
International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.2, August 2016

22

Implementation of RSA with Feed-forward Neural

Network using MATLAB

Somesh Kumar
Noida Institute of

Engineering & Technology,
Greater Noida

Rajkumar Goel
Noida Institute of

Engineering & Technology,
Greater Noida

ABSTRACT

In this paper the RSA algorithm has been implemented with

feed forward artificial neural network using MATLAB. This

implementation is focused on the network parameters like

topology, training algoritahm, no. of hidden layers, no. of

neurons in each layer and learning rate in order to get the

more efficient results. Many examples are tested and it is

obtained that two hidden layers feed forward neural network

architectures will lead to optimal solution. Our goal in this

paper is to obtain the minimum training time and minimum

number of training iterations using the proposed optimal

solution.

Keywords
RSA, Neural Network

1. INTRODUCTION
Artificial Neural Network (ANN) is a mathematical model

designed to train, visualize, and validate neural network

models[1].We can define the neural network model as a data

structure that can be adjusted to produce a mapping from a

given set of input and output data or relationships among the

data. More specifically, the Neural Networks model uses

numerical data to specify and evaluate artificial neural

network models. This involves three basic steps. First, a

neural network structure is chosen that is considered suitable

for the type of data and underlying process to be modeled.

Second, the neural network is trained by using a sufficiently

representative set of data. Third, the trained network is tested

with different data, from the same or related sources, to

validate that the mapping is of acceptable quality.

There are many different types of ANN and techniques for

training them but we are just going to focus on the three

training algorithms: gradient descent with momentum and

adaptive learning rate back propagation (traingdx), resilient

back propagation (trainrp) and levenberg –marquardt

backpropagation (trainlm), which are different variations of

standard back propagation algorithm. Back propagation is by

far the most widely used and understood neural network

paradigm [2-6]. Its popularity arises from its simple

architecture and easy to understand learning process, the back

propagation scheme consists of two major steps. These are the

forward activation and the backward error flows.

The training process begins with the assignment of random

weights to the connections between the nodes of the various

layers. The various input patterns are then presented to the

network, and the forward activation flow produces the output

patterns. These output patterns will not be the same as the

desired output patterns. The errors in the outputs are

calculated for the output layer nodes as the difference between

the desired and actual outputs. For the hidden layers, the

errors are calculated by back propagating the errors in the

output layer to the hidden layers. The errors of each of the

nodes are summed over the whole set of training patterns.

These errors are used to change the weights in the

interconnections between the layers. The weights connecting

to the output layer are changed according to the delta rule,

whereas for the weights in the hidden layers the generalized

delta rule is used. There are many good references which

describe the mathematics of the back propagation approach in

detail including. The rest of the paper is organized as follows.

In section-2 we describe the experimental setup for modeling

the problem and training the neural network. Section 3

analyses the results taken from different experiments and at

the last the observations and future works explained.

2. EXPERIMENTAL SETUP FOR

TRAINING AND TESTING THE

NEURAL NETWORK
Work has been started by finding the different values of

encrypted strings corresponding to different values of plain

text for different values of N. For this a no. of samples has

been used. In the first experiment a string with 4 different

symbols (@, A, B & C) has been used. Then the complete

string is divided in the block size of 3 characters each and

then applied the concept of number system to convert the

incoming string into numeric values, with the concept:

@-0 A-1 B-2 C-3and Base of this system is 4.

eg if input string is C@ABC@ACCBCB

 C@A BC@

3*42 + 0*41 + 1* 40
 2*42 + 3*41 + 0* 40

 49 44

 ACC BCB

 1*42 + 3*41 + 3* 40 2*42 + 3*41 + 2* 40

 31 46

So the string will become

 49 44 31 46

Then the above numeric string has been converted into the

encrypted string using standard RSA algorithm.

All the above steps are implemented through a JAVA

program which uses different user defined functions-

1. static void inputp() throws IOException To take input

in string form and to break that strig in blocks of 3

character each and calculate equivalent numeric value.

2. static void encrypt () To Encrypt the input string(in

numeric form).

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.2, August 2016

23

3. static void converte() throws IOException To convert

the encrypted numeric values in character form.

4. static void decrypt() throws IOException To decrypt

the encrypted numeric values.

