𝑒𝐶

 1−𝑒𝐶 
 𝑡∗ − 𝐶𝑦∗ −

𝑃𝑟𝑦 ∗2

2
 .                                   (35) 

4.3 Dimensionless volumetric airflow 
The volumetric airflow is defined in Equation (36) below, 

𝑄∗ 𝑦∗, 𝑡∗ = 𝐴∗𝑐𝑑  𝑈∗(𝑠)𝑑𝑠𝑑𝑡∗
𝑠=𝑦∗

2

𝑠=0
.                                (36)                                                                                                                   

Putting Equation (35) in (36), one obtains 

𝑄∗ 𝑦∗, 𝑡∗ = 𝐴∗𝑐𝑑   
1

𝐶2 1−𝑒−𝐶  1−𝑒𝑣0 
  1 +

𝑠=𝑦∗

2

𝑠=0

𝑃𝑟

1−𝑃𝑟
  𝑒−𝐶 − 𝑒𝑣0 − 𝑒𝑣0𝑠 𝑒−𝐶 − 1 − 𝑒−𝐶𝑠 1 − 𝑒𝑣0  +

 1 − 𝜃0 1 − 𝑒−𝐶   𝐶 − 𝑃𝑟 1 − 𝑒𝑣0 − 𝐶𝑒𝑣0𝑠 +

 1 − 𝑒𝑣0  𝑃𝑟 − 𝐶𝑠   +
𝑈0𝑠𝑖𝑛ℎ𝐾𝑠∗𝑒

𝑃1
2  𝑡𝑚𝑎𝑥 −𝑡∗ −

1
2
𝑣0 1−𝑠  

𝐾𝑐𝑜𝑠ℎ𝐾−
𝐶

2𝑃𝑟
𝑠𝑖𝑛𝐾

−

𝑒𝑃1
2 𝑡𝑚𝑎𝑥 −𝑡∗ 

2𝑐𝑜𝑠ℎ𝑎
𝑠𝑖𝑛𝑡∗  

𝑒𝑎𝑠

1+𝑃1
2+𝑎𝑐

+
𝑒−𝑎𝑠

1+𝑃1
2−𝑎𝑐

 − 𝜃0𝑡
∗ + 𝐶𝜃0𝑠 +

𝑃𝑟𝑠2𝜃0

2
+

𝑒𝐶

 1−𝑒𝐶 
 𝑡∗ − 𝐶𝑠 −

𝑃𝑟𝑠2

2
  𝑑𝑠𝑑𝑡∗.                            (37)   

Where, 𝑠 is a dummy variable.                                                                                                                                                                                                                                                                                                                                                                                                                             

One obtain the volumetric airflow as, 

𝑄∗ 𝑦∗, 𝑡∗ = 𝐴∗𝑐𝑑

 
 
 
 

