
International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.12, August 2016

5

A Comparative Study of Heterogeneous Processor

Simulators

Shagufta
Department of Computer Science,

Capital University of
Science and Technology (CUST),

Islamabad, Pakistan

Muhammad Aleem
Department of Computer Science,

Capital University of
Science and Technology (CUST),

Islamabad, Pakistan

Muhammad Arshad Islam
Department of Computer Science,

Capital University of
Science and Technology (CUST),

Islamabad, Pakistan

Muhammad Azhar Iqbal
Department of Computer Science,

Capital University of
Science and Technology (CUST),

Islamabad, Pakistan

ABSTRACT
In 1970’s, Gordon Moore perceived that the number of

transistors in a processor would double after every 18 months.

With the addition of more transistors on a single-chip, a

processor’s energy consumption increases exponentially. The

solution to this problem is heterogeneous processors and

machines. Heterogeneous machine is the combination of CPU

and GPU platforms. Computer architecture is shifting from

multi-core to heterogeneous era. Generally, computer

architects practice of software simulation to model and

analyze their ideas. Today, computer architects are using

cycle-level simulators to discover and analyze new processor

designs. To search the heterogeneous system design-space, we

review and practically analyze heterogeneous simulators and

their performance. In this study, we present a detailed

comparative analysis of gem5-gpu, gem5, and multi2sim

simulators.

Keywords

Heterogeneous simulators, gem5-gpu, gem5, multi2sim.

1. INTRODUCTION
About fifty years ago, Gordon Moor has predicted that the

number of transistors increasing after every eighteen months.

After ten years this prediction was named as Moore’s law. The

additions of more transistors on single chip make processor

faster and complex. The number of transistors and cores are

increasing on chip through technology scaling, however the

energy consumption also increases exponentially. The solution

to this problem is heterogeneous integration to use multiple

processors to gain more energy efficiency [1]. Today,

computer architecture is shifting from multi-core to

heterogeneous era [6]. Generally, computer architects uses

software simulators to model and analyze the processor

design. The computing community is growing day by day and

with passage of time variety of new processor designs are also

evolving [4]. Due to the technology advancements, now it is

possible to combine both CPUs and GPUs on single chip. This

processor design will help to decrease latency between CPU—

GPU and will enhance the application performances. With

emerging heterogeneous processor design, the power shared

CPU and GPU must use and the power budget must affect the

performance. Therefore, technology trend must minimize the

power consumption, delay of CMOS devices, allowing the

hardware designers to add more devices on a chip. The

availability of more processing-units on a chip provides a

great level of parallelism with low latency overhead.

Computer architects generally use CPU cycle-level simulators

to analyze new processors design. To search the

heterogeneous system design-space, we review the gem5-gpu

[6], gem5 [2], and multi2sim [3] simulators. We discuss some

important terms here before going in detail of these

simulators.

2. BACKGROUND

 MULTI-CORE CPUS
Single-core processors were based on arithmetic logic units,

perform simple operations on data that was stored in registers.

According to Moor law, a large number of elements were

added to the processing unit and adding more procedures to

spread the instruction set architecture to perform good

performance. Multi-core processors generate an array of

processors that as works single unit. Today, multi-cores are

being employed in clusters, workstations, and in mobile

devices [2].

3. GRAPHICS PROCESSORS (GPUS)
Today, the GPUs are being widely used as programmable

devices. Graphic accelerators are the primary ancestors of

GPUs. In mid-90s, there was no real presence of PC graphics.

In 2000s, graphic controller came into being which deserve a

new term: GPU Graphic Processing Unit [1] [17]. GPUs work

as accelerators for providing computer graphics. Two most

used applications frameworks for programming GPUs are

Kronos’s Open Computing Language (OpenCL) and

NIVIDIA’S Compute Unified Device Architecture (CUDA).

Both application-programming frameworks are based on

Single Instruction Multiple Data (SIMD) programming model

employing large number of threads. The execution of a

program on GPU for providing graphics is called shader.

GPUs allow three level of concurrencies: 1) first level

employs thousands of threads on GPUs, called thread-level

concurrency where a single executing thread is called work-

item; 2) second type is based on multiple kernels on the

device, called kernel-level concurrency; and 3) third type let

multiple applications on GPUs. GPU architecture is suitable

for matrix-based mathematical operations and SIMD style of

computing [2]. On a GPU, the OpenCL driver interacts with

hardware via system-calls, while on CPUs OpenCL driver

executes x86 instructions and is well matched with underlying

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.12, August 2016

6

hardware [18]. Fig 1 depicts the heterogeneous CPU-GPU

systems on a single chip. Cores are on the top private L1 and

L2 cache memories.

