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ABSTRACT 

This paper conducts experimental tests to study the stagnation 

behavior the Interacted Multiple Ant Colonies Optimization 

(IMACO) framework. The idea of different ant colonies use 

different types of problem dependent heuristics has been 

proposed as well. The performance of IMACO was 

demonstrated by comparing it with the Ant Colony System 

(ACS) the best performing ant algorithm. The computational 

results show the dominance of IMACO and that IMACO 

suffers less from stagnation than ACS.   

General Terms 

Artificial Intelligence, Swarm Intelligence, Evolutionary 

Algorithms. 

Keywords 

Ant colony optimization, combinatorial optimization 

problems, search stagnation. 

1. INTRODUCTION 
Ant Colony Optimization (ACO) algorithms can get a worthy 

solution at the early stages of the search procedure but 

inappropriately all ants quickly converged to a single solution 

resulting in the algorithm being stagnant and unable to 

improve that solution [7, 14]. This is a common problem that 

all ACO algorithms suffer from regardless of the application 

domain; it is called search stagnation problem. The chance of 

stagnation correspondingly increases with the increase of the 

problem size.  

IMACO framework attempts to improve the performance of 

ACO algorithms by using several ant colonies with certain 

methods to organize the work of these colonies. The proposed 

framework comprises necessary techniques that encourage the 

controlled exploration of the search space along with a good 

exploitation of previously obtained good solutions. 

Exploration lets ants to look at the search space for some new 

solutions. This should be done under certain control to avoid 

the exploration of a very wide area of the search space that 

might be far from the optimal solution. On the other hand a 

good exploitation of the search history is necessary to search 

the solution space in the neighborhood of previously found 

good solutions. However, a very strong exploitation is not 

required because it might increase the convergence speed of 

ants to the same solution obtained previously. [1, 2, 3]. 

Machine scheduling problems, traveling salesman problem, 

quadratic assignment problem, vehicle routing problem, and 

network routing problem are some well-known examples of 

Combinatorial Optimization Problems that have great 

importance in research and development. These problems 

have a discrete set of feasible solutions and the goal is to find 

the optimal solution (the best solution from the feasible 

solutions). These problems are theoretically proven as NP - 

hard problems [6, 12, 13, 15]. The only way to tackle these 

problems is to use approximate (heuristic) algorithms such as 

tabu search, evolutionary computation, simulated annealing, 

genetic algorithms and ACO. Single Machine Total Weighted 

Tardiness Problem (SMTWTP) is an important combinatorial 

optimization problem that considers the job scheduling for 

sequential processing on a single machine and the target is to 

minimize the total tardiness of all jobs. This is a key task in 

manufacturing and production planning. SMTWTP is used as 

the application domain of this work. 

The rest of this paper is organized as follows. The framework 

of IMACO is described in section 2. A brief description of 

SMTWTP is given in Section 3. In section 4, an experimental 

study is conducted to analyze the stagnation behavior of 

IMACO and compare it with that of ACS. The result of 

applying IMACO with different problem dependent heuristics 

to solve all 375 available instances of SMTWTP is also 

presented. The final section concludes the paper. 

2. INTERACTED MULTIPLE ANT 

COLONIES OPTIMIZATION 
IMACO framework has been proposed in previous works of 

the author [1, 2, 3]. In this framework there are two levels of 

interaction the first one is the colony level and the second one 

is the population level. The colony level interaction can be 

achieved through the pheromone depositing process within 

the same colony; the pheromone updating mechanism is 

responsible for the implementation of this kind of interaction. 

The population level interaction is achieved by evaluating the 

pheromones of different colonies using some evaluation 

function; the responsibility here is of the pheromone 

evaluating mechanism.  

The work activities of a single colony in the proposed 

IMACO algorithm are based on ACS. Each colony has its 

own pheromone that is used as an interaction between the ants 

of the same colony. The interaction between ant colonies 

using pheromone can be organized in different terms.  

Global and local pheromone updating are used in IMACO. 

Global pheromone updating includes that best ant of each 

colony deposits an amount of pheromone on its own path. The 

best ant refers to the ant that got the so far best (global) 

solution since the starting of the algorithm execution or the 

ant that got the best solution in the current iteration of the 

algorithm execution. In this work a combination of so far best 

and iteration best ants are allowed to update the pheromone. 