1

𝑐2 1−𝑒−𝐶  1−𝑒𝑣0 
  1 +

𝑃𝑟

1−𝑃𝑟
   𝑒−𝐶 −

𝑒𝑣0 𝑦 ∗

2
−  𝑒−𝐶 − 1 

𝑒
𝑣0

𝑦∗

2

𝑣0
+  1 − 𝑒𝑣0 

𝑒
−𝐶

𝑦∗

2

𝐶
+

 𝑒−𝐶−1 

𝑣0
−

 1−𝑒𝑣0 

𝐶
 +  1 − 𝜃0 1 − 𝑒−𝐶   −𝑃𝑟 𝑣0 +  1 − 𝑒𝑣0  

𝑦 ∗

2
+

𝑃𝑟𝑒𝑣0
𝑦∗

2 +  1 − 𝑒𝑣0  𝑃𝑟
𝑦 ∗

2
− 𝐶

𝑦 ∗2

8
 − 𝑃𝑟  𝑡∗ +

𝑈0
𝑣0
2
𝑒
𝑃1

2  𝑡𝑚𝑎𝑥 −𝑡∗ +
1
2
𝑣0 

  𝑠𝑖𝑛ℎ𝐾
𝑦∗

2
+𝐾2𝑃1

2𝑣0
2
𝑐𝑜𝑠ℎ𝐾

𝑦∗

2
 𝑒

−𝑣0
𝑦∗

4 −𝐾𝑃1
2𝑣0

2
 

 𝐾𝑐𝑜𝑠ℎ𝐾+
1

2
𝑣0𝑠𝑖𝑛ℎ𝐾  1−𝐾2 𝑃1

2𝑣0
2
 

2
 

+

𝑒𝑃1
2 𝑡𝑚𝑎𝑥 −𝑡∗  

𝑐𝑜𝑠 𝑡∗

𝑃1
2 −𝑠𝑖𝑛𝑡∗ 

2𝑎𝑐𝑜𝑠 ℎ𝑎𝑃1
2 1−

1

 𝑃1
2 

2 

 
1−𝑒

𝑎
𝑦∗

2

1+𝑃1
2+𝑎𝐶

+
𝑒
−𝑎

𝑦∗

2 −1

1+𝑃1
2−𝑎𝐶

 − 𝜃0𝑡
∗2 𝑦 ∗

4
+

 𝜃0𝐶
𝑦 ∗2

8
+ 𝑃𝑟𝜃0

𝑦 ∗3

48
 𝑡∗ +

𝑒𝐶

1−𝑒𝐶
 𝑡∗2 𝑦 ∗

4
− 𝐶

𝑦 ∗2

8
𝑡∗ −

𝑃𝑟
𝑦 ∗3

48
𝑡∗  .                                                             (38)  
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4.4 Dimensionless mass transfer 
The mass transfer is given by Equation (39) below as, 

𝑚∗ 𝑦∗, 𝑡∗ = 𝜌0𝑄
∗ 𝑦∗ .                                                            (39)  

By plugging Equation (38) in (39), one obtain the mass 

transfer as, 

𝑚∗ 𝑦∗, 𝑡∗ = 𝐴∗𝑐𝑑𝜌0

 
 
 
 

