
International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.2, August 2016

7

A Study on Applying Parallelism for Construction of

Steiner Tree Algorithms in VLSI Design

Shyamala G.
BMS College of Engineering

Bangalore, India

Latha N. R.
BMS College of Engineering

Bangalore, India

ABSTRACT

We present a survey of the different approaches that can be

parallelized and also the parallel algorithms available today

with special concern to Rectilinear steiner tree for VLSI

Design and their appropriateness for high-performance

computing. Thus, we review the parallel algorithms for

solving the Stiener tree problem as it is of great importance

for very large scale integration routing and wire length

estimation. As the steiner problem in general is NP-hard, it is

difficult to develop a polynomial-time algorithm to solve the

problem exactly. This is why the most of research has looked

at finding efficient heuristic algorithms. Additionally, many

authors focused their work on utilizing the ever-increasing

computational power and developed many parallel methods

for solving the problem. Hence we are able to obtain better

results in less time than ever before.The study shows that the

accessibility of multi-core CPUs has given new impulse to the

shared memory parallel programming approach., Hybrid

parallel programming is the current way of harnessing the

capabilities of computer clusters with multi-core nodes. On

the other hand, high performance heterogeneous programming

is found to be an increasingly well accepted paradigm, as a

result of the availability of multi-core CPUs and GPUs

systems. The use of open industry standards like OpenMP,

MPI, or OpenCL, as opposed to proprietary solutions, seems

to be the way to categorize and extend the use of parallel

programming models. Here, we present a survey of the

parallel methods for solving the stiener tree problem

specifically for VLSI design

General Terms

Multicore Architecture, Parallel computing, VLSI

Keywords
RSMT, OARSMT, Multicore Architecture

1. INTRODUCTION
VLSI in Electronic design automation is a process of placing

hundreds of thousands of electronic components on one chip.

The efficient algorithms for global routing process in VLSI is

in demand as the number of logic circuts and the memory

capacity increased rapidly. Good positioning of the

components is essential, because this can gradually reduce

the power and lower the heating of the chip, in turn making

the chips smaller and lower the production costs. The

optimality criteria that must be examined include minimizing

the total wire length, minimizing the total area, minimizing

the cost of the chip. Most algorithms focus on minimizing the

wire length. In the VLSI physical design global routing phase

the appropriate locations for macro cells are determined.

Macro cells are the logical units that perform the desired

functions of the chip. Then the cells need to be assigned to a

certain rectangular area and connected by wires which usually

run rectilinearly on the chips. Hence, rectilinear Steiner trees

are perfectly suited for solving this problem.

1.1 Rectilinear Steiner tree
One of the important purpose of Steiner tree in electronic

design automation is in placement and routing stage of VLSI

design process. The routing is categorized into two phases

called global routing and detailed routing. In Global routing

blocks are connected but does not consider the details of each

wire and pin, whereas in detailed routing point-to-point

connections is made between pins on each block is completed.

For given set of input points, the Steiner tree problem (STP)

is to find a minimum-length tree that connects all the input

points, and new points are added to minimize the length of

the tree. The new points that are added are called Steiner

points. One of the types of Steiner tree problem is the

Rectilinear Steiner tree that considers rectilinear or Manhattan

distance between a pair of points. The rectilinear distance d

between two points p1 and p2 is defined as: d (p1, p2)=|x1 – x2 |

+ |y1 – y2 |, where (xi ,yi) are the coordinates of pi. M.Hanan

[1] is the first to have reduced the RST problem to the Graph

Steiner Problem (GST) problem. Hanan’s theorem proves that

for any instance, an optimal RST exists in which every Steiner

point lies at the intersection of two rectilinear lines that

contain terminals. Hanan’s theorem states that by depiction of

a graph called Hanan Grid graph, an optimal RST may surely

be obtained. F.K.Hwang[2] proves that the ratio of the cost of

the rectilinear minimum spanning tree (RMST) to that of an

optimum RST is no greater than 3/2. Therefore the rectilinear

MST is a suitable starting point for deriving low cost RST.

