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ABSTRACT 

In this paper the RSA algorithm has been implemented with 

feed forward artificial neural network using MATLAB. This 

implementation is focused on the network parameters like 

topology, training algoritahm, no. of hidden layers, no. of 

neurons in each layer and learning rate in order to get the 

more efficient results. Many examples are tested and it is 

obtained that two hidden layers feed forward neural network 

architectures will lead to optimal solution. Our goal in this 

paper is to obtain the  minimum training time and minimum 

number of training iterations using the proposed optimal 

solution. 
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1. INTRODUCTION 
Artificial Neural Network (ANN) is a mathematical model 

designed to train, visualize, and validate neural network 

models[1].We can define the neural network model as a data 

structure that can be adjusted to produce a mapping from a 

given set of input and output data or relationships among the 

data. More specifically, the Neural Networks model uses 

numerical data to specify and evaluate artificial neural 

network models. This involves three basic steps. First, a 

neural network structure is chosen that is considered suitable 

for the type of data and underlying process to be modeled. 

Second, the neural network is trained by using a sufficiently 

representative set of data. Third, the trained network is tested 

with different data, from the same or related sources, to 

validate that the mapping is of acceptable quality.  

There are many different types of ANN and techniques for 

training them but we are just going to focus on the three 

training algorithms: gradient descent with momentum and 

adaptive learning rate back propagation (traingdx), resilient 

back propagation (trainrp) and levenberg –marquardt 

backpropagation (trainlm), which are different variations of 

standard back propagation algorithm.  Back propagation is by 

far the most widely used and understood neural network 

paradigm [2-6]. Its popularity arises from its simple 

architecture and easy to understand learning process, the back 

propagation scheme consists of two major steps. These are the 

forward activation and the backward error flows.  

The training process begins with the assignment of random 

weights to the connections between the nodes of the various 

layers. The various input patterns are then presented to the 

network, and the forward activation flow produces the output 

patterns. These output patterns will not be the same as the 

desired output patterns. The errors in the outputs are 

calculated for the output layer nodes as the difference between 

the desired and actual outputs. For the hidden layers, the 

errors are calculated by back propagating the errors in the 

output layer to the hidden layers. The errors of each of the 

nodes are summed over the whole set of training patterns. 

These errors are used to change the weights in the 

interconnections between the layers. The weights connecting 

to the output layer are changed according to the delta rule, 

whereas for the weights in the hidden layers the generalized 

delta rule is used. There are many good references which 

describe the mathematics of the back propagation approach in 

detail including. The rest of the paper is organized as follows. 

In section-2 we describe the experimental setup for modeling 

the problem and training the neural network. Section 3 

analyses the results taken from different experiments and at 

the last the observations and future works explained.   

2. EXPERIMENTAL SETUP FOR 

TRAINING AND TESTING THE 

NEURAL NETWORK 
Work has been started by finding the different values of 

encrypted strings corresponding to different values of plain 

text for different values of N. For this a no. of samples has 

been used. In the first experiment a string with 4 different 

symbols (@, A, B & C) has been used. Then the complete 

string is divided in the block size of 3 characters each and 

then applied the concept of number system to convert the 

incoming string into numeric values, with the concept: 

@-0 A-1 B-2 C-3and Base of this system is 4.  

eg if input string is C@ABC@ACCBCB 

            C@A      BC@           

3*42 + 0*41 + 1* 40  
                            2*42 + 3*41 + 0* 40         

            49        44 

            ACC       BCB 

 1*42 + 3*41 + 3* 40                             2*42 + 3*41 + 2* 40 

            31          46 

So the string will become 

            49 44 31 46 

Then the above numeric string has been converted into the 

encrypted string using standard RSA algorithm. 

All the above steps are implemented through a JAVA 

program which uses different user defined functions-  

1. static void inputp() throws IOException  To take input 

in string form and to break that strig in blocks of  3 

character each and calculate equivalent numeric value. 

2. static void encrypt () To Encrypt  the input string(in 

numeric form). 
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3. static void converte() throws IOException To convert 

the encrypted numeric values in character form. 

4. static void decrypt() throws IOException To decrypt 

the encrypted numeric values. 

5. static void convertd() throws IOException To convert 

the decrypted numeric values in string form. 

6. static long  mod(long z,int ed)  To calculate (z power 

ed) mod n  

In this way different sample values for different number of 

symbols having a maximum value = 63 i.e n=64 have been 

collected. 

These values are the inputs and corresponding encrypted 

string (In numeric form) are the target outputs of the ANN for 

performance evaluation on the basis of different factors.  

This experiment is done for different values of N (e.g n,=64 

and n=133) and different number of symbols in the plain text 

[7-8]. 

Here the network is having a single neuron in input layer, a 

hidden layer with 9 neurons and one neuron in the output 

layer. Like this, we have created the network with different 

topologies with different number of neurons in hidden layers 

having different training methods and different learning rates.  

Network architecture: The definition of “optimal” network 

architecture for any particular problem is quite difficult and 

remains an open problem. To this end we tested a variety of 

topologies with different number of hidden layers and with 

various numbers of neurons at each layer. The results reported 

are the best results obtained for each problem. 