5. static void convertd() throws IOException To convert

the decrypted numeric values in string form.

6. static long mod(long z,int ed) To calculate (z power

ed) mod n

In this way different sample values for different number of

symbols having a maximum value = 63 i.e n=64 have been

collected.

These values are the inputs and corresponding encrypted

string (In numeric form) are the target outputs of the ANN for

performance evaluation on the basis of different factors.

This experiment is done for different values of N (e.g n,=64

and n=133) and different number of symbols in the plain text

[7-8].

Here the network is having a single neuron in input layer, a

hidden layer with 9 neurons and one neuron in the output

layer. Like this, we have created the network with different

topologies with different number of neurons in hidden layers

having different training methods and different learning rates.

Network architecture: The definition of “optimal” network

architecture for any particular problem is quite difficult and

remains an open problem. To this end we tested a variety of

topologies with different number of hidden layers and with

various numbers of neurons at each layer. The results reported

are the best results obtained for each problem.

Normalization: To make the adaptation of the network easier,

the data are transformed through the normalization procedure

that takes place right before training. Assuming that the data

presented to the network are in Zp, where p is prime, the

space S = [−1, 1], is split in p subspaces. Thus, numbers in the

data are transformed to analogous ones in the space S. At the

same time, the network output is transformed to a number

within Zp using the inverse operation.

3. RESULTS ANALYSIS
Analysis is done by varying the number of hidden layers,

number of neurons in hidden layers, learning rate and by

using different training methods. To test the network

performance two different measures are considered. The first

measure is called as complete measure and denoted by µ0,

indicating the percentage of training data, for which the

network is able to compute the exact target value. This is not

sufficient enough as the network performance indicator. The

fact that the network output is restricted within the range (-1,

1) plays a significant role. Very small differences in output

render the network unable to find the exact target but to be

very close to it. So, using as a second measure, called as near

measure and denoted by µv the percentage of the data for

which the difference between desired and actual output does

not exceed ±v of the real target, gives a better understanding

of the network performance. It is also made clear that the

second measure shows the real capability of the network.

Since when the training procedure is continued long enough

the first measure kept rising to reach the second one. It is

important to be mentioned that the near measure µv plays a

significant role.

The efficiency of neural network with 1 hidden layer and 2

hidden layers having different no. of neurons is represented in

Tables from 1 to 8. Three different variations of back

propagation algorithm used to train the neural network are

gradient descent with momentum and adaptive learning rate

back propagation (traingdx), resilient back propagation

(trainrp) and levenberg-marquardt back propagation (trainlm).

All these results are obtained by taking 64 and 133 samples.

Table 1: Efficiency of neural network with 1 hidden layer

having different number of neurons, on the basis of

different training methods (For number of samples =64).

Training

Method

Topology

Traingdx Trainrp Trainlm

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3

1-13-1 3 13 21 48 22 37 51 72 13 38 46 68

1-14-1 3 13 23 50 23 37 52 72 19 44 51 68

1-15-1 2 13 23 54 23 38 50 74 23 45 53 68

1-16-1 2 14 27 58 22 38 51 73 27 47 57 68

1-17-1 2 14 35 64 26 40 53 76 32 51 60 70

1-18-1 2 14 34 66 33 46 57 78 37 57 66 74

1-19-1 2 13 32 66 37 51 63 79 41 61 73 77

1-20-1 2 13 32 70 46 60 68 81 49 65 78 81

Table 2: Efficiency of neural network with 2 hidden layer

having different number of neurons, on the basis of

different training methods (for number of samples =64).

Training

Method

Topology

Traingdx Trainrp Trainlm

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3

1-5-7-1 2 22 25 52 11 41 43 48 64 71 79 81

1-6-8-1 2 22 28 53 13 41 43 53 70 82 82 84

1-7-9-1 3 24 30 56 13 43 48 59 70 86 91 92

1-8-10-1 3 26 34 58 17 47 54 70 91 98 100 100

1-9-11-1 2 27 40 64 21 56 68 81 98 100 100 100

1-10-12-1 2 33 48 68 21 55 64 81 98 100 100 100

1-11-13-1 3 43 54 78 22 53 59 81 100 100 100 100

1-5-7-1 2 22 25 52 11 41 43 48 64 71 79 81

Table 3: Efficiency of neural network with 1 hidden layer

having different number of neurons, on the basis of

different training methods (For number of samples =133).

