
International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.14, August 2016

1

An Experimental Study of the Search Stagnation in Ants

Algorithms

Alaa Aljanaby
Faculty of IT

NTEC Tertiary Group
New Zealand

ABSTRACT

This paper conducts experimental tests to study the stagnation

behavior the Interacted Multiple Ant Colonies Optimization

(IMACO) framework. The idea of different ant colonies use

different types of problem dependent heuristics has been

proposed as well. The performance of IMACO was

demonstrated by comparing it with the Ant Colony System

(ACS) the best performing ant algorithm. The computational

results show the dominance of IMACO and that IMACO

suffers less from stagnation than ACS.

General Terms

Artificial Intelligence, Swarm Intelligence, Evolutionary

Algorithms.

Keywords

Ant colony optimization, combinatorial optimization

problems, search stagnation.

1. INTRODUCTION
Ant Colony Optimization (ACO) algorithms can get a worthy

solution at the early stages of the search procedure but

inappropriately all ants quickly converged to a single solution

resulting in the algorithm being stagnant and unable to

improve that solution [7, 14]. This is a common problem that

all ACO algorithms suffer from regardless of the application

domain; it is called search stagnation problem. The chance of

stagnation correspondingly increases with the increase of the

problem size.

IMACO framework attempts to improve the performance of

ACO algorithms by using several ant colonies with certain

methods to organize the work of these colonies. The proposed

framework comprises necessary techniques that encourage the

controlled exploration of the search space along with a good

exploitation of previously obtained good solutions.

Exploration lets ants to look at the search space for some new

solutions. This should be done under certain control to avoid

the exploration of a very wide area of the search space that

might be far from the optimal solution. On the other hand a

good exploitation of the search history is necessary to search

the solution space in the neighborhood of previously found

good solutions. However, a very strong exploitation is not

required because it might increase the convergence speed of

ants to the same solution obtained previously. [1, 2, 3].

Machine scheduling problems, traveling salesman problem,

quadratic assignment problem, vehicle routing problem, and

network routing problem are some well-known examples of

Combinatorial Optimization Problems that have great

importance in research and development. These problems

have a discrete set of feasible solutions and the goal is to find

the optimal solution (the best solution from the feasible

solutions). These problems are theoretically proven as NP -

hard problems [6, 12, 13, 15]. The only way to tackle these

problems is to use approximate (heuristic) algorithms such as

tabu search, evolutionary computation, simulated annealing,

genetic algorithms and ACO. Single Machine Total Weighted

Tardiness Problem (SMTWTP) is an important combinatorial

optimization problem that considers the job scheduling for

sequential processing on a single machine and the target is to

minimize the total tardiness of all jobs. This is a key task in

manufacturing and production planning. SMTWTP is used as

the application domain of this work.

The rest of this paper is organized as follows. The framework

of IMACO is described in section 2. A brief description of

SMTWTP is given in Section 3. In section 4, an experimental

study is conducted to analyze the stagnation behavior of

IMACO and compare it with that of ACS. The result of

applying IMACO with different problem dependent heuristics

to solve all 375 available instances of SMTWTP is also

presented. The final section concludes the paper.

2. INTERACTED MULTIPLE ANT

COLONIES OPTIMIZATION
IMACO framework has been proposed in previous works of

the author [1, 2, 3]. In this framework there are two levels of

interaction the first one is the colony level and the second one

is the population level. The colony level interaction can be

achieved through the pheromone depositing process within

the same colony; the pheromone updating mechanism is

responsible for the implementation of this kind of interaction.

The population level interaction is achieved by evaluating the

pheromones of different colonies using some evaluation

function; the responsibility here is of the pheromone

evaluating mechanism.

The work activities of a single colony in the proposed

IMACO algorithm are based on ACS. Each colony has its

own pheromone that is used as an interaction between the ants

of the same colony. The interaction between ant colonies

using pheromone can be organized in different terms.

Global and local pheromone updating are used in IMACO.