Normalization: To make the adaptation of the network easier, 

the data are transformed through the normalization procedure 

that takes place right before training. Assuming that the data 

presented to the network are in Zp, where p is prime, the 

space S = [−1, 1], is split in p subspaces. Thus, numbers in the 

data are transformed to analogous ones in the space S. At the 

same time, the network output is transformed to a number 

within Zp using the inverse operation.  

3. RESULTS ANALYSIS 
Analysis is done by varying the number of hidden layers, 

number of neurons in hidden layers, learning rate and by 

using different training methods. To test the network 

performance two different measures are considered. The first 

measure is called as complete measure and denoted by µ0, 

indicating the percentage of training data, for which the 

network is able to compute the exact target value. This is not 

sufficient enough as the network performance indicator. The 

fact that the network output is restricted within the range (-1, 

1) plays a significant role. Very small differences in output 

render the network unable to find the exact target but to be 

very close to it. So, using as a second measure, called as near 

measure and denoted by µv the percentage of the data for 

which the  difference between desired and actual output does 

not exceed ±v of the real  target, gives a better understanding 

of the network performance. It is also made clear that the 

second measure shows the real capability of the network. 

Since when the training procedure is continued long enough 

the first measure kept rising to reach the second one. It is 

important to be mentioned that the near measure µv plays a 

significant role. 

The efficiency of neural network with 1 hidden layer and 2 

hidden layers having different no. of neurons is represented in 

Tables from 1 to 8. Three different variations of back 

propagation algorithm used to train the neural network are 

gradient descent with momentum and adaptive learning rate 

back propagation (traingdx), resilient back propagation 

(trainrp) and levenberg-marquardt back propagation (trainlm). 

All these results are obtained by taking 64 and 133 samples. 

Table 1: Efficiency of neural network with 1 hidden layer 

having different number of neurons, on the basis of 

different training methods (For number of samples =64). 

Training 

Method  

Topology  

Traingdx Trainrp Trainlm 

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 

1-13-1 3 13 21 48 22 37 51 72 13 38 46 68 

1-14-1 3 13 23 50 23 37 52 72 19 44 51 68 

1-15-1 2 13 23 54 23 38 50 74 23 45 53 68 

1-16-1 2 14 27 58 22 38 51 73 27 47 57 68 

1-17-1 2 14 35 64 26 40 53 76 32 51 60 70 

1-18-1 2 14 34 66 33 46 57 78 37 57 66 74 

1-19-1 2 13 32 66 37 51 63 79 41 61 73 77 

1-20-1 2 13 32 70 46 60 68 81 49 65 78 81 

 

Table 2:   Efficiency of neural network with 2 hidden layer 

having different number of neurons, on the basis of 

different training methods (for number of samples =64). 

Training 

Method  

Topology  

Traingdx Trainrp Trainlm 

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 

1-5-7-1 2 22 25 52 11 41 43 48 64 71 79 81 

1-6-8-1 2 22 28 53 13 41 43 53 70 82 82 84 

1-7-9-1 3 24 30 56 13 43 48 59 70 86 91 92 

1-8-10-1 3 26 34 58 17 47 54 70 91 98 100 100 

1-9-11-1 2 27 40 64 21 56 68 81 98 100 100 100 

1-10-12-1 2 33 48 68 21 55 64 81 98 100 100 100 

1-11-13-1 3 43 54 78 22 53 59 81 100 100 100 100 

1-5-7-1 2 22 25 52 11 41 43 48 64 71 79 81 

 

Table 3: Efficiency of neural network with 1 hidden layer 

having different number of neurons, on the basis of 

different training methods (For number of samples =133). 

Training 

Method  

Topology  

Traingdx Trainrp Trainlm 

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 

1-20-1 1 8 15 23 3 15 23 32 11 28 32 43 

1-21-1 1 10 15 23 3 15 23 34 11 28 32 48 

1-22-1 1 10 15 23 3 15 25 36 13 31 34 49 

1-23-1 1 11 15 25 4 15 27 36 15 36 45 53 

1-24-1 2 11 15 25 4 16 27 38 15 38 45 55 

1-25-1 2 11 17 27 5 16 28 38 17 38 48 55 

1-26-1 2 11 17 27 7 19 31 39 23 42 49 59 

1-20-1 1 8 15 23 3 15 23 32 11 28 32 43 
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Table 4: Efficiency of neural network with 2 hidden layers 

having different number of neurons, on the basis of 

different training methods (For number of samples =133). 

Training 

Method  

Topology  

Traingdx Trainrp Trainlm 

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 

1-11-13-1 2 28 35 60 19 39 41 59 69 87 90 94 

1-12-14-1 3 28 37 63 19 47 49 61 71 87 92 94 

1-13-15-1 5 28 43 63 19 49 56 66 81 92 92 98 

1-14-16-1 7 29 45 64 19 59 69 77 98 99 100 100 

1-15-17-1 7 35 46 78 21 59 69 77 98 99 100 100 

1-16-18-1 8 37 49 80 23 62 71 77 98 100 100 100 

1-17-19-1 8 45 56 80 26 62 71 78 98 100 100 100 

1-11-13-1 2 28 35 60 19 39 41 59 69 87 90 94 

 

Table 5: Efficiency of neural network with 1hidden layer 

having different number of neurons, on the basis of 

different Learning rate (For number of samples =64). 