1

𝑐2 1−𝑒−𝐶  1−𝑒𝑣0 
  1 +

𝑃𝑟

1−𝑃𝑟
   𝑒−𝐶 −

𝑒𝑣0 𝑦 ∗

2
−  𝑒−𝐶 − 1 

𝑒
𝑣0

𝑦∗

2

𝑣0
+  1 − 𝑒𝑣0 

𝑒
−𝐶

𝑦∗

2

𝐶
+

 𝑒−𝐶−1 

𝑣0
−

 1−𝑒𝑣0 

𝐶
 +  1 − 𝜃0 1 − 𝑒−𝐶   −𝑃𝑟 𝑣0 +  1 − 𝑒𝑣0  

𝑦 ∗

2
+

𝑃𝑟𝑒𝑣0
𝑦∗

2 +  1 − 𝑒𝑣0  𝑃𝑟
𝑦 ∗

2
− 𝐶

𝑦 ∗2

8
 − 𝑃𝑟  𝑡∗ +

𝑈0
𝑣0
2
𝑒
𝑃1

2  𝑡𝑚𝑎𝑥 −𝑡∗ +
1
2
𝑣0 

  𝑠𝑖𝑛ℎ𝐾
𝑦∗

2
+𝐾2𝑃1

2𝑣0
2
𝑐𝑜𝑠ℎ𝐾

𝑦∗

2
 𝑒

−𝑣0
𝑦∗

4 −𝐾𝑃1
2𝑣0

2
 

 𝐾𝑐𝑜𝑠ℎ𝐾+
1

2
𝑣0𝑠𝑖𝑛ℎ𝐾  1−𝐾2 𝑃1

2𝑣0
2
 

2
 

+

𝑒𝑃1
2 𝑡𝑚𝑎𝑥 −𝑡∗  

𝑐𝑜𝑠 𝑡∗

𝑃1
2 −𝑠𝑖𝑛 𝑡∗ 

2𝑎𝑐𝑜𝑠 ℎ𝑎𝑃1
2 1−

1

 𝑃1
2 

2 

 
1−𝑒

𝑎
𝑦∗

2

1+𝑃1
2+𝑎𝐶

+
𝑒
−𝑎

𝑦∗

2 −1

1+𝑃1
2−𝑎𝐶

 − 𝜃0𝑡
∗2 𝑦 ∗

4
+

 𝜃0𝐶
𝑦 ∗2

8
+ 𝑃𝑟𝜃0

𝑦 ∗3

48
 𝑡∗ +

𝑒𝐶

1−𝑒𝐶
 𝑡∗2 𝑦 ∗

4
− 𝐶

𝑦 ∗2

8
𝑡∗ −

𝑃𝑟
𝑦 ∗3

48
𝑡∗ 

 
 
 
 

                                                                            (40)       

5. ASYMPTOTIC BEHAVIOR AND 

DISCUSSION OF THE RESULTS  
In this section the main features of the solutions found in the 

previous section (4.0) will be discussed. This is done in order 

to see the effect of changes of effective thermal coefficient 𝜃0 

to the overall distributions, while keeping other operating 

conditions and parameters fixed, and ascertain the best one for 

optimal natural ventilation.  

A Physical interpretation of dimensionless temperature 

profiles for three incremental values of 

𝜃0 =  0.01, 0.03, 0.05  is presented in Figure 4, 5, and 6. In 

which in Figure 4 as  𝑡∗ increase the corresponding 𝜃 ∗ 𝑦∗, 𝑡∗  
increases with 𝜃0 = 0.01. In Figure 5 as  𝑡∗ increase the 

corresponding 𝜃 ∗ 𝑦∗, 𝑡∗  increases with  𝜃0 = 0.03. And in 

Figure 6 as  𝑡∗ increase the corresponding 𝜃 ∗ 𝑦∗, 𝑡∗  also 

increases with  𝜃0 = 0.05.The obvious features to be observed 

is that, all the lines of flow for temperature profiles across the 

openings are linearly distributed. Therefore, it is found that 

the best value of 𝜃 ∗ 𝑦∗, 𝑡∗  for optimal natural ventilation is 

when 𝜃0 = 0.01  and 𝑡∗ = 𝑡𝑚𝑎𝑥 = 1.0. 

 

Figure 4: Dimensionless temperature profiles 𝜽 ∗ versus 𝒚∗ 

and 𝒕∗ at 𝜽𝟎 = 𝟎. 𝟎𝟏. 

 

Figure 5: Dimensionless temperature profiles 𝜽 ∗ versus 𝒚∗ 

and 𝒕∗ at 𝜽𝟎 = 𝟎. 𝟎𝟑. 

 

Figure 6: Dimensionless temperature profiles 𝜽 ∗ versus 𝒚∗ 

and 𝒕∗ at 𝜽𝟎 = 𝟎. 𝟎𝟓. 

A Physical interpretation of dimensionless velocity profiles 

for three incremental values of 𝜃0 =  0.01, 0.03, 0.05  is 

presented in Figure 7, 8, and 9. In which in Figure 7 as  𝑡∗ 

increase the corresponding 𝑈∗ 𝑦∗, 𝑡∗  increases with 𝜃0 =
0.01. In Figure 8 as  𝑡∗ increase the corresponding 𝑈∗ 𝑦∗, 𝑡∗  

increases with  𝜃0 = 0.03. And in Figure 9 as  𝑡∗ increase the 

corresponding 𝑈∗ 𝑦∗, 𝑡∗  also increases with  𝜃0 = 0.05. The 

obvious features to be observed is that, as 𝑡∗ increases the line 

of flow for velocity profiles across the openings also 

increases. Therefore, it is found that the best value of 

𝑈∗ 𝑦∗, 𝑡∗  for optimal natural ventilation is when  𝜃0 = 0.01. 
and 𝑡∗ = 𝑡𝑚𝑎𝑥 = 1.0. 
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Figure 7: Transient Dimensionless velocity profiles 𝑼∗ 

versus 𝒚∗ and 𝒕∗  at 𝜽𝟎 = 𝟎. 𝟎𝟏. 

