
International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.14, August 2016

11

A Comparative Analysis of Clone Detection Tools: Solid

SDD and CCFinderX

Muhammad Ilyas
Department of

Computer Science and IT,
University of Sargodha,

Sargodha, Pakistan

Hafiz Anas Bilal
COMSATS Institute of

Information Technology,
Islamabad, Pakistan

Muhammad Hummayun
Department of

Computer Science and IT,
University of Sargodha,

Sargodha, Pakistan.

Mubeen Rafi
COMSATS Institute of

Information Technology
Lahore, Pakistan

Almas Kanwal
Department of

Computer Science and IT,
University of Sargodha,

Pakistan

ABSTRACT

There are several tools available for code clones detection and

removal. Over the last few years much research has been

done on assessment of these tools. Every tool has its

efficiencies and deficiencies which researchers tried to

evaluate. But the imperative point that we observed while

analyzing these assessments is that there is no benchmark

defined in this context so far. There is no clear picture that

depicts which tool is better than the other and why? This

paper is a contribution in this scaffold. Two clone detection

tools SolidSDD and CCFinderX are evaluated and a

comparison of these two is on hand here. Some experiments

are performed on an open source software i.e. VLC media

player, and it is revealed how different clone detection tools

provide different results when study the same system.

Reasons for these variations in results are endeavor to find out

at this juncture.

General Terms

Code cloning, clone detection

Keywords

Code cloning, clone detection

1. INTRODUCTION
Code cloning is an aged practice in programming framework

that attains short term advantages of timely completion of

projects and dodging of code rewriting. These short term

advantages have to pay later when a system needs to evolve.

Code clones also make the maintenance task tidy but not

every clone need to be removed from the code instead the

clones whose removal achieves maximum gain (in terms of

resource utilization) can be targeted.

Enough literature is available on code clone perspective and

need for removing these clones from the code but no

standardized tools are available nor any specific parameters

are defined so that architect target only those parameters for

clone removal. In this paper a comparison between two clone

detection tools is spotlighted. It is shown how both tools vary

in detection methodology and show variations in results.

Though these variations do not cause any special effects if

only used for analysis purpose but arise many questions when

intention is removing the clones after detection. It becomes

difficult to decide which tool’s result should one considered.

To be evidence for the above statement two clone detection

tools SolidSDD and CCFinderX are used and an experimental

study is conducted on an open source project. Comparison is

not only performed on whole project rather a single file is

chosen randomly and results are analyzed in greater detail.

Rest of the paper is structured as follows: at first there is

relevant literature, and then a case study is presented. After

that a comparative study is performed. At the last there is

conclusion of the analysis and some facets of future work.

2. LITERATURE REVIEW
The clone presence in the code makes the software system

more complex and adds to maintenance cost [2]. A clone

pedigree was built in [3]. Up till now three types of clones are

identified in the literature i.e. type1 are exact identical clones,

type 2 clones are those that become identical after variable

renaming and type 3 clones turn into clones but after adding,

deleting and modifying some lines of code.

Human intuition is good judgment for sensing clones but of

course with this approach scalability issue arises. So,

automatic clone detection and removal tools are developed. A

tool that provides clone detection feature may not endows

with removal functionality. Some of the refactoring

techniques also used for clone elimination [1].

A comparison is presented in [4]. Two tools CONQAT and

SolidSDD are used for clone detection. Characteristics of both

tools are separated in the paper and the comparison was

performed on six parameters that exist in both tools. It was

concluded that SolidSDD is better than the other in terms of

taking less time and finding out more clones. Though this

paper is precise but there is no information at what scale the

code is experimented and where the differences lie in both

tools.

A similar writing is available in [5]. Three clone detections

techniques i.e. simple line matching parameterized matching

and metric fingerprinting were compared. Focus of the paper

was to find out which technique is more suitable for specific

task. It was concluded that line matching only gives indication

of clones. Parameterized matching is well suited if used with

refactoring tools that work on statement level. Method level

refactoring tools work best with metric fingerprinting.

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.14, August 2016

12

3. CASE STUDY
This section evaluates the both tools used in this research

work. The setting up of experiments also discussed here.

3.1 Tools Evaluation
The under discussion tools i.e. SolidSDD and CCFinderX are

assessed in this section.