Fig1. Heteerogeneous CPU-GPU architecture.

4. HETEROGENEOUS SYSTEMS
The combined CPU and GPGPU platforms are called

Heterogeneous Systems. GPUs have great potential speedups

and consume a little amount of energy. Heterogeneous system

architecture reduces the latencies between the connected

devices. Multiple programming models achieve the benefits

from the GPGPU organization. These two platforms have their

own memory hierarchy. Both the CPU and GPU can access

the memory of each other i.e., GPUs accessing the CPU

addresses for reading and writing and CPUs sharing page

tables. GPUs have higher memory bandwidth whereas CPUs

have higher capacity caches [19]. The heterogeneous systems

can be programed using NVIDIA’s CUDA and OpenCL

programming frameworks. CPU executes the serial part (host

program) and the GPU execute the parallel part (compute

kernel) of the application. The heterogeneous system includes

a discrete CPU and GPU elements and requires explicit chip-

to-chip data transfer. The overhead associated with the CPU-

GPU communication reduces the performance and power

efficiency of heterogeneous system. To overcome this, new

architectures e.g., Intel’s Sandy Bridge and AMD’s Llano

processors integrate both compute devices in the same chip.

Fig2. Heterogeneous system architecture

5. METHODOLOGY
For the analysis and evaluation of heterogeneous simulators,

we have thoroughly studied many related articles. The study

was done to figure out the performance parameters and

attributes, which can be used in the comparative analysis. The

three heterogeneous architecture simulators, GEM5-GPU6,

GEM54, and Multi2Sim5 have several different aspects, which

are being analyzed in this study [17].

5.1 GEM5-GPU
It is a modern simulator that incorporates the CPU-GPU

systems. It posses BSD license (code available to all

researchers without restrictions) and is accessible freely at

www.gem5-gpu.cs.wisc.edu. Gem5-gpu [20] executes

unrestricted CUDA 3.2 source code. Build on top of Gem5

CPU simulator. Gem5-gpu simulator provides several benefits

such as detailed cache coherent model, full-system simulation,

and check pointing, etc. The Gem5-GPU simulator tightly

integrates with the latest gem5 CPU simulator and provides

increased extensibility of GPGPU programming model and

system architecture [6]. MOESI is a directory based (Modified

Owned Exclusive Shared Invalid) heterogeneous cache

coherence protocol. Gem5-gpu employs the split version of

the MOESI-hsc protocol [23] that simulates architectures with

a CPU and GPU physical address spaces [6] [15] [16].

Fig3. Gem5-gpu device architecture

In Fig 3, architecture of GEM5-GPU compute device is

presented. This architecture denotes four CPU cores and eight

compute units for GPUs. Each compute unit contains a fetch

and decode register file, execution lanes, and scratch-pad

memory, and coalesce [2]. This architecture also shows on-

chip and off-chip memories. The on-chip memory is joined

with the processor on the same chip i.e., instruction cache,

data cache and on-chip SRAM.

The data-cache and instruction act an interface between

processor and off-chip memory. The on-chip SRAM also

known is as Scratch Pad memory, existing on-chip separated

from the off-chip memory but having same address and buses

as on-chip. Scratch pad memory and cache are faster required

less time to access their data. The key difference between data

cache and scratch pad memory is that, scratch-pad memory

assurances a single cycle access time whereas data-cache

compulsory, capacity and conflict misses. But off-chip

memory (DRAM, ROM, or PROM) needs long time to access

their data. Coalescer merges two adjacent blocks of memory

i.e., when global memory is accessed, lane sends its address to

the coalescer, it merges the free memory accesses to the

similar block. GPU also have hierarchy of cache, which stores

the data receive from global memory of device.

5.2 Gem5 Simulator
Gem5 simulator is the combination of M5 and GEMS

simulators. It merges the best features from both simulators.

Computer architects generally use software simulation to

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.12, August 2016

7

model and analize their ideas. Mainly, the Gem5 is used for

architecture modeling and provides three features: flexibility,

widespread accessibility, and developer colaborators. The

simulator provides:

CPU Model: four types of CPU model based on speed and

accuracy [4].

