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ABSTRACT 
In 1970’s, Gordon Moore perceived that the number of 

transistors in a processor would double after every 18 months. 

With the addition of more transistors on a single-chip, a 

processor’s energy consumption increases exponentially. The 

solution to this problem is heterogeneous processors and 

machines. Heterogeneous machine is the combination of CPU 

and GPU platforms. Computer architecture is shifting from 

multi-core to heterogeneous era. Generally, computer 

architects practice of software simulation to model and 

analyze their ideas. Today, computer architects are using 

cycle-level simulators to discover and analyze new processor 

designs. To search the heterogeneous system design-space, we 

review and practically analyze heterogeneous simulators and 

their performance. In this study, we present a detailed 

comparative analysis of gem5-gpu, gem5, and multi2sim 

simulators. 
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1.  INTRODUCTION 
About fifty years ago, Gordon Moor has predicted that the 

number of transistors increasing after every eighteen months. 

After ten years this prediction was named as Moore’s law. The 

additions of more transistors on single chip make processor 

faster and complex. The number of transistors and cores are 

increasing on chip through technology scaling, however the 

energy consumption also increases exponentially. The solution 

to this problem is heterogeneous integration to use multiple 

processors to gain more energy efficiency [1]. Today, 

computer architecture is shifting from multi-core to 

heterogeneous era   [6]. Generally, computer architects uses 

software simulators to model and analyze the processor 

design. The computing community is growing day by day and 

with passage of time variety of new processor designs are also 

evolving [4]. Due to the technology advancements, now it is 

possible to combine both CPUs and GPUs on single chip. This 

processor design will help to decrease latency between CPU—

GPU and will enhance the application performances. With 

emerging heterogeneous processor design, the power shared 

CPU and GPU must use and the power budget must affect the 

performance. Therefore, technology trend must minimize the 

power consumption, delay of CMOS devices, allowing the 

hardware designers to add more devices on a chip. The 

availability of more processing-units on a chip provides a 

great level of parallelism with low latency overhead.  

Computer architects generally use CPU cycle-level simulators 

to analyze new processors design. To search the 

heterogeneous system design-space, we review the gem5-gpu 

[6], gem5 [2], and multi2sim [3] simulators. We discuss some 

important terms here before going in detail of these 

simulators. 

2. BACKGROUND 

        MULTI-CORE CPUS 
Single-core processors were based on arithmetic logic units, 

perform simple operations on data that was stored in registers. 

According to Moor law, a large number of elements were 

added to the processing unit and adding more procedures to 

spread the instruction set architecture to perform good 

performance. Multi-core processors generate an array of 

processors that as works single unit. Today, multi-cores are 

being employed in clusters, workstations, and in mobile 

devices [2]. 

3. GRAPHICS PROCESSORS (GPUS) 
Today, the GPUs are being widely used as programmable 

devices. Graphic accelerators are the primary ancestors of 

GPUs. In mid-90s, there was no real presence of PC graphics. 

In 2000s, graphic controller came into being which deserve a 

new term: GPU Graphic Processing Unit [1] [17]. GPUs work 

as accelerators for providing computer graphics. Two most 

used applications frameworks for programming GPUs are   

Kronos’s Open Computing Language (OpenCL) and 

NIVIDIA’S Compute Unified Device Architecture (CUDA). 

Both application-programming frameworks are based on 

Single Instruction Multiple Data (SIMD) programming model 

employing large number of threads. The execution of a 

program on GPU for providing graphics is called shader. 

GPUs allow three level of concurrencies: 1) first level 

employs thousands of threads on GPUs, called thread-level 

concurrency where a single executing thread is called work-

item; 2) second type is based on multiple kernels on the 

device, called kernel-level concurrency; and 3) third type let 

multiple applications on GPUs. GPU architecture is suitable 

for matrix-based mathematical operations and SIMD style of 

computing [2]. On a GPU, the OpenCL driver interacts with 

hardware via system-calls, while on CPUs OpenCL driver 

executes x86 instructions and is well matched with underlying 
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hardware [18]. Fig 1 depicts the heterogeneous CPU-GPU 

systems on a single chip. Cores are on the top private L1 and 

L2 cache memories. 

 

Fig1. Heteerogeneous CPU-GPU architecture. 