3.2 SolidSDD
The first tool that is chosen for this case study is SolidSDD

(version 1.5). It provides multi lingual support. Else then its

lenience to variation, scalability, speed, ease of integration

and configuration the most attractive feature of this tool is its

simplicity of use (user friendliness). Another very interesting

feature is that once the target project has been loaded, its

integrity is verified every time it is reloaded i.e. if some

statements or clone has been moved or changed SolidSDD

tracks that changes and notify to user. An eye-catching

interface is provided. Visual synopsis of detection results is

also provided that put in the picture the distribution of clones

in the software. Reports of the detection result can also be

easily generated.

To find out the clones at first the user is required to have a

name for new analysis project, specify the location of Source

folder. Specify the Output folder. and adjust the analysis

setting i.e. set values of Local Gap (statements added, deleted

or modified while copying and pasting code), Cumulative Gap

(sum of all local gaps), Gap Decay (decrease in local gap),

and Minimum clone size parameters.

The detection process is comprised of two main steps that are

pre-processing and extraction. In pre-processing step features

that will be used for detected clones are alienated. Extraction

step is further subdivided into four sub steps that are:

Initializing clone detector, Finding clones, cleaning up and

Post processing clones.

After completing these two steps a brief summary is displayed

containing total number of clones found and the execution

time taken by this process. Detailed view has four tabs that are

Clone view, File view, Watchlist and Blacklist.

Each of these four tabs is briefly discussed here. First of all

Clone View of SolidSDD is illustrated in Figure 1.

Fig 1: Solid SDD clone view

This view has several terms that are briefly described below:

 Clone ID: An integer assigned to each clone occurrence.

 No. of Instances: Number of that particular clone

instances.

 Fan out: Count of files containing instances of a

particular clone.

 Length: Length of clone instance.

 Total Gap: Total number of statements placed in gaps of

instances of clone code.

 ID Renaming: This parameter gives information that

whether identifiers, variables have been renamed,

partially renamed or not renamed.

 #Renamings (#Ren): The average number of renaming

that has been detected for each cloning relation that

displays renaming.

 #Renamed IDs (#IDs): Average number of unique

identifiers that have been renamed

 Norm (#Ren): The average number of renaming

normalized by the length of the corresponding clone

instance

 Norm (#IDs): Average number of unique identifiers that

have been renamed normalized by the length of the

corresponding clone instance.

Second tab is File view as shown in Figure 2. The parameters

defined in this view are as follows:

Fig 2: Solid SDD file view

 #Clones: Total number of detected clones in particular

file.

 Fan out: Number of files with which cloned fragment has

cloning relation.

 % cloned: Percentage of statements in clone instance.

 ID Renaming: It tells about whether identifiers, variables

have been renamed, partially renamed or not renamed.

The last two tabs are Watchlist and Blacklist. Watch list

contains the clones in which we are more interested

while black list includes non-interested clones.

3.3 CCFinderX
CCFinderX is another tool chosen for this research. It detects

clones using two steps: In first step user has to select the

language and the targeted software. In second step user

specify certain parameters i.e. Minimum Clone Length,

Minimum Token Size (Minimum TKS), Shaper, P-match

(parameterized matching) and prescreening.

GemX interface displays the result using two windowpanes

i.e. right and left. Right pane contains scatter plot, source text

and scrapbook tabs. Scatter plot is a graphical representation

that tells about scatteress of clones in the source code. Source

text tab shows actual source code of the underlying software.

Cloned code is highlighted within the file. Scrapbook is just

like a clipboard on which code can be kept temporarily.

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.14, August 2016

13

Left window pane has two important tables namely file table

and clone set table. Tab containing file table is shown in

below Figure 3.and termed are defined as:

Fig 3: CCFinderX File View

 File ID: An integer value assigned to clone instance.

 Path: location of the selected file with complete

hierarchy.

 LEN: size (in tokens) of selected file.

 CLN: It is the count of clones in the files.

 NBR: Count of files having a particular clone code

portion

 RSA: It is defined as Percentage of tokens that are

covered by a code clone between the file and one of the

other files.

 RSI: Ratio of Similarity with in the file is percentage of

tokens that are covered by a code clone within the file.