1) Atomic Simple model: IPC CPU, one cycle per

instruction;

2) Timing Simple model: non-pipeline model uses the

reference for modeling and memory access

latencies;

3) In-Order is a pipelined model [10]: is a seven

stages pipelined model 1) fetch, 2) decode, 3)

rename, 4) issue, 5) execute, 6) write back, 7)

commit created on physical register file architecture.

4) O3 models inter instruction dependencies for in-

order/ superscalar, branch prediction, and load/store.

Both models are simultaneous multithreading CPUs.

O3 provides a complete system model [10] [13]

[14].

Fig4. Software architecture of gem5-gpu

To model energy consumption, the simulator depends on

Multicore Power, Area, and Timing (McPAT) [12]. McPAT is

a modeling framework for multi-threaded and multi-/many-

core processors. It models power, area, and timing

simultaneously. The power model depends on the activity of

the elements such as frequency and voltage of different

domains. The power model is specified only for those, which

have a concept of clock and voltage related with simulated

object modeled. Thus, for every clock object (within the

Gem5 simulator) power consumption model can be generated

in the system.

Gem5 simulator leverages three types of interfaces: 1) port, 2)

buffer, and 3) EXTRAS interfaces. Port interface is used for

message sending and receiving. It connects all the memory

objects such as CPUs to caches, caches to busses, busses to

devices, and memories in the classic memory system. Port

interface support three modes. Timing mode provides the

detail about the memory accesses. Atomic mode provides data

about timing. Functional mode updates the simulator without

any change of timing information. Ruby memory model uses

port interface to connect CPUs to devices. Buffer interface

provides high-communicated interface among the components

in the system. In buffer interface the message-typing and

storage operation also employed. EXTRAS interface identify

external code compiled in the gem5 binary. Complex

components in the gem5 can be added and removed via this

interface [11].

Gem5 simulators’s system mode consists two types of modes:

System Call and Full system emulations. In the system call

emulation mode the operating system and devices modeling is

not included, imitating system level services, e.g., read () etc.

No dynamic thread scheduler is employed in system

emulation mode whereas the threads are mapped statically to

processor cores. The full system emulation mode implements

both the kernel and user level instructions to produce a

complete system model. This mode supports interrupt-

exceptions, fault-tolerance, privilege instructions, I/O devices,

and fault handler.

Gem5’s memory system provides two memory models:

classic and ruby. Both the two models immplement cache

coherence protocols. The main difference between classic and

ruby is Specification Language for Immplementing Cache

Coherence (SLICC). SLICC allows Gem5 to models more

variety of cache coherence protocls. Gem5 employes the

directory and broadcast based cache coherence protocols.

Moreover, it allows several different protocols with negligible

programming effort. The classic memory model is a fast and

easily configurable. The ruby memory model provides the

substructure capability of accurate simulations of cache

coherent memory system.

The ruby memory model supports two types of network

models: simple and Garnet network models. The simple

network model enables acquisition of linkage bandwidth and

latency. However, the simple network model is not suited to

model control flow and resource contention. The garnet

network model provides the details of router of micro

architecture, control flow, resource contention, and timing

information. The garnet memory model is well suited for on-

chip model studies.

Gem5 simulator supports different interconnection devices

such as Network Interface Cards (NICs) and Integrated

Device Electronics (IDEs). NICs translate parallel signals

produced by the computer into the serial format sent over the

network. IDE controller controls the flow of data among I/O

devices such as CD/DVD, readers/writers external devices,

DMA engine, frame-buffers, and AURTs etc. Multi-system

communicating is based on TCP/IP.

Gem5 supports modeling of different ISAs, including [4]:

ALPHA: this ISA is mostly used on gem5 based on DEC

Tsunami system. It can be boot with unchanged Linux kernel

and supports up to 64 cores;

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.12, August 2016

8

ARM: ISA models Cortex-A9 (ARMv7 ISA) and supports

different instruction set extensions such as Thumb, Thumb-2,

NEON, and VFPv3;

MIPS: a 32-bit MIPS processor based ISA is supported;

X86: this is a generic 64-bit CPU and can boot unchanged

Linux kernels with symmetric multi-core processors support;

POWERPC: based on the power processor ISA of 32-bit

processor;

SPARK: this architecture models ULTRASPARC T1

processors.