4. HETEROGENEOUS SYSTEMS 
The combined CPU and GPGPU platforms are called 

Heterogeneous Systems. GPUs have great potential speedups 

and consume a little amount of energy. Heterogeneous system 

architecture reduces the latencies between the connected 

devices. Multiple programming models achieve the benefits 

from the GPGPU organization. These two platforms have their 

own memory hierarchy. Both the CPU and GPU can access 

the memory of each other i.e., GPUs accessing the CPU 

addresses for reading and writing and CPUs sharing page 

tables. GPUs have higher memory bandwidth whereas CPUs 

have higher capacity caches [19]. The heterogeneous systems 

can be programed using NVIDIA’s CUDA and OpenCL 

programming frameworks. CPU executes the serial part (host 

program) and the GPU execute the parallel part (compute 

kernel) of the application. The heterogeneous system includes 

a discrete CPU and GPU elements and requires explicit chip-

to-chip data transfer. The overhead associated with the CPU-

GPU communication reduces the performance and power 

efficiency of heterogeneous system.  To overcome this, new 

architectures e.g., Intel’s Sandy Bridge and AMD’s Llano 

processors integrate both compute devices in the same chip.  

 

Fig2. Heterogeneous system architecture 

5. METHODOLOGY 
For the analysis and evaluation of heterogeneous simulators, 

we have thoroughly studied many related articles. The study 

was done to figure out the performance parameters and 

attributes, which can be used in the comparative analysis. The 

three heterogeneous architecture simulators, GEM5-GPU6, 

GEM54, and Multi2Sim5 have several different aspects, which 

are being analyzed in this study [17].  

5.1 GEM5-GPU 
It is a modern simulator that incorporates the CPU-GPU 

systems. It posses BSD license (code available to all 

researchers without restrictions) and is accessible freely at 

www.gem5-gpu.cs.wisc.edu. Gem5-gpu [20] executes 

unrestricted CUDA 3.2 source code. Build on top of Gem5 

CPU simulator. Gem5-gpu simulator provides several benefits 

such as detailed cache coherent model, full-system simulation, 

and check pointing, etc. The Gem5-GPU simulator tightly 

integrates with the latest gem5 CPU simulator and provides 

increased extensibility of GPGPU programming model and 

system architecture [6]. MOESI is a directory based  (Modified 

Owned Exclusive Shared Invalid) heterogeneous cache 

coherence protocol. Gem5-gpu employs the split version of 

the MOESI-hsc protocol [23] that simulates architectures with 

a CPU and GPU physical address spaces [6] [15] [16]. 

 

Fig3. Gem5-gpu device architecture 

In Fig 3, architecture of GEM5-GPU compute device is 

presented. This architecture denotes four CPU cores and eight 

compute units for GPUs. Each compute unit contains a fetch 

and decode register file, execution lanes, and scratch-pad 

memory, and coalesce [2]. This architecture also shows on-

chip and off-chip memories. The on-chip memory is joined 

with the processor on the same chip i.e., instruction cache, 

data cache and on-chip SRAM. 

The data-cache and instruction act an interface between 

processor and off-chip memory. The on-chip SRAM also 

known is as Scratch Pad memory, existing on-chip separated 

from the off-chip memory but having same address and buses 

as on-chip. Scratch pad memory and cache are faster required 

less time to access their data. The key difference between data 

cache and scratch pad memory is that, scratch-pad memory 

assurances a single cycle access time whereas data-cache 

compulsory, capacity and conflict misses.  But off-chip 

memory (DRAM, ROM, or PROM) needs long time to access 

their data. Coalescer merges two adjacent blocks of memory 

i.e., when global memory is accessed, lane sends its address to 

the coalescer, it merges the free memory accesses to the 

similar block. GPU also have hierarchy of cache, which stores 

the data receive from global memory of device. 

5.2 Gem5 Simulator 
Gem5 simulator is the combination of M5 and GEMS 

simulators. It merges the best features from both simulators. 

Computer architects generally use software simulation to 
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model and analize their ideas. Mainly, the Gem5 is used for 

architecture modeling and provides three features: flexibility, 

widespread accessibility, and developer colaborators. The 

simulator provides:  

CPU Model: four types of CPU model based on speed and 

accuracy [4]. 