Training

Method

Topology

Traingdx Trainrp Trainlm

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3

1-20-1 1 8 15 23 3 15 23 32 11 28 32 43

1-21-1 1 10 15 23 3 15 23 34 11 28 32 48

1-22-1 1 10 15 23 3 15 25 36 13 31 34 49

1-23-1 1 11 15 25 4 15 27 36 15 36 45 53

1-24-1 2 11 15 25 4 16 27 38 15 38 45 55

1-25-1 2 11 17 27 5 16 28 38 17 38 48 55

1-26-1 2 11 17 27 7 19 31 39 23 42 49 59

1-20-1 1 8 15 23 3 15 23 32 11 28 32 43

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.2, August 2016

24

Table 4: Efficiency of neural network with 2 hidden layers

having different number of neurons, on the basis of

different training methods (For number of samples =133).

Training

Method

Topology

Traingdx Trainrp Trainlm

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3

1-11-13-1 2 28 35 60 19 39 41 59 69 87 90 94

1-12-14-1 3 28 37 63 19 47 49 61 71 87 92 94

1-13-15-1 5 28 43 63 19 49 56 66 81 92 92 98

1-14-16-1 7 29 45 64 19 59 69 77 98 99 100 100

1-15-17-1 7 35 46 78 21 59 69 77 98 99 100 100

1-16-18-1 8 37 49 80 23 62 71 77 98 100 100 100

1-17-19-1 8 45 56 80 26 62 71 78 98 100 100 100

1-11-13-1 2 28 35 60 19 39 41 59 69 87 90 94

Table 5: Efficiency of neural network with 1hidden layer

having different number of neurons, on the basis of

different Learning rate (For number of samples =64).

Learning

Rate

Topology

η1(0.05) η2(0.005) η3(0.0005)

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3

1-13-1 21 38 49 62 13 38 46 68 11 40 51 65

1-14-1 27 44 51 64 19 44 51 68 16 47 57 71

1-15-1 33 47 51 64 23 45 53 68 23 54 63 73

1-16-1 41 55 55 65 27 47 57 68 31 59 69 78

1-17-1 48 59 60 67 32 51 60 70 40 65 75 84

1-18-1 49 63 63 71 37 57 66 74 47 64 75 83

1-19-1 51 67 66 77 41 61 73 77 52 64 74 84

1-20-1 51 68 75 86 49 65 78 81 56 67 72 84

Table 6: Efficiency of neural network with 2 hidden layers

having different number of neurons, on the basis of

different Learning rate (For number of samples =64).

Learning

Rate

Topology

η1(0.05) η2(0.005) η3(0.0005)

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3

1-5-7-1 64 78 78 86 64 71 79 81 41 61 81 81

1-6-8-1 71 84 84 86 70 82 82 84 47 61 81 85

1-7-9-1 71 84 86 91 70 86 91 92 56 78 86 95

1-8-10-1 82 90 92 98 91 98 100 100 98 98 98 100

1-9-11-1 98 98 98 100 98 100 100 100 100 100 100 100

1-10-12-1 98 98 100 100 98 100 100 100 100 100 100 100

1-11-13-1 100 100 100 100 100 100 100 100 100 100 100 100

1-5-7-1 64 78 78 86 64 71 79 81 41 61 81 81

Table 7: Efficiency of neural network with 1hidden layer

having different number of neurons, on the basis of

different Learning rate (For number of samples =133).

Learning

Rate

Topology

η1(0.05) η2(0.005) η3(0.0005)

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3

1-20-1 11 32 36 43 11 28 32 43 12 38 40 48

1-21-1 11 32 36 44 11 28 32 48 12 38 40 49

1-22-1 11 32 38 44 13 31 34 49 13 38 41 53

1-23-1 13 32 38 50 15 36 45 53 13 39 43 54

1-24-1 13 32 38 53 15 38 45 55 17 39 43 54

1-25-1 14 34 39 54 17 38 48 55 19 41 47 55

1-26-1 14 34 39 57 23 42 49 59 21 41 48 55

1-20-1 11 32 36 43 11 28 32 43 12 38 40 48

Table 8: Efficiency of neural network with 2 hidden layers

having different number of neurons, on the basis of

different Learning rate (for number of samples =133).