5.3 Multi2Sim Simulator
It is an open source and accurate-cycle simulator that supports

ISAs-level simulations of the AMD Evergreen GPU and the

x86 CPU devices. The simulator can be downloaded from

www.multi2sim.org. Multi2Sim provides a comprehensive

simulation framework for CPU-GPU computing written in C

language. Multi2Sim covers models for super-scalar, single

threaded, multithreaded, and multi-core CPU-GPU

architectures. It is a Linux-based command-line toolset,

without source modification runs OpenCL applications [24]. It

offers accurate-cycle for multiple architectures. The goal of

this simulation is to increase research into the architecture

designed and applications by providing detailed models of the

fundamental architectures [5][18]. It exploits system call

emulation and timing-first approach. The timing-first approach

provides the detail of efficiency, robustness, and performance

simulation on various levels. Timing-first approach does not

simulate the whole operating system, however it has ability to

run parallel workload with dynamic thread creation [7].

Multi2Sim simulator provides three simulation models: 1)

functional simulation, 2) detailed simulation, and 3) event-

driven simulation. Functional simulation engine is made as an

independent library and runs as an interface for the other

simulators and support parallel workloads execution. In this

model, information about the hardware threads is not

maintained. It has functions to generate and end the entities of

software and provides check & control machine instructions.

Functional supports is multi-cores by replicating multi-core

pipeline. Its highest conflict-point is the interconnection

network. Performance of multiple sequential workloads does

not include interconnection overhead. This is because each

software entity has own memory, in this way the physical

address spaces are not connected with each other. Therefore,

when there is no connection exists between contexts of cache

blocks coherence activity is not employed. This makes the

sense to run the parallel workloads to assess multi-core

processors and maintain high interconnection network activity

produced by coherence protocol transactions [9]. Detailed

simulation support multithreading, contained pipelining,

branch predictors, and supports memory latencies of varying

sizes. The pipeline stages can be allocated to several executing

threads. In multithreading pipelining the sharing strategy is

different because of the execute stage and functional units can

operate and write results back to register-file. Multi2Sim

supports fine-grained, coarse-grained, simultaneous

multithreaded parallelism. By giving fetch priority to threads,

global throughput is augmented when running long latency

operations. It uses functional engine to achieve timing-first

simulations [7][9]. The execution driven simulation is

performed by the activity of updating the existing contexts

state in each cycle. Event-driven simulation permits cycle-by-

cycle simulation [9]. Multi2Sim provides memory hierarchy

configuration in the INI file with the option –mem-

config<file>, interconnection networks (the locations and the

no. of interconnect depends on sharing strategy of the

instruction and data caches) and coherence protocol

configuration (which provides consistency amongst cache

blocks). In multi2Sim, threads can employ in-order or out-of-

order pipelining mechanism. There is no power consumption

model supported in multi2Sim [7][9]. Multi2Sim does not

require gust operating systems and can directly employ

threads scheduling. The operating system is removed from the

guest S/W stack in application simulation mode only. The

application and operating system can communicate with each

other at runtime through system calls. In Multi2Sim, both the

mesh and ring topologies are employed. In mesh topology, the

user is responsible to enter routing table entries related to

routes. Ring topology holds network links cycle [8][18].

MOESI cache coherence is a directory-based protocol

employed by Multi2Sim. Multi2Sim enables L1 and L2 cache

as either shared or private among cores. Multi2Sim is

particularly best for exploring multiple device executions by

utilizing a new NMOESI cache coherence protocol [8][15]

[18]. Table 1 summarizes the common attributed of

heterogeneous simulators discussed in this study:

6. DETAIL OF TABLE 1
EMULATION MODES:

(a) Fully System Emulation mode: executes both the kernel-

level and user-level instructions and models a complete

system including OS, devices, exceptions, interrupts, I/O

devices etc. [4].

(b) System Call Emulation: In this mode the operating

system and device modeling is not included imitating system

level services. No thread scheduler is employed in system

calls emulation [7].

(c) The timing first: gives the detail of efficiency, robustness,

and performing simulation on various levels. It does not

simulate the whole operating system and has the ability to run

parallel workload with dynamic thread creation [1].

BSD BASED LICENSE: (code available to all researchers

without restrictions [5].

MEMORY MODELS:

(a) Memory model “Ruby”: provides the capability of

accurate simulations of cache coherent memory system [2].

(b) Memory model “Classic”: Fast and easily configurable

memory system model [1].

(c) Memory model “SLCC”: found in ruby memory system.