1) Atomic Simple model: IPC CPU, one cycle per 

instruction; 

2) Timing Simple model: non-pipeline model uses the 

reference for modeling and memory access 

latencies; 

3) In-Order is a pipelined model [10]: is a seven 

stages pipelined model 1) fetch, 2) decode, 3) 

rename, 4) issue, 5) execute, 6) write back, 7) 

commit created on physical register file architecture.  

4) O3 models inter instruction dependencies for in-

order/ superscalar, branch prediction, and load/store. 

Both models are simultaneous multithreading CPUs. 

O3 provides a complete system model [10] [13] 

[14].  

 

Fig4. Software architecture of gem5-gpu 

To model energy consumption, the simulator depends on 

Multicore Power, Area, and Timing (McPAT) [12]. McPAT is 

a modeling framework for multi-threaded and multi-/many-

core processors. It models power, area, and timing 

simultaneously. The power model depends on the activity of 

the elements such as frequency and voltage of different 

domains. The power model is specified only for those, which 

have a concept of clock and voltage related with simulated 

object modeled. Thus, for every clock object (within the 

Gem5 simulator) power consumption model can be generated 

in the system. 

Gem5 simulator leverages three types of interfaces: 1) port, 2) 

buffer, and 3) EXTRAS interfaces.  Port interface is used for 

message sending and receiving. It connects all the memory 

objects such as CPUs to caches, caches to busses, busses to 

devices, and memories in the classic memory system. Port 

interface support three modes. Timing mode provides the 

detail about the memory accesses. Atomic mode provides data 

about timing. Functional mode updates the simulator without 

any change of timing information. Ruby memory model uses 

port interface to connect CPUs to devices. Buffer interface 

provides high-communicated interface among the components 

in the system. In buffer interface the message-typing and 

storage operation also employed. EXTRAS interface identify 

external code compiled in the gem5 binary. Complex 

components in the gem5 can be added and removed via this 

interface [11]. 

Gem5 simulators’s system mode consists two types of modes: 

System Call and Full system emulations. In the system call 

emulation mode the operating system and devices modeling is 

not included, imitating system level services, e.g., read ( ) etc. 

No dynamic thread scheduler is employed in system 

emulation mode whereas the threads are mapped statically to 

processor cores. The full system emulation mode implements 

both the kernel and user level instructions to produce a 

complete system model. This mode supports interrupt-

exceptions, fault-tolerance, privilege instructions, I/O devices, 

and fault handler.  

Gem5’s memory system provides two memory models: 

classic and ruby. Both the two models immplement cache 

coherence protocols. The main difference between classic and 

ruby is Specification Language for Immplementing Cache 

Coherence (SLICC). SLICC allows Gem5 to models more 

variety of cache coherence protocls. Gem5 employes the 

directory and broadcast based cache coherence protocols. 

Moreover, it allows several different protocols with negligible 

programming effort.  The classic memory model is a fast and 

easily configurable. The ruby memory model provides the 

substructure capability of accurate simulations of cache 

coherent memory system. 

The ruby memory model supports two types of network 

models: simple and Garnet network models. The simple 

network model enables acquisition of linkage bandwidth and 

latency. However, the simple network model is not suited to 

model control flow and resource contention. The garnet 

network model provides the details of router of micro 

architecture, control flow, resource contention, and timing 

information. The garnet memory model is well suited for on-

chip model studies. 

Gem5 simulator supports different interconnection devices 

such as Network Interface Cards (NICs) and Integrated 

Device Electronics (IDEs). NICs translate parallel signals 

produced by the computer into the serial format sent over the 

network. IDE controller controls the flow of data among I/O 

devices such as CD/DVD, readers/writers external devices, 

DMA engine, frame-buffers, and AURTs etc. Multi-system 

communicating is based on TCP/IP.  

Gem5 supports modeling of different ISAs, including [4]:  

ALPHA: this ISA is mostly used on gem5 based on DEC 

Tsunami system. It can be boot with unchanged Linux kernel 

and supports up to 64 cores; 
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ARM: ISA models Cortex-A9 (ARMv7 ISA) and supports 

different instruction set extensions such as Thumb, Thumb-2, 

NEON, and VFPv3; 

MIPS: a 32-bit MIPS processor based ISA is supported; 

X86: this is a generic 64-bit CPU and can boot unchanged 

Linux kernels with symmetric multi-core processors support; 

POWERPC: based on the power processor ISA of 32-bit 

processor; 

SPARK: this architecture models ULTRASPARC T1 

processors. 