Global pheromone updating includes that best ant of each

colony deposits an amount of pheromone on its own path. The

best ant refers to the ant that got the so far best (global)

solution since the starting of the algorithm execution or the

ant that got the best solution in the current iteration of the

algorithm execution. In this work a combination of so far best

and iteration best ants are allowed to update the pheromone.

To create a search diversification IMACO uses iteration best

solution once in the pheromone updating after each 50 times

of using the global best solution [8, 9]. Local pheromone

updating includes that each ants reduces the amount of

pheromone on paths it uses in order to give a more chance to

other paths to be chosen by the future generations. Local

pheromone update is applied by each ant on the visited edges.

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.14, August 2016

2

It is very important rule as it is performed during the solution

construction this helps to yield different pheromone

evaluation values for the same edge in the same iteration at

different solution construction steps.

2.1 Evaluation Technique
The pheromone of different colonies has been evaluated using

two mechanisms. The first mechanism evaluates the

pheromone as an average of the pheromone values of all

colonies on some edge. This means that an ant will make its

decision to choose some edge based on the average of the

available experiences of ants of all colonies that visited this

edge in the past. This variant of IMACO is referred hereafter

as IMACO-AVG.

The second mechanism evaluates the pheromone as the

maximum value of the pheromone values of all colonies on

some edge. This mechanism, referred as IMACO-MAX,

chooses the max value among the available values. This

mechanism lets an ant's decision to choose some new edge be

based on the best available experience of ants of all colonies

that previously visited this edge. This kind of cooperation

using max pheromone evaluation is trying to make an early

exploitation of the history of the search by choosing the max

(best) available pheromone value. The result of this max

pheromone evaluation function lets an ant to follow the best

available information about the goodness of particular edge.

However, since best pheromone comes from different

colonies, this will provide necessary diversification that helps

ants’ to avoid the attraction to a one good solution.

The above two mechanism are pure average and max

evaluation that depends 100% on the average evaluation

function. The following rule is a more general which

evaluates the pheromone as a composition between the

pheromone values of the ant own colony and the value of the

pheromone evaluation function based on some pheromone

evaluation rate. Consider that the composition rate is 0.5; an

ant will build 50% of its decision based on its own colony’s

experience and the other 50% based on the experiences of

other colonies. This new variant will be called IMACO-AVG

E λ and IMACO-MAX E λ where λ is the pheromone

evaluation rate; its value is in the range [0, 1]. The pheromone

evaluation function is then defined as:

)()(')1(ijij Pf

s
ij

Pf P

Where
s

ijP
is the pheromone belongs to colony s on edge (i,

j). Note that IMACO-AVG E0 and IMACO-MAX E0

represent the pure pheromone evaluation and IMACO-AVG

and E1 IMACO-AVG represent no interaction between

utilized ant colonies.

2.2 Exploration Technique
Each ant makes a probabilistic decision when it needs to move

to a new node. The probabilistic decision is based on heuristic

information (cost) and pheromone information. Pheromone

represents information about previous experiences of the ant’s

own colony and of the other colonies. While heuristic

represent a priori information about the goodness of a

solution. Exploration and exploitation is controlled by the

parameter q0 whose value is in [0, 1]. It is usually used in

ant’s probabilistic decision as trade-off between exploitation

(choosing the edge with the higher value of the multiplication

of pheromone and heuristic values) and exploration (choosing

the edge randomly according to some probability

distribution). Setting q0 to zero means that the algorithm uses

a pure exploration while pure exploitation is reached by

setting q0 to one. However, the value used for q0 in many

research papers usually between 0.5 and 0.9 [1, 2]. Most of

the work done using ACS in solving different problems was

with q0 =0.9 which gives the algorithm a high chance of

exploitation without losing the chance of exploration.

IMACO considers the case where different ants’ colonies

have different values for the parameter q0. The value 0.8 has

been assigned to the centre colony whose number equal to int

(no. of colonies / 2). This value is increased / decreased for

the colonies after / before the centre colony by a changing

factor called QCF. This technique enables the utilized ant

colonies to work with different levels of exploration. Some

will prefer high exploration of new areas of search space

while other colonies will prefer high exploitation search

history.