Ho,Vijayan and CK Wong [3] presented a new approach to

construct an RST of a given set of points in the plane starting

from a Minimum Spanning tree. The total minimum wire

length of a RST is referred as the cost of RST. A heuristic

approach is proposed that finds layouts for the edges of the

MST so as to maximize the overlaps between the layouts and

thus minimizing the cost (i.e. wire length) of the Rectilinear

Steiner Tree

Fig 1. Rectilinear Steiner tree Construction

The original RSMT problem assume no obstacles in the

routing region. In today’ s VLSI design there can be many

routing obstacles like macro cells, IP blocks and prerouted

nets. Therefore, The RSMT problem with blockages, called

OARSMT problem is widely studied. Let P={p1,p2,p3…pn} be

the set of pins for m pin met. Let B={b1,b2,b3…bk} be a set of

rectangular blockages. Let V={v1,v2,v3…vm}=P U {Corners

in B} as the vertex set in the problem where each vi has

coordinates (xi,yi). The blockages which are rectangular has 4

corners, we have n<=m+4k.The rectilinear distance between

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.2, August 2016

8

vi & vj is given as |xi-xj|+|yi-yj|. A OARSMT connects all pins

through some extra points to achive a minimal total length,

avoiding the intersection with any blockage in the design.

1.2 Obstacle Avoiding Rectilinear Steiner

Tree
Most recent OARSMT heuristics use routing graphs to handle

obstacles. Those routing graphs can be categorized into

rectilinear graph and spanning graph. A rectilinear graph uses

rectilinear edges to connect pin-vertices, obstacle corners, and

other Steiner point candidates, while a spanning graph only

contains pin vertices and obstacle corners. Compared with a

spanning graph, a rectilinear graph usually contains better

solutions, i.e., high effectiveness, but its space complexity is

often (n2). Compared with a rectilinear graph, a spanning

graph usually takes much smaller space, higher efficiency,

while its solution quality is limited since it does not contain

additional Steiner point candidates except obstacle corners..

To sum up, there exists a tradeoff between the effectiveness of

rectilinear graphs and the efficiency of spanning graphs. For

the OARSMT construction, it is desirable to balance the

tradeoff, and to develop an excellent algorithm with the best

practical performance in both the wirelength and the runtime.

1.3 Introduction to Multicore and Parallel

computing

Fig 2 Obstacle Avoiding Rectilinear steiner tree

With increase in computer technology General-purpose

multicore processors are being broadly accepted in all areas

of the industry, including signal processing and embedded

space, as the need for more performance efficiency for

general-purpose applications has increased. Parallel

processing increases performance considerably by adding

more parallel resources while maintaining manageable power

characteristics. The implementations of multicore processors

are plenty and diverse. Designs range from usual

multiprocessor machines to designs that consist of a many

programmable arithmetic logic units (ALUs).

To develop efficient multicore algorithms, one must

understand in depth multiple algorithmic and architectural

aspects. The list of characteristics to develop a parallel

algorithm for multicore architecture includes the following:

1. identifying the available and required dimensions of

parallelism,

2. mapping parallel threads of activity to a potentially

large pool of processing and functional units,

3. using simple processing cores with limited

functionalities,

4. coping up with the limited on-chip memory per

core,

5. coping up with the limited off-chip memory

bandwidth (when compared to the rich resources

available on chip)

6. performance on multicore systems:

In addition to the above features, according to [20] there is a

need to consider other multicore issues which play very

important role in parallel programming

Number of processing cores: Many existing systems have

two to eight cores integrated on a single chip. Cores typically

support features such as simultaneous multithreading (SMT)

or hardware multithreading, which allow for greater

parallelism and throughput. In recent designs, we have up to

hundred cores on a single chiplike GPGPU.

Caching and memory bandwidth: Memory speeds have

been increasing at a much slower rate than processor capacity.