To create a search diversification IMACO uses iteration best 

solution once in the pheromone updating after each 50 times 

of using the global best solution [8, 9]. Local pheromone 

updating includes that each ants reduces the amount of 

pheromone on paths it uses in order to give a more chance to 

other paths to be chosen by the future generations. Local 

pheromone update is applied by each ant on the visited edges. 
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It is very important rule as it is performed during the solution 

construction this helps to yield different pheromone 

evaluation values for the same edge in the same iteration at 

different solution construction steps. 

2.1 Evaluation Technique 
The pheromone of different colonies has been evaluated using 

two mechanisms. The first mechanism evaluates the 

pheromone as an average of the pheromone values of all 

colonies on some edge. This means that an ant will make its 

decision to choose some edge based on the average of the 

available experiences of ants of all colonies that visited this 

edge in the past. This variant of IMACO is referred hereafter 

as IMACO-AVG.  

The second mechanism evaluates the pheromone as the 

maximum value of the pheromone values of all colonies on 

some edge. This mechanism, referred as IMACO-MAX, 

chooses the max value among the available values. This 

mechanism lets an ant's decision to choose some new edge be 

based on the best available experience of ants of all colonies 

that previously visited this edge. This kind of cooperation 

using max pheromone evaluation is trying to make an early 

exploitation of the history of the search by choosing the max 

(best) available pheromone value. The result of this max 

pheromone evaluation function lets an ant to follow the best 

available information about the goodness of particular edge. 

However, since best pheromone comes from different 

colonies, this will provide necessary diversification that helps 

ants’ to avoid the attraction to a one good solution. 

The above two mechanism are pure average and max 

evaluation that depends 100% on the average evaluation 

function. The following rule is a more general which 

evaluates the pheromone as a composition between the 

pheromone values of the ant own colony and the value of the 

pheromone evaluation function based on some pheromone 

evaluation rate. Consider that the composition rate is 0.5; an 

ant will build 50% of its decision based on its own colony’s 

experience and the other 50% based on the experiences of 

other colonies. This new variant will be called IMACO-AVG 

E λ and IMACO-MAX E λ where λ is the pheromone 

evaluation rate; its value is in the range [0, 1]. The pheromone 

evaluation function is then defined as: 

 
)(  )(' )1( ijij Pf
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ij
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Where 
s

ijP
is the pheromone belongs to colony s on edge (i, 

j). Note that IMACO-AVG E0 and IMACO-MAX E0 

represent the pure pheromone evaluation and IMACO-AVG 

and E1 IMACO-AVG represent no interaction between 

utilized ant colonies. 

2.2 Exploration Technique 
Each ant makes a probabilistic decision when it needs to move 

to a new node. The probabilistic decision is based on heuristic 

information (cost) and pheromone information. Pheromone 

represents information about previous experiences of the ant’s 

own colony and of the other colonies. While heuristic 

represent a priori information about the goodness of a 

solution. Exploration and exploitation is controlled by the 

parameter q0 whose value is in [0, 1]. It is usually used in 

ant’s probabilistic decision as trade-off between exploitation 

(choosing the edge with the higher value of the multiplication 

of pheromone and heuristic values) and exploration (choosing 

the edge randomly according to some probability 

distribution). Setting q0 to zero means that the algorithm uses 

a pure exploration while pure exploitation is reached by 

setting q0 to one. However, the value used for q0 in many 

research papers usually between 0.5 and 0.9 [1, 2]. Most of 

the work done using ACS in solving different problems was 

with q0 =0.9 which gives the algorithm a high chance of 

exploitation without losing the chance of exploration.  

IMACO considers the case where different ants’ colonies 

have different values for the parameter q0. The value 0.8 has 

been assigned to the centre colony whose number equal to int 

(no. of colonies / 2). This value is increased / decreased for 

the colonies after / before the centre colony by a changing 

factor called QCF. This technique enables the utilized ant 

colonies to work with different levels of exploration. Some 

will prefer high exploration of new areas of search space 

while other colonies will prefer high exploitation search 

history. 