 

Figure 8: Transient Dimensionless velocity profiles 𝑼∗ 

versus 𝒚∗ and 𝒕∗  at 𝜽𝟎 = 𝟎. 𝟎𝟑. 

 

Figure 9: Transient Dimensionless velocity profiles 𝑼∗ 

versus 𝒚∗ and 𝒕∗  at 𝜽𝟎 = 𝟎. 𝟎𝟓. 

A Physical interpretation of dimensionless volumetric airflow 

for three incremental values of 𝜃0 =  0.01, 0.03, 0.05  is 

presented in Figure 10, 11, and 12. In which in Figure 10 as 

 𝑡∗ increase the corresponding 𝑄∗ 𝑦∗, 𝑡∗  increases with 𝜃0 =
0.01. In Figure 11 as  𝑡∗ increase the corresponding 𝑄∗ 𝑦∗, 𝑡∗  

increases with  𝜃0 = 0.03. And in Figure 12 as  𝑡∗ increase the 

corresponding 𝑄∗ 𝑦∗, 𝑡∗  also increases with  𝜃0 = 0.05. The 

obvious features to be observed is that, as 𝑡∗ increases the 

volumetric airflow also increases. Therefore, it is found that 

the best value of 𝑄∗ 𝑦∗, 𝑡∗  for optimal natural ventilation is 

when 𝜃0 = 0.01 and 𝑡∗ = 𝑡𝑚𝑎𝑥 = 1.0. 

 

Figure 10: Transient Dimensionless volumetric airflow 𝑸∗ 

versus 𝒚∗ and 𝒕∗  at 𝜽𝟎 = 𝟎. 𝟎𝟏. 

 

Figure 11: Transient Dimensionless volumetric airflow 𝑸∗ 

versus 𝒚∗ and 𝒕∗  at 𝜽𝟎 = 𝟎. 𝟎𝟑. 

 

Figure 12: Transient Dimensionless volumetric airflow 𝑸∗ 

versus 𝒚∗ and 𝒕∗  at 𝜽𝟎 = 𝟎. 𝟎𝟓. 

A Physical interpretation of dimensionless mass transfer for 

three incremental values of 𝜃0 =  0.10, 0.30, 0.50  is 

presented in Figure 13, 14, and 15. In which in Figure 13 as 

 𝑡∗ increase the corresponding 𝑚∗ 𝑦∗, 𝑡∗  increases with 𝜃0 =
0.01. In Figure 14 as  𝑡∗ increase the corresponding 

𝑚∗ 𝑦∗, 𝑡∗  increases with  𝜃0 = 0.03. And in Figure 15 as  𝑡∗ 

increase the corresponding 𝑚∗ 𝑦∗, 𝑡∗  also increases with 

 𝜃0 = 0.05. The obvious features to be observed is that, as 𝑡∗ 

increases the mass transfer also increases. Therefore, it is 

found that the best value of 𝑚∗ 𝑦∗, 𝑡∗  for optimal natural 

ventilation is when 𝜃0 = 0.01 and 𝑡∗ = 𝑡𝑚𝑎𝑥 = 1.0. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Dimensionless height of the openings(y*)

D
im

e
n
s
io

n
le

s
s
 v

e
lo

c
it
y
 p

ro
fi
le

s
 (

U
* (y

* ,t
))

Dimensionless velocity profiles against y* and t* at 
0
 = 0.01

 

 

t*=0.00

t*=0.50

t*=1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Dimensionless height of the openings(y*)

D
im

e
n
s
io

n
le

s
s
 v

e
lo

c
it
y
 p

ro
fi
le

s
 (

U
* (y

* ,t
))

Dimensionless velocity profiles against y* and t* at 
0
 = 0.03

 