Learning 

Rate  

Topology  

η1(0.05) η2(0.005) η3(0.0005) 

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 

1-13-1 21 38 49 62 13 38 46 68 11 40 51 65 

1-14-1 27 44 51 64 19 44 51 68 16 47 57 71 

1-15-1 33 47 51 64 23 45 53 68 23 54 63 73 

1-16-1 41 55 55 65 27 47 57 68 31 59 69 78 

1-17-1 48 59 60 67 32 51 60 70 40 65 75 84 

1-18-1 49 63 63 71 37 57 66 74 47 64 75 83 

1-19-1 51 67 66 77 41 61 73 77 52 64 74 84 

1-20-1 51 68 75 86 49 65 78 81 56 67 72 84 

 

Table 6: Efficiency of neural network with 2 hidden layers 

having different number of neurons, on the basis of 

different Learning rate (For number of samples =64). 

Learning 

Rate  

Topology  

η1(0.05) η2(0.005) η3(0.0005) 

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 

1-5-7-1 64 78 78 86 64 71 79 81 41 61 81 81 

1-6-8-1 71 84 84 86 70 82 82 84 47 61 81 85 

1-7-9-1 71 84 86 91 70 86 91 92 56 78 86 95 

1-8-10-1 82 90 92 98 91 98 100 100 98 98 98 100 

1-9-11-1 98 98 98 100 98 100 100 100 100 100 100 100 

1-10-12-1 98 98 100 100 98 100 100 100 100 100 100 100 

1-11-13-1 100 100 100 100 100 100 100 100 100 100 100 100 

1-5-7-1 64 78 78 86 64 71 79 81 41 61 81 81 

Table 7: Efficiency of neural network with 1hidden layer 

having different number of neurons, on the basis of 

different Learning rate (For number of samples =133).  

Learning 

Rate  

Topology  

η1(0.05) η2(0.005) η3(0.0005) 

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 

1-20-1 11 32 36 43 11 28 32 43 12 38 40 48 

1-21-1 11 32 36 44 11 28 32 48 12 38 40 49 

1-22-1 11 32 38 44 13 31 34 49 13 38 41 53 

1-23-1 13 32 38 50 15 36 45 53 13 39 43 54 

1-24-1 13 32 38 53 15 38 45 55 17 39 43 54 

1-25-1 14 34 39 54 17 38 48 55 19 41 47 55 

1-26-1 14 34 39 57 23 42 49 59 21 41 48 55 

1-20-1 11 32 36 43 11 28 32 43 12 38 40 48 

 

Table 8: Efficiency of neural network with 2 hidden layers 

having different number of neurons, on the basis of 

different Learning rate (for number of samples =133).  

Learning 

Rate  

Topology  

η1(0.05) η2(0.005) η3(0.0005) 

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 
1-11-13-1 63 78 81 83 69 87 90 94 62 69 69 74 

1-12-14-1 69 78 83 87 71 87 92 94 78 81 87 92 

1-13-15-1 78 81 87 92 81 92 92 98 87 92 98 98 

1-14-16-1 92 98 98 100 98 99 100 100 98 100 100 100 

1-15-17-1 92 98 98 100 98 99 100 100 98 100 100 100 

1-16-18-1 98 98 99 100 98 100 100 100 99 100 100 100 

1-17-19-1 98 100 100 100 98 100 100 100 100 100 100 100 

1-11-13-1 63 78 81 83 69 87 90 94 62 69 69 74 

 

4. CONCLUSION AND FUTURE SCOPE 
In this work neural network approach has been used to 

encounter the problem in RSA algorithm. Our observation 

with this attempt is that it is possible to train feed forward 

neural networks to tackle this task with the help of feed 

forward neural networks. In general, the problem can be 

solved if the architectural topology is small enough. Here, 

with a predetermined number of trial and error procedures the 

problem can be resolved. Very small prime numbers are 

selected in order to have an extensive study related to 

network’s architecture and their ability for various efficient 

training methods. All three methods have been extensively 

tested with a wide range of parameters. From the experimental 

results shown in the Tables 1-8, it has been observed that the 

training method and learning rate does not play a significant 

role in tackling the particular problem. On the other hand a 

crucial role is being played by the network architecture and 

the normalization portion of the training algorithm used. An 

efficient system can be achieved by focusing on the better 

architecture. Focusing only on number of neurons will 

increases the complexity and by increasing the number of 

layers unnecessarily will increases the processing time of a 

network.   

Here we have considered only feed-forward artificial neural 

networks, in the future we intend to apply various other neural 

networks and learning techniques such as bidirectional neural 

networks with different learning methods, and radial basis 

function networks. We also intend to apply samples greater 

than 1000 and more training algorithms.  
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