3. THE TEST PROBLEM 
In SMTWTP n jobs have to be processed without pre-emption 

on a single machine that can handle no more than one job at a 

time. The processing and set-up requirement of any job are 

independent of its position in the sequence. The release time 

of all jobs is zero. Thus, jobs j (j=1, …, n) becomes available 

at time zero, requires uninterrupted positive processing time 

pj, which includes set-up and knock-down times on the 

machine, has a positive weight wj, and has a due time dj by 

which it should ideally be finished. For a given processing 

order of the jobs, the completion time cj and the tardiness 

Tj=max{0, cj-dj} of job j can be computed. The problem is to 

find a processing order of the jobs with minimum total 

weighted tardiness
j

n

j

jTW
1

 [4, 5]. 

The SMTWTP is an NP-hard scheduling problem for which 

instances with more than 50 jobs often cannot be solved to 

optimality with state of the art branch and bound algorithms 

[8]. The total number of available instances is 125 for values 

of n=40, n=50 and n=100. Optimal values of solutions are 

available for 124 and 115 of 40 and 50 job problem instances 

respectively. The values for unsolved problems are the best 

known solution to [8]. These solutions appear to be optimal 

since they have not been enhanced for a long time. The best 

known solutions to date of the 100-job instances are available 

and most of them are according to [8, 9]. 

Three types of problem specific heuristic are examined in this 

work. These problem specific heuristic are easily calculated 

and have been studied in the literature [8] and are as follows.  

 Earliest Due Date (EDD): this heuristic puts the jobs in 

non-decreasing order of the due dates dj  and given by: 

   

j

ij
d

H
1

                                                        (2) 

 Modified Due Date (MDD): this heuristic puts the jobs in 

non-decreasing order of the modified due dates mddj 

which given by mddj=max{C+pj, dj}, where C is the sum 

of the processing times of the already scheduled jobs. 

This heuristic is given by: 

j

ij
mdd

H
1

                                                 (3) 

 Apparent Urgency (AU): this heuristic puts the jobs in 

non-decreasing order of the apparent urgency which 

given by: 

(1) 
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     Where P is the average processing time of the remaining 

jobs, k is a scaling parameter which set to 2 [8]. The 

heuristic is given by: 

          

j
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4. SEARCH STAGNATION ANALYSIS 
ACS, IMACO-AVG and IMACO-MAX for SMTWTP have 

been implemented using visual C++. Both versions of 

IMACO have been applied to all available 375 instances of 

SMTWTP. Based on past work of the authors the number of 

colonies utilized by IMACO-AVG and IMACO-MAX was 8 

colonies, the evaluation rate was λ=0.4 and the exploration / 

exploitation control parameter was QCF=0.025 [2, 3]. In 

addition to use IMACO with EDD, MDD and AU, this section 

is developing the idea of using IMACO with different 

combination of the three heuristics. For instance, using EDD-

MDD means that half of the utilized ant colonies will use 

EDD while the other half of these colonies will use MDD.  

The global pheromone updating is performed by according to 

rules 3 and 4. The value of best solution (global-best or 

iteration-best) mentioned in rule 4 represents the total 

weighted tardiness of the jobs sequence of the best solution. 

Local pheromone updating is performed using rule 5 and P0 

the initial value of pheromone trials that usually assigned a 

small value computed as 

EDDnT
p

1
0 

 where n is the 

number of jobs and TEDD is the total weighted tardiness of job 

sequence obtained by EDD. 

 

Figure 1: One trial typical run on 100-job SMTWTP 

instance 

The stagnation behavior of IMACO is the main concern of 

this paper. This section tries to experimentally analyze the 

stagnation behavior by observing 100 typical runs of ACS, 

IMACO-MAX, and IMACO-AVG and calculate how many 

times that each algorithm get trapped into stagnation situation.  

Figure 1 shows the results of tracing one typical run of the 

three algorithms on SMTWTP 100-job. ACS ran with 10 ants, 

IMACO-AVG E.4 and IMACO-AVG E.4 with 8 colonies of 

10 ants each, all algorithms ran with MDD. It obvious that 

ACS cannot improve its solution after 70% of algorithm 

iterations completed, the last 30% of the algorithm iterations 

ACS search process was stagnant. IMACO-AVG was the best 

among the other algorithms. It was able to direct its search 

away from stagnation situation and improve its solution. 