 CVR: Coverage of clone is defined as Percentage of

tokens that are covered by any code clone

 RNR: Ration of Non Repeated tokens is defined as 1-

(Ratio of Repeated tokens)

The other tab in left tab is Clone-Set Table that is shown in

figure 4.

Fig 4: CCFinderX Clone View

This table provides the following information:

 Clone-Set ID: Integer value assigned to each clone

instance.

 LEN: Size (in tokens) of cloned code fragment.

 POP: It is number of instances of particular clone

instance.

 NIF: Count of source files that include one or more code

fragments of the code clone.

 RAD: Range of source code fragments of a code clone

 RNR: Ratio of non repeated tokens is the percentage of

tokens that are not included in repeated part of code

fragment

 TKS: Token set size of a code fragment of the code

clone.

 LOOP: Count of loops in a code fragment.

 COND: Count of conditional branches

 McCabe: McCabe is sum of LOOP and COND.

3.4 Experimental Setup
The system (machine) on which study is conducted and the

software system (subject system) that is used for analysis are

introduced here.

3.4.1 The Subject System
VLC Media player is Simple, fast and powerful media player.

It is chosen as a subject system. VLC is developed in C. It

plays multimedia files and everything like, Discs, Webcams,

Devices and Streams, and most codec’s with no codec packs

needed. Besides playing many files it can do media

conversion and streaming. It’s an open source project having

6227707 LOC and 321941 SLOC (source lines of code).

Several versions of VLC media player are available. Version

2.0.4 is used here for experimentation.

4. COMPARATIVE STUDY
This section illustrates the tools characteristics and results of

various experiments.

4.1 Experimental Setup
Before comparing the functional methodology and result

variations, basic characteristics of both tools must be

considered. These can be supportive in general assessment of

both tools. These characteristics are shown in table1.

It is very clear from the results that both tools have

competitive features. So, it would be beneficial to note down

the variations in results that both tools revealed while

experimented on same system. This task is accomplished in

subsequent breakdown.

4.2 Experimental Results
Experiment is conducted on VLC media player and outcomes

are observed on many different parameters. Results are further

analyzed on individual files because SolidSDD did not give

detailed information on whole project however it gives

detailed information when individual files are evaluated.

Furthermore, as both tools uses different clone detection

methodologies i.e. one uses token based and other uses string

based approach so default values are used for input

parameters in both detection software. First experiment is

carried out using SolidSDD with following input parameters:

 Minimum Clone Size (CS) = 35,

 Cumulative Gap (CG) = 2.5,

 Gap Decay (GD) = 0.1

 Local Gap (LG) = 2

Results are shown in table 2.

SolidSDD is further tested by changing values of parameters.

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.14, August 2016

14

CS= 35; GD= 0.1; CG= 2.5 are set aside constants while LG

varies through 0 to 50.

Result of these variations is shown in below graphical form.

Fig 5: No. of found clones with SolidSDD on varying

Local Gap

It can be seen from the graph that results vary only for first

three value of local gap. Remaining output is constant for rest

of the values. It gives high clone ratio at local gap value 2 and

3.

After experimentation with SolidSDD, the same scenario is

repeated with CCFinderX. Input parameters are assigned

values as follows:

 Minimum Clone Length (CL) = 50

 Minimum Token Set Size (MTK) = 12

 P-Matching (PM) = Yes

 Shaper (SH) = Soft

Output is shown in table 3.

Results are further generalized by varying parameter values.

Minimum Clone Length(CL), Minimum Token Set Size

(MTK), P-Matching (PM) are set as constant and Shaper(SH)

is set as variable that can take one of four values i.e. Easy,

Hard, Soft and No Shaper. Each of these has been assigned

integer values that are:

 Easy = 0; Hard = 1; Soft = 2; No = 3;

 Constants are assigned values as

 CL = 35; MTK = 12; PM = Yes

The output is shown in below graph:

Fig 6: No. of found clones using CCFinderX by

varying Shaper

A file is selected randomly from VLC media player source

files and variations in results are noted. The access.c is that

chosen file. This file has 557 LOC and 349 SLOC.

Experiment was conducted using SolidSDD clone detector

with following default values of parameters.