5.3 Multi2Sim Simulator 
It is an open source and accurate-cycle simulator that supports 

ISAs-level simulations of the AMD Evergreen GPU and the 

x86 CPU devices. The simulator can be downloaded from 

www.multi2sim.org. Multi2Sim provides a comprehensive 

simulation framework for CPU-GPU computing written in C 

language. Multi2Sim covers models for super-scalar, single 

threaded, multithreaded, and multi-core CPU-GPU 

architectures. It is a Linux-based command-line toolset, 

without source modification runs OpenCL applications [24]. It 

offers accurate-cycle for multiple architectures. The goal of 

this simulation is to increase research into the architecture 

designed and applications by providing detailed models of the 

fundamental architectures [5][18]. It exploits system call 

emulation and timing-first approach. The timing-first approach 

provides the detail of efficiency, robustness, and performance 

simulation on various levels. Timing-first approach does not 

simulate the whole operating system, however it has ability to 

run parallel workload with dynamic thread creation [7]. 

Multi2Sim simulator provides three simulation models: 1) 

functional simulation, 2) detailed simulation, and 3) event-

driven simulation. Functional simulation engine is made as an 

independent library and runs as an interface for the other 

simulators and support parallel workloads execution. In this 

model, information about the hardware threads is not 

maintained. It has functions to generate and end the entities of 

software and provides check & control machine instructions. 

Functional supports is multi-cores by replicating multi-core 

pipeline. Its highest conflict-point is the interconnection 

network. Performance of multiple sequential workloads does 

not include interconnection overhead. This is because each 

software entity has own memory, in this way the physical 

address spaces are not connected with each other. Therefore, 

when there is no connection exists between contexts of cache 

blocks coherence activity is not employed. This makes the 

sense to run the parallel workloads to assess multi-core 

processors and maintain high interconnection network activity 

produced by coherence protocol transactions [9]. Detailed 

simulation support multithreading, contained pipelining, 

branch predictors, and supports memory latencies of varying 

sizes. The pipeline stages can be allocated to several executing 

threads. In multithreading pipelining the sharing strategy is 

different because of the execute stage and functional units can 

operate and write results back to register-file. Multi2Sim 

supports fine-grained, coarse-grained, simultaneous 

multithreaded parallelism. By giving fetch priority to threads, 

global throughput is augmented when running long latency 

operations. It uses functional engine to achieve timing-first 

simulations [7][9]. The execution driven simulation is 

performed by the activity of updating the existing contexts 

state in each cycle. Event-driven simulation permits cycle-by-

cycle simulation [9]. Multi2Sim provides memory hierarchy 

configuration in the INI file with the option –mem-

config<file>, interconnection networks (the locations and the 

no. of interconnect depends on sharing strategy of the 

instruction and data caches) and coherence protocol 

configuration (which provides consistency amongst cache 

blocks). In multi2Sim, threads can employ in-order or out-of-

order pipelining mechanism. There is no power consumption 

model supported in multi2Sim [7][9]. Multi2Sim does not 

require gust operating systems and can directly employ 

threads scheduling. The operating system is removed from the 

guest S/W stack in application simulation mode only. The 

application and operating system can communicate with each 

other at runtime through system calls. In Multi2Sim, both the 

mesh and ring topologies are employed. In mesh topology, the 

user is responsible to enter routing table entries related to 

routes. Ring topology holds network links cycle [8][18].  

MOESI cache coherence is a directory-based protocol 

employed by Multi2Sim. Multi2Sim enables L1 and L2 cache 

as either shared or private among cores. Multi2Sim is 

particularly best for exploring multiple device executions by 

utilizing a new NMOESI cache coherence protocol [8][15] 

[18]. Table 1 summarizes the common attributed of 

heterogeneous simulators discussed in this study: 

6. DETAIL OF TABLE 1 
EMULATION MODES: 

(a) Fully System Emulation mode: executes both the kernel-

level and user-level instructions and models a complete 

system including OS, devices, exceptions, interrupts, I/O 

devices etc. [4]. 

(b) System Call Emulation: In this mode the operating 

system and device modeling is not included imitating system 

level services. No thread scheduler is employed in system 

calls emulation [7]. 