Learning

Rate

Topology

η1(0.05) η2(0.005) η3(0.0005)

µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3 µ0 µ1 µ2 µ3
1-11-13-1 63 78 81 83 69 87 90 94 62 69 69 74

1-12-14-1 69 78 83 87 71 87 92 94 78 81 87 92

1-13-15-1 78 81 87 92 81 92 92 98 87 92 98 98

1-14-16-1 92 98 98 100 98 99 100 100 98 100 100 100

1-15-17-1 92 98 98 100 98 99 100 100 98 100 100 100

1-16-18-1 98 98 99 100 98 100 100 100 99 100 100 100

1-17-19-1 98 100 100 100 98 100 100 100 100 100 100 100

1-11-13-1 63 78 81 83 69 87 90 94 62 69 69 74

4. CONCLUSION AND FUTURE SCOPE
In this work neural network approach has been used to

encounter the problem in RSA algorithm. Our observation

with this attempt is that it is possible to train feed forward

neural networks to tackle this task with the help of feed

forward neural networks. In general, the problem can be

solved if the architectural topology is small enough. Here,

with a predetermined number of trial and error procedures the

problem can be resolved. Very small prime numbers are

selected in order to have an extensive study related to

network’s architecture and their ability for various efficient

training methods. All three methods have been extensively

tested with a wide range of parameters. From the experimental

results shown in the Tables 1-8, it has been observed that the

training method and learning rate does not play a significant

role in tackling the particular problem. On the other hand a

crucial role is being played by the network architecture and

the normalization portion of the training algorithm used. An

efficient system can be achieved by focusing on the better

architecture. Focusing only on number of neurons will

increases the complexity and by increasing the number of

layers unnecessarily will increases the processing time of a

network.

Here we have considered only feed-forward artificial neural

networks, in the future we intend to apply various other neural

networks and learning techniques such as bidirectional neural

networks with different learning methods, and radial basis

function networks. We also intend to apply samples greater

than 1000 and more training algorithms.

5. REFERENCES
[1] Ibrahim Subariah and Maarof Mohd Aizaini, “ A Review

on Biological Inspired Computation in

Cryptology, Jurnal Teknologi Maklumat”,Journal of

Information Technology, Vol. 17, no. 1, pp 90-98,

(2007).

[2] Ciampi Antonio and Zhang Fulin, “A new approach to

training back-propagation artificial neural networks:

empirical evaluation on ten data sets from clinical

studies”, Statistics in Medicine, Vol.21, Issue-9, pp 1309-

1330, (2002).

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.2, August 2016

25

[3] Hagan Martin T. and Menhaj Mohammad B., “Training

feed forward networks with the Marquardt Algorithm”,

IEEE Transactions on Neural Networks, Vol. 5, no. 6, pp

989-993, (1994).

[4] Bhavsar Hetal and Ganatra Amit, “A comparative study of

training algorithms for supervised machine learning”,

International Journal of Soft Computing and

Engineering, Vol. 2, Issue-4, pp 74-81, (2012)

[5] Istook Ernest and Martinez Tony, “Improved

backpropagation learning in neural networks with

windowed momentum”, International Journal of Neural

Systems, Vol. 12, Issue 3&4, pp 303-318, (2002)

[6] Laskari, E.C., Meletiou, G.C., Tasoulis, D.K. and Vrahat,

M.N., “Studying the performance of artificial neural

networks on problems related to cryptography”,

Nonlinear Analysis: Real World Applications, Vol.7,

Issue 5, pp 937-942, (2009).

[7] RSA Laboratories, Why RSA? Available at:

http://www.rsa.com/ rsalabs/node.asp?id=2222 and

http://www.rsa.com/rsalabs/ node.asp?id=2223.

[8] Vishwakarma Virendra P. and Gupta M. N., “A New

Learning Algorithm for Single Hidden Layer Feed

forward Neural Networks”, International Journal of

Computer Applications,Vol. 28, no.6, pp 26-33, (2011)

IJCATM : www.ijcaonline.org