3. THE TEST PROBLEM
In SMTWTP n jobs have to be processed without pre-emption

on a single machine that can handle no more than one job at a

time. The processing and set-up requirement of any job are

independent of its position in the sequence. The release time

of all jobs is zero. Thus, jobs j (j=1, …, n) becomes available

at time zero, requires uninterrupted positive processing time

pj, which includes set-up and knock-down times on the

machine, has a positive weight wj, and has a due time dj by

which it should ideally be finished. For a given processing

order of the jobs, the completion time cj and the tardiness

Tj=max{0, cj-dj} of job j can be computed. The problem is to

find a processing order of the jobs with minimum total

weighted tardiness
j

n

j

jTW
1

 [4, 5].

The SMTWTP is an NP-hard scheduling problem for which

instances with more than 50 jobs often cannot be solved to

optimality with state of the art branch and bound algorithms

[8]. The total number of available instances is 125 for values

of n=40, n=50 and n=100. Optimal values of solutions are

available for 124 and 115 of 40 and 50 job problem instances

respectively. The values for unsolved problems are the best

known solution to [8]. These solutions appear to be optimal

since they have not been enhanced for a long time. The best

known solutions to date of the 100-job instances are available

and most of them are according to [8, 9].

Three types of problem specific heuristic are examined in this

work. These problem specific heuristic are easily calculated

and have been studied in the literature [8] and are as follows.

 Earliest Due Date (EDD): this heuristic puts the jobs in

non-decreasing order of the due dates dj and given by:

j

ij
d

H
1

 (2)

 Modified Due Date (MDD): this heuristic puts the jobs in

non-decreasing order of the modified due dates mddj

which given by mddj=max{C+pj, dj}, where C is the sum

of the processing times of the already scheduled jobs.

This heuristic is given by:

j

ij
mdd

H
1

 (3)

 Apparent Urgency (AU): this heuristic puts the jobs in

non-decreasing order of the apparent urgency which

given by:

(1)

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.14, August 2016

3

Pk

Cd

p

w
au

jj

j

j

j

}0,max{
exp(

 (4)

 Where P is the average processing time of the remaining

jobs, k is a scaling parameter which set to 2 [8]. The

heuristic is given by:

j

ij
au

H
1

 (5)

4. SEARCH STAGNATION ANALYSIS
ACS, IMACO-AVG and IMACO-MAX for SMTWTP have

been implemented using visual C++. Both versions of

IMACO have been applied to all available 375 instances of

SMTWTP. Based on past work of the authors the number of

colonies utilized by IMACO-AVG and IMACO-MAX was 8

colonies, the evaluation rate was λ=0.4 and the exploration /

exploitation control parameter was QCF=0.025 [2, 3]. In

addition to use IMACO with EDD, MDD and AU, this section

is developing the idea of using IMACO with different

combination of the three heuristics. For instance, using EDD-

MDD means that half of the utilized ant colonies will use

EDD while the other half of these colonies will use MDD.

The global pheromone updating is performed by according to

rules 3 and 4. The value of best solution (global-best or

iteration-best) mentioned in rule 4 represents the total

weighted tardiness of the jobs sequence of the best solution.

Local pheromone updating is performed using rule 5 and P0

the initial value of pheromone trials that usually assigned a

small value computed as

EDDnT
p

1
0

 where n is the

number of jobs and TEDD is the total weighted tardiness of job

sequence obtained by EDD.

Figure 1: One trial typical run on 100-job SMTWTP

instance

The stagnation behavior of IMACO is the main concern of

this paper. This section tries to experimentally analyze the

stagnation behavior by observing 100 typical runs of ACS,

IMACO-MAX, and IMACO-AVG and calculate how many

times that each algorithm get trapped into stagnation situation.