(c) The timing first: gives the detail of efficiency, robustness, 

and performing simulation on various levels. It does not 

simulate the whole operating system and has the ability to run 

parallel workload with dynamic thread creation [1]. 

BSD BASED LICENSE: (code available to all researchers 

without restrictions [5]. 

MEMORY MODELS: 

(a) Memory model “Ruby”: provides the capability of 

accurate simulations of cache coherent memory system [2]. 

(b) Memory model “Classic”: Fast and easily configurable 

memory system model [1]. 

(c) Memory model “SLCC”: found in ruby memory system. 

SLICC allows Gem5 to models more variety of cache 

coherence protocols. In Gem5, the cache coherence protocols 

are directory based broadcast protocols. Moreover, lets 

different protocols with negligible programming attempt [4]. 

INSTRUCTION SET ARCHITECTURE: 

(a) ALPHA: This ISA is mostly used on gem5 based on DEC 

Tsunami system. It can be booting unchanged Linux kernel 

and supports up to 64 cores. 

(b) ARM: This ISA models Cortex-A9 (ARMv7 ISA) 

supports different instruction set extensions such as Thumb, 

Thumb-2, NEON, and VFPv3. 

(c) MIPS: A 32-bit processor called MIPS. 

(d) X86: This is a generic 64-bit CPU can boot unmodified 

Linux kernels in symmetric multi-core processors 
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(e) POWERPC: Based on the power ISA, also a 32-bit 

processor. 

(f) SPARK: This architecture models ULTRASPARC T1 

processor [2]. 

SIMULATION MODELS: 

(a) Functional Simulation: Functional simulation engine is 

made as an independent library that runs an interface for the 

other simulators and support parallel workloads execution. No 

information about the hardware threads, generate and end the 

entities of software and check and control machine 

instructions [9].  

(b) Detailed Simulation: Detailed simulator evaluates the 

nature of recently implemented machine instructions and sums 

the latencies operations suffered by hardware structure.  

(c) Execution driven simulation performed the activity of 

updating the existing contexts state in each cycle. That is 

sequence of call to the kernel [7]. 

 

Table1.  Common attributes of a heterogeneous simulator. 

Architectural Attributes Gem5-gpu Gem5 Muti2Sim 

Execution Modes 

Full System     ×  

System Call Emulation       

Timing Simulation       

License (BSD)       

Memory System Models 

Ruby       

Classic ×    ×  

SLICC     ×  

Applications 

(Runtime) 

Runs un-modified CUDA 

source code 

  ×  ×  

OpenCL ×  ×    

Python and C++ Classes ×    ×  

Architectural Modelling       

Load/Store pipeline ×      

Cycle-Accurate Simulators       

Heterogeneous System Simulators       

Supported ISAs Or Framework 

X86, SPARC, Alpha, 

ARM CPU 

X86, ARM CPU, 

MIPS, Power 

SPARC 

 X86, ARM  AMD, 

GCN, GPUs 

Shared virtual address space     ×  

Multi-core Supported 

 

 

Multiple cores       

Cache Hierarchy Configuration       

Interconnection Network       

Coherence Protocol       

 

Single Thread 

 

In-Order Pipeline ×  ×    

Out-Of-Order Pipeline ×      

Power Consumption Modelling ×    ×  

 

Multithread 

Multithread       

FGMT, CGMT, SMT ×  ×    

 

Guest OS (s) 

Android12, 

Linux 

Android, FreeBSD, 

Linux, Solaris 

 

×  

Simulation Models 

 

Functional simulation engine ×      

Detailed simulator ×      

Execution-driven simulation ×      

CPU Models 

Atomic-Simple ×    ×  

Timing-Simple ×    ×  

Out-Of-Order CPU ×    ×  

In-Order CPU ×    ×  

Topologies 

Mesh, Torus, 

Crossbar, 

Default cluster 

Mesh, 

Torus, 

Crossbar 

Ring 

Mesh 

Non-Blocking Mechanism   ×  ×  

DMA engine     ×  

Multiple CPU       

 

Standard Interfaces 

 

Port Interface ×    ×  

Message Buffer Interface ×      

EXTRAS Interface ×    ×  

Simulation 
Execution-driven simulation       

Trace-driven simulation   ×    
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STANDARD INTERFACE SUPPORT: 
(a) Port interface is used for message sending and receiving. 