 

t*=0.00

t*=0.50

t*=1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Dimensionless height of the openings(y*)

D
im

en
si

on
le

ss
 v

el
oc

ity
 p

ro
fil

es
 (

U
* (y

* ,t
))

Dimensionless velocity profiles against y* and t* at 
0
 = 0.05

 

 

t*=0.00

t*=0.50

t*=1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Dimensionless height of the openings(y*)

D
im

e
n
s
io

n
le

s
s
 v

o
lu

m
e
tr

ic
 a

irf
lo

w
 (

Q
* (y

* ,t
* ))

Dimensionless volumetric airflow against y * and t* at 
0
 = 0.01

 

 

t*=0.00

t*=0.50

t*=1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Dimensionless height of the openings(y*)

D
im

e
n
s
io

n
le

s
s
 v

o
lu

m
e
tr

ic
 a

ir
fl
o
w

 (
Q

* (y
* ,t

* ))

Dimensionless volumetric airflow against y * and t* at 
0
 = 0.03

 

 

t*=0.00

t*=0.50

t*=1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Dimensionless height of the openings(y*)

D
im

e
n
s
io

n
le

s
s
 v

o
lu

m
e
tr

ic
 a

ir
fl
o
w

 (
Q

* (y
* ,t

* ))

Dimensionless volumetric airflow against y * and t* at 
0
 = 0.05

 

 

t*=0.00

t*=0.50

t*=1.00



International Journal of Computer Applications (0975 – 8887) 

Volume 148 – No.1, August 2016 

10 

 

Figure 13: Transient Dimensionless mass transfer 𝒎∗ 

versus 𝒚∗ and 𝒕∗  at 𝜽𝟎 = 𝟎. 𝟎𝟏. 

 

Figure 14: Transient Dimensionless mass transfer 𝒎∗ 

versus 𝒚∗ and 𝒕∗  at 𝜽𝟎 = 𝟎. 𝟎𝟏. 

 

Figure 15: Transient Dimensionless mass transfer 𝒎∗ 

versus 𝒚∗ and 𝒕∗  at 𝜽𝟎 = 𝟎. 𝟎𝟏. 

6. CONCLUSION  
A transient airflow process across three vertical vents induced 

by stack- driven effect inside un- stratified cross- ventilated 

rectangular building with an opposing flow in one of the 

upper opening was presented. Parameters such as, effective 

thermal coefficient and Prandtl number were also introduced, 

which were believed to have significant effects on natural 

ventilation process in buildings. Analytical techniques were 

employed to obtain the possible solutions of the model 

Equations, which predicts velocity- and temperature profiles 

together with volumetric airflow and mass-transfer. Various 

parameters on air flow process were used to see the effect of 

changes of effective thermal coefficient 𝜃0 for different time 

intervals  𝑡∗  to the overall flow distributions, and ascertain 

the best one for optimal natural ventilation. Therefore, 

expected objectives in the paper are achieved. 

The paper lead to the following conclusions: 

1- A decrease in effective thermal coefficient 𝜃0 

results in an increase in temperature profiles 𝜃 ∗ 

across the openings. The temperatures profiles 𝜃 ∗ is 

more sensitive at lower values of effective thermal 

coefficient 𝜃0. Therefore, the main features to be 

observed is that the temperature profiles 𝜃 ∗ was 

within comfortable conditions for higher value of 

time intervals 𝑡∗. 

2- A decrease in effective thermal coefficient 𝜃0 

results in an increase in velocity profiles 𝑈∗ across 

the openings. The velocity profiles 𝑈∗ is more 

sensitive at lower values of effective thermal 

coefficient 𝜃0. Therefore, the main features to be 

observed is that the velocity profiles 𝑈∗  is higher in 

comparison to higher value of time intervals 𝑡∗. 