SLICC allows Gem5 to models more variety of cache

coherence protocols. In Gem5, the cache coherence protocols

are directory based broadcast protocols. Moreover, lets

different protocols with negligible programming attempt [4].

INSTRUCTION SET ARCHITECTURE:

(a) ALPHA: This ISA is mostly used on gem5 based on DEC

Tsunami system. It can be booting unchanged Linux kernel

and supports up to 64 cores.

(b) ARM: This ISA models Cortex-A9 (ARMv7 ISA)

supports different instruction set extensions such as Thumb,

Thumb-2, NEON, and VFPv3.

(c) MIPS: A 32-bit processor called MIPS.

(d) X86: This is a generic 64-bit CPU can boot unmodified

Linux kernels in symmetric multi-core processors

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.12, August 2016

9

(e) POWERPC: Based on the power ISA, also a 32-bit

processor.

(f) SPARK: This architecture models ULTRASPARC T1

processor [2].

SIMULATION MODELS:

(a) Functional Simulation: Functional simulation engine is

made as an independent library that runs an interface for the

other simulators and support parallel workloads execution. No

information about the hardware threads, generate and end the

entities of software and check and control machine

instructions [9].

(b) Detailed Simulation: Detailed simulator evaluates the

nature of recently implemented machine instructions and sums

the latencies operations suffered by hardware structure.

(c) Execution driven simulation performed the activity of

updating the existing contexts state in each cycle. That is

sequence of call to the kernel [7].

Table1. Common attributes of a heterogeneous simulator.

Architectural Attributes Gem5-gpu Gem5 Muti2Sim

Execution Modes

Full System ×

System Call Emulation

Timing Simulation

License (BSD)

Memory System Models

Ruby

Classic × ×

SLICC ×

Applications

(Runtime)

Runs un-modified CUDA

source code

 × ×

OpenCL × ×

Python and C++ Classes × ×

Architectural Modelling

Load/Store pipeline ×

Cycle-Accurate Simulators

Heterogeneous System Simulators

Supported ISAs Or Framework

X86, SPARC, Alpha,

ARM CPU

X86, ARM CPU,

MIPS, Power

SPARC

 X86, ARM AMD,

GCN, GPUs

Shared virtual address space ×

Multi-core Supported

Multiple cores

Cache Hierarchy Configuration

Interconnection Network

Coherence Protocol

Single Thread

In-Order Pipeline × ×

Out-Of-Order Pipeline ×

Power Consumption Modelling × ×

Multithread

Multithread

FGMT, CGMT, SMT × ×

Guest OS (s)

Android12,

Linux

Android, FreeBSD,

Linux, Solaris

×

Simulation Models

Functional simulation engine ×

Detailed simulator ×

Execution-driven simulation ×

CPU Models

Atomic-Simple × ×

Timing-Simple × ×

Out-Of-Order CPU × ×

In-Order CPU × ×

Topologies

Mesh, Torus,

Crossbar,

Default cluster

Mesh,

Torus,

Crossbar

Ring

Mesh

Non-Blocking Mechanism × ×

DMA engine ×

Multiple CPU

Standard Interfaces

Port Interface × ×

Message Buffer Interface ×

EXTRAS Interface × ×

Simulation
Execution-driven simulation

Trace-driven simulation ×

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.12, August 2016

10

STANDARD INTERFACE SUPPORT:
(a) Port interface is used for message sending and receiving.

It connects all the memory objects such as CPUs to caches,

caches to busses, busses to devices and memories in the

classic memory system.

(b) Message buffer interface give high-communicated

interface among components in the system. In buffer interface

the message typing and storage operation also performed.

(c) EXTRAS interface identify external code compiled in the

gem5 binary. Complex components in the gem5 can be add

and remove via this interface [11].

Cache Hierarchy: There are two types of cache hierarchy

CPU’s and GPU’s cache hierarchies. Each CPU core has its

own private L1 and L2 cache. This cache hierarchy retains the

evaluation usage of caches among cores. The GPU cache

hierarchy is different from CPU hierarchy. The GPU

hierarchy contains scratch-pad memory that is explicitly

accessible by the programmer. GPU core has also L1 and L2

caches. L1 cache allows incoherent data and L2 cache

participates in coherent protocol with CPU cores [21].

POWER CONSUMPTION MODELS:
For power models we depend on McPAT. . Power model

depend on the activity of the elements also on frequency and

voltage of different domains. The power model is specified

only for those, which have a concept of clock and voltage

related with simulated object modeled.