It connects all the memory objects such as CPUs to caches, 

caches to busses, busses to devices and memories in the 

classic memory system. 

 

(b) Message buffer interface give high-communicated 

interface among components in the system. In buffer interface 

the message typing and storage operation also performed.  

(c) EXTRAS interface identify external code compiled in the 

gem5 binary. Complex components in the gem5 can be add 

and remove via this interface [11]. 

 

Cache Hierarchy: There are two types of cache hierarchy 

CPU’s and GPU’s cache hierarchies. Each CPU core has its 

own private L1 and L2 cache. This cache hierarchy retains the 

evaluation usage of caches among cores. The GPU cache 

hierarchy is different from CPU hierarchy. The GPU 

hierarchy contains scratch-pad memory that is explicitly 

accessible by the programmer. GPU core has also L1 and L2 

caches. L1 cache allows incoherent data and L2 cache 

participates in coherent protocol with CPU cores [21]. 

 
POWER CONSUMPTION MODELS: 
For power models we depend on McPAT. . Power model 

depend on the activity of the elements also on frequency and 

voltage of different domains. The power model is specified 

only for those, which have a concept of clock and voltage 

related with simulated object modeled. 

(a) Atomic Simple model (IPC CPU, one cycle per 

instruction) 

(b) Timing Simple model (non-pipeline model uses the 

reference for modeling   memory access latencies) 

(c) In-Order is a pipelined model. 

(d) O3 is a seven stages pipelined model: that is 1: fetch, 2: 

decode, 3: rename, 4: issue, 5: execute, 6: write back, 7: 

commit created on physical register file architecture. O3 

models inter instruction dependencies for in-order/ 

superscalar, branch prediction, and load/store. Both models 

are simultaneous multithreading CPUs. O3 provides a 

complete system model [4][10][13][14]. 

CACHE COHERENCE PROTOCOL to maintain cache 

coherence via messaging and share locks between worker 

node and virtual machine. The messages use a message 

protocol, this protocol includes three things: hash-able object 

key, message type, and region identifier [22]. 

EVENT-DRIVEN simulation permits cycle-by-cycle 

simulation [9]. 

7.  EXPERIMENTAL RESULTS 
With analysis of the experimental work, it can be observed 

that all the three simulators provide architecture modeling and 

accurate cycle-level simulations. We performed experiments 

using matrix multiplication compute-intensive application 

with varying input sizes. Experiments show that the 

multi2sim provide faster performance compared to the gem5 

simulator. Table 2 shows the comparative results of execution 

times of the experimented application. The table 2 shows that 

the multi2sim achieves 0.59 times to 9.4 times more speedups 

compared to the gem5 simulator.  Figure 5 also shows the 

comparative execution time results of the experiment. 

  

 

 

Table 2.  Matrix multiplication application performance. 

Matrix  

Size 

Execution Time  (in seconds) 

16×16 32×32 64×64 128×128 256×256 512×512 1024×1024 

Multi2sim 0.20 0.24 0.26 0.25 0.25 0.37 2.2 

Gem5 1.90 1.56 1.77 2.5 2.6 2.9 3.5 

 
The performance results show that the multi2sim simulator 

achieves better performance for the compute intensive 

applications compared to the gem5.  

 

Fig 5. Matrix multiplication performance on the 

multi2sim and gem5 simulators 

8. CONCLUSIONS AND FUTURE 

WORK 
This paper presented a summary of three simulators; gem5, 

gem5-gpu, and multi2sim. All the three simulators are provide 

support for heterogeneous compute architecture. Gem5 is the 

combination of M5 and GEMS highly capable simulators. It   

is available with all the required documentation resources. 

Gem5-gpu provides the accessibility with both current and 

future heterogeneous architectures and the data. Multi2Sim 

adds more diversified attributes to the current simulation 

environment (SimpleScaler, simies GEMS). In this paper, we 

thoroughly investigated the attributes and features available in 

these heterogeneous simulators.  Moreover, we performed 

experiments using a compute-intensive application (matrix 

multiplication) employing both the gem5 and multi2sim 

simulators. The experimental results show that the multi2sim 

performs better compared to the gem5 and achieves up to 9.4 

times better performance results. 
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