3- A decrease in effective thermal coefficient 𝜃0 result 

in an increase in volumetric airflow 𝑄∗. The 

volumetric airflow 𝑄∗ is more sensitive at lower 

values of effective thermal coefficient 𝜃0. Therefore, 

the main features to be observed is that the 

volumetric airflow 𝑄∗  is higher in comparison to 

higher value of time intervals 𝑡∗. 

4- An increase in effective thermal coefficient 𝜃0, 

result in an increase in mass transfer 𝑚∗. The mass 

transfer 𝑚∗ is more sensitive at lower values of 

effective thermal coefficient 𝜃0. Therefore, the main 

features to be observed in this research is that the 

mass transfer 𝑚∗  is higher in comparison to higher 

value of time intervals 𝑡∗. 

5- The greater vertical distance between the openings, 

and the greater temperature difference between the 

inside and the outside, the stronger is the effect of 

the buoyancy. 

The model is only valid for cross- ventilated building with 

three openings at the same height. Lastly, the research 

findings will help in developing a better understanding of 

natural ventilation process and help researchers to gain more 

insights into the phenomenon and therefore come up with 

more models. 
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8. BIBLIOGRAPHY 

8.1 Nomenclature 
𝐶1, 𝐶2, 𝐶3, 𝐶4    Coefficients; 

𝐾1, 𝐾2, 𝑎, 𝐾    Arbitrary constants; 

𝑃1             Separation constants; 

𝐴∗             Total area of the openings; 

𝑥𝑤              Width of the openings; 

𝑦               Dimensional height of the openings; 

𝑦∗             Dimensionless height of the openings; 

𝑐𝑑              Discharge coefficient; 
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𝑔               Acceleration due to gravity;  

𝑃               Air pressure; 

𝑡∗              Dimensionless time intervals; 

𝑡               Dimensional time intervals; 

𝑞               Heat source; 

𝑐𝑝               Specific heat capacity of air; 

𝑡𝑚𝑎𝑥           Maximum time; 

𝑣0              Constant velocity of the opposing flow; 

𝜌0              Constant density of the air; 

𝑢, 𝑣            Velocity components along 𝑥−, 𝑦- coordinate; 

𝑈               Dimensional velocity profile; 

𝑈∗ 𝑦∗, 𝑡∗     Dimensionless velocity profiles; 

𝑈𝑠
∗ 𝑦∗          Dimensionless steady velocity profiles; 

𝑈𝑢
∗   𝑦∗, 𝑡∗    Dimensionless unsteady velocity profiles; 

𝑚∗ 𝑦∗, 𝑡∗             Dimensionless mass – transfer; 

𝑄∗ 𝑦∗, 𝑡∗              Dimensionless volumetric airflow; 

𝑈𝐶 𝑦
∗ , 𝑈𝐶 𝑦

∗, 𝑡∗        Complimentary solutions; 

 𝑈𝑝 𝑦
∗ , 𝑈𝑝 𝑦

∗, 𝑡∗       Particular solutions;  

  
𝑦 ∗

2
               Neutral height; 

  𝑠                Dummy variable; 

  𝐿               Length scale of the height of the opening; 

8.1.1 Greek Symbols  
 𝛼             Thermal diffusivity; 

𝜈               Kinematic viscosity; 

𝜅             Thermal conductivity; 

𝜇               Dynamic viscosity; 

Φ𝜈              Viscous dissipation; 

𝛽              Thermal expansion coefficient; 

𝜃0             Effective thermal coefficient; 

∆𝜃             Dimensional change of air temperature; 

𝜃 𝑠
∗ 𝑦∗      Dimensionless steady temperature profiles; 

𝜃 𝑢
∗  𝑦∗, 𝑡∗    Dimensionless unsteady temperature profiles; 

 𝜃              Dimensional temperature of air; 

 𝜃 ∗ 𝑦∗, 𝑡∗     Dimensionless temperature profiles; 

𝜌0             Uniform interior air density; 

8.1.2 Dimensionless parameter 
𝑃𝑟             Prandtl number; 

8.1.3 Subscripts 
𝑤            Width; 
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