(a) Atomic Simple model (IPC CPU, one cycle per

instruction)

(b) Timing Simple model (non-pipeline model uses the

reference for modeling memory access latencies)

(c) In-Order is a pipelined model.

(d) O3 is a seven stages pipelined model: that is 1: fetch, 2:

decode, 3: rename, 4: issue, 5: execute, 6: write back, 7:

commit created on physical register file architecture. O3

models inter instruction dependencies for in-order/

superscalar, branch prediction, and load/store. Both models

are simultaneous multithreading CPUs. O3 provides a

complete system model [4][10][13][14].

CACHE COHERENCE PROTOCOL to maintain cache

coherence via messaging and share locks between worker

node and virtual machine. The messages use a message

protocol, this protocol includes three things: hash-able object

key, message type, and region identifier [22].

EVENT-DRIVEN simulation permits cycle-by-cycle

simulation [9].

7. EXPERIMENTAL RESULTS
With analysis of the experimental work, it can be observed

that all the three simulators provide architecture modeling and

accurate cycle-level simulations. We performed experiments

using matrix multiplication compute-intensive application

with varying input sizes. Experiments show that the

multi2sim provide faster performance compared to the gem5

simulator. Table 2 shows the comparative results of execution

times of the experimented application. The table 2 shows that

the multi2sim achieves 0.59 times to 9.4 times more speedups

compared to the gem5 simulator. Figure 5 also shows the

comparative execution time results of the experiment.

Table 2. Matrix multiplication application performance.

Matrix

Size

Execution Time (in seconds)

16×16 32×32 64×64 128×128 256×256 512×512 1024×1024

Multi2sim 0.20 0.24 0.26 0.25 0.25 0.37 2.2

Gem5 1.90 1.56 1.77 2.5 2.6 2.9 3.5

The performance results show that the multi2sim simulator

achieves better performance for the compute intensive

applications compared to the gem5.

Fig 5. Matrix multiplication performance on the

multi2sim and gem5 simulators

8. CONCLUSIONS AND FUTURE

WORK
This paper presented a summary of three simulators; gem5,

gem5-gpu, and multi2sim. All the three simulators are provide

support for heterogeneous compute architecture. Gem5 is the

combination of M5 and GEMS highly capable simulators. It

is available with all the required documentation resources.

Gem5-gpu provides the accessibility with both current and

future heterogeneous architectures and the data. Multi2Sim

adds more diversified attributes to the current simulation

environment (SimpleScaler, simies GEMS). In this paper, we

thoroughly investigated the attributes and features available in

these heterogeneous simulators. Moreover, we performed

experiments using a compute-intensive application (matrix

multiplication) employing both the gem5 and multi2sim

simulators. The experimental results show that the multi2sim

performs better compared to the gem5 and achieves up to 9.4

times better performance results.

9. REFERENCES
[1] J. Power, J. Hestness, M. S. Orr, M. D. Hill, D. A.

Wood, "gem5-gpu: A heterogeneous cpu-gpu simulator,"

Computer Architecture Letters, vol. 14, no. 1, pp. 34--36,

2015.

[2] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A.

Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna, S.

Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.

Hill, D. A. Wood, "The gem5 simulator," ACM

SIGARCH Computer Architecture News, vol. 39, no. 2,

pp. 1--7, 2011.

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.12, August 2016

11

[3] R. Ubal, B. Jang, P. Mistry, D. Schaa, D. Kaeli,

"Multi2Sim: a simulation framework for CPU-GPU

computing," in ACM, New york, 2012.

[4] J. V. Quiroga Esparza, "Heterogeneous CPU/GPU

Memory Hierarchy Analysis and Optimization,"

Universitat Polit{\`e}cnica de Catalunya, 2015.

[5] Y. Ukidave, "Architectural and Runtime Enhancements

for Dynamically Controlled Multi-Level Concurrency on

GPUs," Northeastern University Boston, 2015.

[6] P. R. Panda, N. D. Dutt, A. Nicolau, "On-chip vs. off-

chip memory: the data partitioning problem in embedded

processor-based systems," ACM Transactions on Design

Automation of Electronic Systems (TODAES), vol. 5,

no. 3, pp. 682--704, 2000.

[7] R. Ubal, J. Sahuquillo, S. Petit and P. Lopez,

"Multi2sim: A simulation framework to evaluate

multicore-multithread processors," in Citeseer, Rio

Grande do Sul , 2007.