Memory bandwidth and latency are important performance

criteria for several scientific and engineering applications.

Caching severely affect the efficiency of algorithms even on

single processor systems. In multicore systems, this will be

even more important due to extra bandwidth constraints.

Synchronization: Implementing algorithms using multiple

processing cores will require synchronization between the

cores from time to time, which is an expensive operation in

shared memory architectures.

Multi-core CPUs have become common, as they are widely

used for high performance computations and also in consumer

electronics. The idea of using the graphics processor for

general purpose computation has also become popular, since

this approach has yielded incredible performance when

applied to suitable problems. Such increase of

parallelism(multiple threads on a CPU or GPU) and

heterogeneity (simultaneous use of a CPU and GPU) has

succeeded in greatly improving the efficiency and

performance of many traditional computation-intensive

workloads, provided that their parallel or heterogeneous

implementations are well analyzed. There are still some

problems that demand fast computation but for whom

efficient parallel or heterogeneous implementations have yet

to be identified like RSMT or OARSMT construction VLSI

design.Programming languages have been developed to utilize

the cores available in multicore ot GPU. The CUDA language

for programming GPGPU is designed to work with only

NVIDIA’s GPUs, whereas OpenCL can be used with a

different manufacturers of multi-core CPU and GPU devices,

including NVIDIA’s GPUs. Despite CUDA’s hardware

restriction, OpenCL share many similar syntax and other

characteristics with CUDA.. The introduction of new parallel

programming interfaces for general purpose computations,

such as Computer Unified Device Architecture (CUDA),

Stream SDK and OpenCL, have made GPUs powerful and

attractive choice for developing high-performance numerical,

scientific computation and solving practice engineering

problems. However, programming on GPUs remains a

challenging problem. The reason is that many contemporary

GPUs exhibit complex memory organization with multiple

low latency on-chip memories in addition to the off-chip

memory. The access latencies and the optimal access patterns

of each of the memories is significantly different, posing a

significant challenge to develop techniques that optimally

utilize the various memories to tolerate the latency and

improve the memory thoughtful. The memory hierarchy along

with the highly parallel execution model make optimization of

the application difficult. The challenges increase many-times

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.2, August 2016

9

when the application to be optimized and parallelized are

memory-intensive operations such as Sparse Matrix-Vector

multiplication (SpMV), Graph algorithms or VLSI routing

algorithms which are critical for most analysis and also

simulation tasks for VLSI chip designs

2. PARALLELISM IN STEINER TREE

CONSTRUCTION

2.1 The Iterated 1-Steiner (I1S) Approach
One of the earliest work where the idea given in this work was

for sequential implementation but is suitable for parallel

implementation is the Iterated 1-Steiner heuristic [5, 6], which

repeatedly finds optimum single Steiner points for inclusion

into the pointset. Given two pointsets A and B, we define the

MST as: MST(A, B) = cost(MST(A)) − cost(MST(A ∪ B)).

Intersection points of all horizontal and vertical lines passing

through points of P (as defined by Hanan’s theorem [1]) Let

H(P) denote the Steiner candidate set. For any pointset P, a 1-

Steiner point with respect to P is a point x ∈ H(P) that

maximizes ∆MST(P, {x}) > 0. the Iterated 1-Steiner (I1S)

method repeatedly finds a 1-Steiner point x for P ∪S and sets

S ← S ∪ {x}, starting with a pointset P and a set S = ∅ of

Steiner points,. The MST(P ∪ S) cost will decrease with each

added point, and thewhen there no longer exists any point x

with ∆MST(P ∪ S, {x}) > 0 the construction terminates

For the Manhattan plane, to find a 1-Steiner point it suffices

to construct an MST over |P∪S|+1 points for each of the O(n2

) members of the Steiner candidate set (i.e., Hanan grid

points), and then pick a candidate which minimizes the overall

MST cost. Each MST computation can be performed in O(n

log n) time, yielding an O(n3 log n) time method to find a

single 1-Steiner point. Exploiting parallelism for this approach

is simpler as each processor can independently construct the

MST and add the steiner points in I1S method. Then there can

be check on the length of each MST at every processor.