CS= 35; LG = 2; CG = 2.5; GD = 0.1

Output was as below:

CCFinderX also experimented with the same file with

following parameters with default values.

 CL = 50; MTK = 12; PM = Yes; SH = soft.

We have chosen three parameters from file view for

comparison purpose because these three parameters are note-

worthy and fully exist in both tools. The first and foremost

parameters is Count of detected clones, second is Clone

coverage and last one is Number of files that are involved in

cloning relation

As definitions of all these terms are cited in section 3 it can be

easily seen that CLN in CCFinderX and # of Clone in

SolidSDD are count of detected clones.% clone in SolidSDD

and CVR in CCFinderX are similar i.e. percentage of

tokens/statements that are covered by clone code. Similarly

Fan-Out in SolidSDD and NBR in CCFinderX both mean

number of files that have a particular clone code fragment. A

comparison of these parameters is shown in table 6.

This comparison is presented graphically below.

Fig 7: CCFinderX and Solid SDD File perspective

comparison.

After analyzing the code in File perspective the code is also

analyzed in Clone perspective. Experiment using SolidSDD is

conducted with same file and parameters as in File

perspective.

 CS= 35; LG = 2; CG = 2.5; GD = 0.1

Output is shown in table7.

CCFinderX is also tested in Clone perspective with the same

file namely access.c and parameters as in File perspective i.e.

 CL = 50; MTK = 12; PM = Yes; SH = soft

Output is given in table8. In clone perception, Number of

instances of particular clone, counts of files that include a

clone code are selected for comparison purpose.

POP in CCFinderX and # of instances (No. of instances) in

SolidSDD both mean count of that particular clone. So, both

of these are chosen for mutual comparison. NIF in CCFinderX

and Fan out in SolidSDD are alike according to their

referenced definitions hence they are compared jointly.

Results of compared parameters are in table 9.

4.3 Discussion on Results
SolidSDD and CCFinderX both tools offer easy to use

interface for detecting clones. They equally provide graphical

38
40
42
44
46
48
50

L
o
c… 1 2 3 4 5

1
0

1
5

2
5

3
5

5
0

SolidSDD # of Found Clones

of Found

Clones

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.14, August 2016

15

output in form of visual charts and scatter plot for viewing

clones scatterness in the source code. There are minor

differences in both tools outcomes.

aSolidSDD and CCFinderX found equal number of clones

when consider the whole software. But variations lie when

analysis narrowed down to individual files of software. As can

be seen from the above comparative tables CCFinderX detects

2 clone instances while SolidSDD spots 4 occurrences in

access.c. Both tools have only one common instance of clone

between them. According to SolidSDD that particular instance

also exists in another file i.e. tcp.c which is also true

according to CCFinderX findings. SolidSDD skips 1 clone

that is discovered by CCFinderX while CCFinderX do not

consider the 2 clones which are included in SolidSDD

detection results. Furthermore, CCFinderX takes less time for

detection as compared to SolidSDD. When evaluating

manually it is found that SolidSDD requires almost double

time as compare to CCFinderX for computing clones.

SolidSDD has more convenient configuration as compared to

CCFinderX while CCFinderX is more mature tool and gives

exceptionally detail information about clones in all

perspectives. So, CCFinderX is better than SolidSDD in terms

of providing information for clone analysis and taking shorter

time frame.

Table 1. Characteristics of Solid SDD and CCFinderX.

Attribute Name SolidSDD CCFinderX

Platform Microsoft Windows(XP, Vista, 7) Ubuntu i386, Windows Vista 32-bit/XP and later.

Supported Languages C, C++, C#, Java and H COBOL, cpp, java C#, plaintext, visual basic

Approach Textual Token Based

External Dependency None For windows Python2.6

Memory 1GB minimum, 4 GB advised; None

Availability Free evaluation licensed for 1 month Freeware

Output Method Reports and visual charts Scatter plot

UI GUI Batch Tool (CLI) with GUI(GemX)