Figure 1 shows the results of tracing one typical run of the

three algorithms on SMTWTP 100-job. ACS ran with 10 ants,

IMACO-AVG E.4 and IMACO-AVG E.4 with 8 colonies of

10 ants each, all algorithms ran with MDD. It obvious that

ACS cannot improve its solution after 70% of algorithm

iterations completed, the last 30% of the algorithm iterations

ACS search process was stagnant. IMACO-AVG was the best

among the other algorithms. It was able to direct its search

away from stagnation situation and improve its solution.

Table 1 shows a result of 100 of typical runs like those

described above. The numbers in the table shows how many

times the algorithm cannot improve its solution from the

previous step. The algorithm which suffers more from

stagnation was ACS. The chance of stagnation increases after

Table 1. Stagnation situations in 100 trials typical run on

100-job SMTWTP instance

Iterations

completed

ACS IMACO-

MAX

IMACO-

AVG

10% 0 0 0

20% 0 0 0

30% 0 0 0

40% 1 0 0

50% 10 1 0

60% 15 7 1

70% 20 4 0

80% 24 6 3

90% 28 3 2

100% 28 3 1

50% of iterations completed because all ants converged to one

solution or one dominant path with highest amount of

pheromone and ability to get out from this situation decrease

with the time. IMACO-AVG was the algorithm that suffers

less from stagnation. This proves that the techniques

incorporated in this algorithm did well to avoid such

situations.

Table 2. Results for 40, 50 and 100 job instances

Algorithm Heuristic 40-

job

50-

job

100-

job

A
C

S
 EDD 39 33 24

MDD 44 37 27

AU 36 30 21

IM
A

C
O

-A
V

G

EDD 45 38 30

MDD 53 45 37

AU 41 34 26

EDD-MDD 57 50 42

EDD-AU 43 37 28

MDD-AU 49 43 34

EDD-MDD-AU 54 47 38

IM
A

C
O

-M
A

X

EDD 43 37 30

MDD 48 42 34

AU 38 31 24

EDD-MDD 53 46 39

EDD-AU 43 36 30

MDD-AU 47 40 32

EDD-MDD-AU 49 43 34

Table 2 shows the results of experiments performed on 125

instances of 40, 50 and 100 job SMTWTP. The results

presented in these tables are the number the optimal solution

found (out of 125). The results of ACS presented in Table 2

are of the implementation developed with this research work.

The reason is that the results of ACS presented in the

literature usually with local search while all results presented

here are without using local search. It is important to mention

that all algorithms ran exactly the same number of

computation steps.

6500

6900

7300

7700

8100

8500

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

iterations completed

s
o

 f
a
r
 b

e
s
t

s
o

lu
ti

o
n

ACS

IMACO-MAX

IMACO-AVG

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.14, August 2016

4

Concerning the use of different combination of heuristics,

EDD-MDD was the best combination as it always reaches the

best results. EDD-MDD-AU heuristic was in the second rank

followed by MDD. This seems normal as previous studies [8,

10] show the ranking of these heuristic according to the

goodness of the results obtained was MDD, EDD and AU

respectively. The results obtained from IMACO confirmed

this getting the best results when using the best two heuristics,

i.e., EDD-MDD combination. In fact, the use of a

combination of heuristics increases the ability of different

colonies to achieve high diversion in the search process and

therefore increase the ability to improve the quality of the

obtained solutions.

5. CONCLUSION
The computational results show that IMACO-AVG and

IMACO-MAX outperform ACS in terms of the number of

optimal solutions found. IMACO-AVG was the best

algorithm that found the best results all the way. It is the

capability of IMACO to avoid the stagnation situation and

improves its solutions with the time. The improved

performance of IMACO is based mainly on the interaction

used between ant colonies and the type of information used by

ants when making their decision. The proposed interaction

plays on two directions which are cooperation and

diversification. Pheromone evaluation mechanism plays the

main role in cooperation. Pheromone evaluation was the mean

to combine the pre-acquired information about the quality of

the solutions represented as pheromone values.

Average pheromone evaluation was the best technique that

places IMACO-AVG in front of other ant algorithms.