Whichever MST with steiner point has smaller length can be

choosen the process can be repeated for all the points in the

plain.

Kahng and Robins [5, 6] proposed the iterated 1-Steiner

algorithm where the best possible Steiner point is found

iteratively and adds it to the solution set until no further

improvement is possible. Barrera et al. [19] developed a

straightforward and efficient implementation method for the

iterated 1-Steiner algorithm and provided a parallel version of

the algorithm. They concluded that the algorithm is very

suitable for parallelization and can be generalized to arbitrary

weighted graphs (principles like obstacle avoiding and

congestion can be easily implemented).

2.2 The Batched 1-Steiner Variant
Even though a single 1-Steiner point may be found with time

complexity of O(n2), the required computational geometry

techniques are complicated and not easy to implement. To

address these issues, a variant of I1S called batched I1S was

developed [5,6], which amortizes the computational cost of

finding 1-Steiner points by adding as many “independent” 1-

Steiner points as possible in every round. The Batched 1-

Steiner (B1S) variant computes ∆MST(P,{x}) for each

candidate Steiner point x ∈ H(P) (i.e., the Hanan grid

candidate points). Two Steiner points x and y are independent

candidates if: ∆MST(P, {x}) + ∆MST(P, {y}) ≤ ∆MST(P, {x,

y}), where each of the two 1-Steiner points does not reduce

the potential gain in MST cost relative of the other 1-Steiner

point. Given pointset P and a set of Steiner points S, each

round of B1S greedily adds into S a maximal set of

independent 1-Steiner points. When a round fails to add any

new Steiner points termination occurs . The total time

required for each round is O(n2logn).

Since each processor can independently compute the MST

savings of different candidate Steiner points the I1S and B1S

algorithms are extremely parallelizable. The Iterated Steiner

approach is therefore very agreeable to parallel

implementation on grid computers [7, 6]. The time complexity

and practical runtime of B1S can be further improved using

incremental / dynamic MST update techniques for I1S.

Moreover, by exploiting tighter bounds on the maximum

MST degree in the rectilinear metric, further runtime

improvements can be obtained [7, 6, 8]

2.3 Parallel Scanline Heuristic
Techniques for producing Steiner trees for a large population

of nets in parallel were discussed by Jayaraman and Rutenbar

[9]. A scanline style heuristic [10] is proposed that computes

the Steiner trees for an random number of nets, each with an

arbitrary number of terminals. Given sufficient data parallel

machine resources and a even distribution of net sizes this is

done in constant time. This algorithm considers that every net

terminal is alloted a unique processor and uses a vertical line

segment, called a scanline that sweeps and connects the net

terminals in lexicographic order (left to right on the x axis,

then bottom up on the y axis) and following certain

preferences. Only local information is required which gives

the advantage for this technique. The terminals are processed

in scanline order hence scanline heuristic is explicitly serial.

However, parallelization can be easily achieved by

identifying and processing all the scanlines simultaneously on

data-parallel machines.

2.4 Parallel Heuristic for Macro Cell

Routing
A two-phase parallel heuristic algorithm for the STP with

usage in the routing of multi-terminal nets is proposed by

Fobel and Grewal [11]. A single Steiner tree is constructed

using a heuristic called Shrubbery in the first phase.

Shrubbery grows the tree using a customized version of

Dijkstra’s shortest-path algorithm. After the initial solution is

obtained a pool of dissimilar, high-quality tress is created

from it, by running multiple instances of a local search in

parallel. Their experimental results show a almost linear

speedup in relation to the number of processors compared to

the serial case. In addition, the formed trees are of high

quality and dissimilar, allowing for numerous routing

possibilities for each net.