IDE Support NO NO

Metrics File and Clone Metric Clone, File and Line based metric

Table 2. Count of clones in VLC media player using SolidSDD

Attribute Value

Found Duplicates 48

Execution Time 35

Table 3. Count of clones in VLC media player using CCFinderX

Attribute Max Value

LEN 22462

CLN 48

NBR 26

RSA 0.992

RSI 0.999

CVR 1.000

RNR 1.000

Table 4. Count of clones in VLC media player using CCFinderX

Attribute Value

of Clones 4

Fan Out 3

% Cloned 26.23

ID renaming Yes

Table 5. CCFinderX File Perspective with access.c

Attribute Value

File-ID 208

LEN 1870

CLN 2

NBR 0

RSA 0

RSI 0.117

CVR 0.117

RNR 0.843

Table 6. CCFinderX File Perspective with access.c

Attribute SolidSDD CCFinderX

No. of detected clones 4 2

Clone coverage 26.23 0.117

Fan-Out 3 0

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.14, August 2016

16

Table 7. SolidSDD Clone Perspective with access.c

Attribute Clone ID

45 17 44

#instances 2 2 3

Fan out 2 2 3

Length 56 36 35

Total gap 5.0 5.0 7.0

ID renaming Yes Yes Yes

#Ren 8 6 12

#Ren ID 8 6 12

Norm(#Ren) 0.71 0.83 0.57

Norm(#IDs) 0.71 0.83 0.57

Table 8 CCFinderX Clone Perspective with access.c

4.4 Attribute 4.5 Clone Set ID

4.6 1495 4.7 1651

4.8 LEN 4.9 70 4.10 53

4.11 POP 4.12 2 4.13 2

4.14 NIF 4.15 1 4.16 1

4.17 RAD 4.18 0 4.19 0

4.20 RNR 4.21 0.686 4.22 0.472

4.23 TKS 4.24 15 4.25 14

4.26 LOOP 4.27 0 4.28 0

4.29 COND 4.30 1 4.31 0

4.32 McCabe 4.33 1 4.34 0

Table 9. : SolidSDD and CCFinderX Clone Perspective comparison with access.c

4.35 Attribute 4.36 SolidS

DD

4.37 CCFinde

rX

4.38 No. of instances of that clone 4.39 2 4.40 2

4.41 Fan-out 4.42 2 4.43 1

5. CONCLUSIONS & FUTURE WORKS
This paper demonstrates that clone code detection tools show

many variations in results. It is revealed here that some tools

may show similar results at whole but after narrowing down

the analysis variations can be found. Furthermore, this work

also identifies that careful selection of input parameters are

necessary when comparing two different approaches.

There is need to define a consistent methodology for

analyzing clones. A benchmark can be developed for

evaluating and comparing clone code detection tools. Cloning

is considered one of the bad codes smells which ultimately

degenerate the software quality. As refactoring is regarded as

one of best cure for this smell so in parallel, we are trying to

do a qualitative based research in this perspective. Objective

of this research is to check and understand those practices

which are in process in industry. We have developed a

questionnaire in which we are going to study relationship

between quality attributes and its impact on refactoring. Also

a prototype is in the development stage.

6. REFERENCES
[1] Fowler M, Beck K, Brant J, Opdyke W, Roberts D;

“Refactoring improving the design of existing code”;

Addison-Wesley, Boston; USA, (1999)

[2] Juergens E.; Deissenboeck F.; Hummel B, Wagner S;

"Do code clones matter?" Software Engineering, 2009.

ICSE 2009. IEEE 31st International Conference on ,

vol., no., pp.485,495, 16-24 May 2009

[3] Kim M, Sazawal V, S.; Notkin D, Murphy G; “An

empirical study of code clone genealogies”; ESEC/FSE-

13Proceedings of the 10th European software

engineering conference held jointly with 13th ACM

SIGSOFT international symposium on Foundations of

software engineering. pp 187-196

[4] Kaur P, Kaur H, Kaur R; “Comparison of Clone

Detection Tools: CONQAT and SolidSDD”.

International Journal of Advanced Research in

Computer Science and Software Engineering Volume 2,

Issue 5 May 2012.

[5] Rysselberghe F A, Demeyer S; “Evaluating clone

detection techniques”; Proceedings ELISA’03

(International Workshop on Evolution of Large-scale

Industrial Software Applications), pages 25–36; Vrije

Universiteit Brussel, September 2003.

IJCATM : www.ijcaonline.org