[8] R. Ubal, B. Jang, P. Mistry, D. Sachaa, D. Kaeli, "The

Multi2Sim Simulation Framework," International

Conference on Parallel Architectures and Compilation

Techniques, pp. 335--344, 19-23 September 2012.

[9] V. Spiliopoulos, A. Bagdia, A. Hansson, P. Aldworth

and S. Kaxiras, "Introducing DVFS-management in a

full-system simulator," Modeling, Analysis \&

Simulation of Computer and Telecommunication

Systems (MASCOTS), 2013 IEEE 21st International

Symposium on, pp. 535--545, 14-16 August 2013.

[10] A.Gutierrez, J. Pusdesris, R. Dreslinski, T. Mudge, C.

Sudanthi, C. Emmons, and N. Paver, "Sources of error in

full-system simulation," Performance Analysis of

Systems and Software (ISPASS), 2014 IEEE

International Symposium on, pp. 13--22, 23-25 March

2014.

[11] F. A. Endo, D. Couroussé and H. P. Charles, "Micro-

architectural simulation of in-order and out-of-order

ARM microprocessors with gem5," Embedded

Computer Systems: Architectures, Modeling, and

Simulation (SAMOS XIV), 2014 International

Conference on, pp. 266--273, 14-17 July 2014.

[12] F. A. Endo, D. Couroussé, H.-P. Charles, "Micro-

architectural simulation of embedded core heterogeneity

with gem5 and McPAT." Proceedings of the 2015

Workshop on Rapid Simulation and Performance

Evaluation," Proceedings of the 2015 Workshop on

Rapid Simulation and Performance Evaluation: Methods

and Tools, p. 17, 22 January 2015.

[13] J. Yin, O. Kayiran, M. Poremba, N. E. Jerger, "Efficient

synthetic traffic models for large, complex SoCs," 2016

IEEE International Symposium on High Performance

Computer Architecture (HPCA), pp. 297--308, 12-16

March 2016.

[14] J.-J. Cheng, S.-H. Hung, C.-W. Yeh, "Rapid analysis of

interprocessor communications on heterogeneous system

architectures via parallel cache emulation," Proceedings

of the 2015 Conference on research in adaptive and

convergent systems, pp. 418--423, 9-12 October 2015.

[15] H. Wang, V. Sathish, R. Singh, M. J. Schulte, N. S. Kim,

"Workload and power budget partitioning for single-chip

heterogeneous processors," Proceedings of the 21st

international conference on Parallel architectures and

compilation techniques, pp. 401--410, 19-23 September

2012.

[16] S. Gurfinkel, "The Distribution of OpenCL Kernel

Execution Across Multiple Devices," University of

Toronto, Toronto, 2014.

[17] A.Seyhanli, "Memory Controller Design for GPU

Simulation in Multi2sim," Universitat Polit`e cnica de

Catalunya, Barcelona, 2015.

[18] J. V. Quiroga Esparza, "Heterogeneous CPU/ (GP) GPU

Memory Hierarchy Analysis and Optimization,"

Universitat Polit{\`e}cnica de Catalunya,

BarcelonaTech, 2015.

[19] "Multi2Sim," 29 September 2012. [Online]. Available:

http://www.multi2sim.org./. [Accessed 21 June 2016].

[20] "Main Page Gem5," 31 May 2011. [Online]. Available:

http://www.gem5.org/. [Accessed 21 June 2016].

[21] J. Hestness, S. W. Keckler, D. A. Wood, "A

Comparative Analysis of Microarchitecture Effects on

CPU and GPU Memory System Behavior," Workload

Characterization (IISWC), 2014 IEEE International

Symposium on, pp. 150--160, 26-28 October 2014.

[22] P. Petev, "Cache coherence protocol". United State US

Patent 11/118,902, 29 April 2005.

[23] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Bechmann,

M. D. Hill, S. K. Reinhardt, D. A. Wood,

"Heterogeneous system coherence for integrated CPU-

GPU systems", Proceedings of the 46th Annual

IEEE/ACM International Symposium on

Microarchitecture, pp. 457--467, ACM New York, NY,

USA.

[24] A.Munshi, "The OpenCL specification." In 2009 IEEE

Hot Chips 21 Symposium (HCS), pp. 1-314. IEEE, 2009.

IJCATM : www.ijcaonline.org