Pheromone evaluation needs a big support from other

mechanisms. On the other hand, letting different colonies

works with different levels of exploration / exploitation was

of a great aid in achieving diversification. Some colonies

prefer a higher exploration while others prefer a higher

exploitation. This provides the whole search process with a

wide range of good solutions that ants of different colonies

choose their best solution from.

6. REFERENCES
[1] Aljanaby A., K.R. Ku-Mahamud and N.M. Norwawi,

2010. Interacted multiple ant colonies to enhance the

performance of ant colony optimization algorithms.

Journal of Computer and Information Science (CIS),

Canada, vol. 3, no. 1, pp. 29-34.

[2] Aljanaby A., K.R. Ku-Mahamud and N.M. Norwawi,

2010. Revisiting pheromone evaluation mechanism in

the interacted multiple ant colonies framework. Proc. of

10th international conference on Artificial Intelligence

and Applications (AIA2010), Austria, pp.12-15.

[3] Aljanaby A., K.R. Ku-Mahamud and N.M. Norwawi,

2010. An exploration Technique for the interacted

multiple ant colonies framework. Proc. of 1st

international conference on Intelligent Systems,

Modelling, and Simulation (ISMS2010), Liverpool, UK,

pp. 92-95.

[4] Baggio, G., J. Wainer and C. Ellis, 2004. Applying

Scheduling Techniques to Minimize the Number of Late

Jobs in Workflow Systems. Proc. of ACM symposium on

Applied computing, Nicosia, Cyprus, pp. 1396-1403.

[5] Besten, M., T. Stützle and M. Dorigo, 2000. Ant Colony

Optimization for the Total Weighted Tardiness Problem.

Proc. of Parallel Problem Solving from Nature

Conference, Paris, France, pp. 611-620.

[6] Blum, C. and A. Roli, 2003. Meta-heuristics in

combinatorial optimization: Overview and conceptual

comparisons. ACM Computing Surveys, vol. 35, no.3,

pp. 268-308.

[7] Blum, C. and M. Dorigo, 2005. Search bias in ant colony

optimization: On the role of competition-balanced

systems. IEEE Trans. on Evolutionary Computation, vol.

9, no. 2, pp. 159-174.

[8] Congram, R., Potts, C., and van de Velde, S, 2002. An

Iterated Dynasearch Algorithm for the Single-Machine

Total Weighted Tardiness Scheduling Problem.

INFORMS Journal on Computing, vol. 14, no. 1, pp. 52-

67.

[9] Crauwels, H., C. Potts and L. van Wassenhove, 1998.

Local Search Heuristics for the Single Machine Total

Weighted Tardiness Scheduling Problem. INFORMS

Journal on Computing, vol. 10, no. 3, pp. 341-350.

[10] Dorigo, M. and T. Stützle, 2002. The Ant Colony

Optimization Meta-heuristic: Algorithms, Applications,

and Advances. In: Handbook of Meta-heuristics (Eds. F.

Glover and G. Kochenberger), pp. 250-285, Kluwer

Academic Publishers.

[11] Dorigo, M. and T. Stützle, 2004. Ant colony

optimization, London: The MIT Press.

[12] Guo J. E. and W. G. Diao, 2014. An improved ant colony

optimization algorithm with crossover operator. Open

Mechanical Engineering Journal, vol. 8, no. 1, pp. 96-

100.

[13] Pang, S. C., T. M. Ma and T. Liu, 2015. An improved ant

colony optimization with optimal search library for

solving the traveling salesman problem. Journal of

Computational and Theoretical Nanoscience, vol. 12, no.

7, pp. 1440-1444.

[14] Yan X. S., 2012. Efficiency analysis of swarm

intelligence and randomization techniques. Journal of

Computational and Theoretical Nanoscience, vol. 9, no.

2, pp. 189-198.

[15] Yue Y and X. Wang, 2015. An Improved Ant Colony

Optimization Algorithm for Solving TSP. International

Journal of Multimedia and Ubiquitous Engineering

vol.10, no.12, pp.153-164.

IJCATM : www.ijcaonline.org

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/p/Potts:C=_N=.html