Table 1 shows a result of 100 of typical runs like those 

described above. The numbers in the table shows how many 

times the algorithm cannot improve its solution from the 

previous step. The algorithm which suffers more from 

stagnation was ACS.  The chance of stagnation increases after  

Table 1. Stagnation situations in 100 trials typical run on 

100-job SMTWTP instance 

Iterations 

completed 

ACS IMACO-

MAX 

IMACO-

AVG 

10% 0 0 0 

20% 0 0 0 

30% 0 0 0 

40% 1 0 0 

50% 10 1 0 

60% 15 7 1 

70% 20 4 0 

80% 24 6 3 

90% 28 3 2 

100% 28 3 1 

 

50% of iterations completed because all ants converged to one 

solution or one dominant path with highest amount of 

pheromone and ability to get out from this situation decrease 

with the time. IMACO-AVG was the algorithm that suffers 

less from stagnation. This proves that the techniques 

incorporated in this algorithm did well to avoid such 

situations. 

Table 2. Results for 40, 50 and 100 job instances 

Algorithm Heuristic 40- 

job 

50- 

job 

100- 

job 

A
C

S
 EDD 39 33 24 

MDD 44 37 27 

AU 36 30 21 

IM
A

C
O

-A
V

G
 

EDD 45 38 30 

MDD 53 45 37 

AU 41 34 26 

EDD-MDD 57 50 42 

EDD-AU 43 37 28 

MDD-AU 49 43 34 

EDD-MDD-AU 54 47 38 

IM
A

C
O

-M
A

X
 

EDD 43 37 30 

MDD 48 42 34 

AU 38 31 24 

EDD-MDD 53 46 39 

EDD-AU 43 36 30 

MDD-AU 47 40 32 

EDD-MDD-AU 49 43 34 

 

Table 2 shows the results of experiments performed on 125 

instances of 40, 50 and 100 job SMTWTP. The results 

presented in these tables are the number the optimal solution 

found (out of 125). The results of ACS presented in Table 2 

are of the implementation developed with this research work. 

The reason is that the results of ACS presented in the 

literature usually with local search while all results presented 

here are without using local search. It is important to mention 

that all algorithms ran exactly the same number of 

computation steps. 
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Concerning the use of different combination of heuristics, 

EDD-MDD was the best combination as it always reaches the 

best results.  EDD-MDD-AU heuristic was in the second rank 

followed by MDD. This seems normal as previous studies [8, 

10] show the ranking of these heuristic according to the 

goodness of the results obtained was MDD, EDD and AU 

respectively. The results obtained from IMACO confirmed 

this getting the best results when using the best two heuristics, 

i.e., EDD-MDD combination. In fact, the use of a 

combination of heuristics increases the ability of different 

colonies to achieve high diversion in the search process and 

therefore increase the ability to improve the quality of the 

obtained solutions. 

5. CONCLUSION 
The computational results show that IMACO-AVG and 

IMACO-MAX outperform ACS in terms of the number of 

optimal solutions found. IMACO-AVG was the best 

algorithm that found the best results all the way. It is the 

capability of IMACO to avoid the stagnation situation and 

improves its solutions with the time. The improved 

performance of IMACO is based mainly on the interaction 

used between ant colonies and the type of information used by 

ants when making their decision. The proposed interaction 

plays on two directions which are cooperation and 

diversification. Pheromone evaluation mechanism plays the 

main role in cooperation. Pheromone evaluation was the mean 

to combine the pre-acquired information about the quality of 

the solutions represented as pheromone values. 

Average pheromone evaluation was the best technique that 

places IMACO-AVG in front of other ant algorithms. 

Pheromone evaluation needs a big support from other 

mechanisms. On the other hand, letting different colonies 

works with different levels of exploration / exploitation was 

of a great aid in achieving diversification. Some colonies 

prefer a higher exploration while others prefer a higher 

exploitation. This provides the whole search process with a 

wide range of good solutions that ants of different colonies 

choose their best solution from.  
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