2.5 Parallel GRASP
The parallel GRASP algorithm of Martins et al. [12] uses a

randomized version of Kruskal’s [13] algorithm for the

Minimum spanning Tree in the construction phase of the

algorithm. A local search method is used which is based on

insertions and eliminations of the nodes to/from the current

solution. A faster estimation for insertion and deletion moves

was achieved by maintaining a list of promising moves of

each type, which is periodically updated. This results in a

faster execution of the local search. In order to improve the

load balancing, the parallelization was made through the

distribution of the GRASP iterations among the processors on

a demand-driven basis. The local search proved to be the

bottleneck of the algorithm and strategies for its improvement

are mentioned. The authors continued their work by

implementing some of those strategies in a parallel GRASP

algorithm using a hybrid local search [14]. The iterations were

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.2, August 2016

10

equally distributed among the available processors. Increasing

the number of processors improves the execution times in

general. However, for some instances the speedup was linear,

while for others the parallelization does not contribute much.

The authors conclude that the largest speedups are achieved

for the hardest instances, since very few repetitions of the

constructed solutions occur.

3. PARALLELISM IN OARSMT

CONSTRUCTION
Totsukawa et al. [15] devised a parallel algorithm that accepts

a set of points S, the Euclidean MST and a set of obstacles in

the space and returns a three-dimensional, rectilinear Steiner

tree that avoids obstacles, has a minimum cost and has a

bounded number of bends. The algorithm replaces each edge

of the Euclidean minimum spanning tree by three rectilinear

segments (bends). In order to avoid the obstacles more

flexibly, one of the three segments is divided into two

segments. The permutations of these segments are the genes

that change during the execution of the algorithm. The

parallelization was made by dividing the population into

subpopulations.

[17] This article presents a parallel algorithm for constructing

OARSMTs. The algorithm is based on Watanabe’s Steiner

tree construction algorithm [18], but there are differences

between these two approaches. The algorithm is suitable for

use on a shared-memory multi-core computer system, whereas

Watanabe’s algorithm is suitable for use on a computer

system containing a two-dimensional array processor.

Specifically, an array processor can have as many as tens of

thousands of processing elements, while a shared-memory

multi-core computer may have less than ten processor cores.

Algorithm adopts two parallelized procedures, namely

PARALLELCONNECT() and PARALLEL-CLEANUP(),

and these two procedures can efficiently reduce the program

execution time. Experimental results show that the

implemented parallel program performs efficiently on a

shared-memory multi-core workstation.

[16] In this paper, maze routing based approach is used which

can also handle large scale OARSMT problems effectively. In

this algorithm, in order to handle multi-pin nets, multiple

candidates of the shortest path between the pins are kept until

all the pins are reached. A graph that is composed of all

candidates of the shortest path is formed and the MST of the

graph is constructed to create an OARSMT. A post-

processing step is then performed to further reduce the total

wire-length. A maze router is implemented efficiently by

using a heap data structure and propagating on the simplified

Hanan grid. This simplified Hanan grid is formed by the

original Hanan grid with all the intersection points lying

inside an obstacle deleted. In addition, the obstacle-avoiding

escape graph is created into a regular array-based data

structure. A parallel approach is proposed with applying the

multi-pin maze routing algorithm which can be efficiently

executed on GPU. Although applying GPU in various

computing applications has shown exciting speedup, the use

of GPU in EDA is not as popular as the other computational

fields.

4. ANALYSIS
Application of parallelism is observed to be very limited in

OARSMT as the work carried out is very restricted. The

Study of Steiner tree algorithms w.r.t RSMT and OARSMT

algorithms have shown that only some of the techniques can

be efficiently parallelized. Some techniques provide good

results with out parallelizing them. Maze routing approach is

the most commonly used for parallelism as it has the inbuilt

capability of incorporating parallel implementation of A maze

router efficiently by using a heap data structure and

propagating on the simplified Hanan grid. This simplified

hanan grid is formed by the original hanan grid with all the

intersection points lying inside an obstacle deleted. In addition

we facilitate the obstacle-avoiding escape graph into a regular

array-based data structure. A parallel approach is proposed

with applying the multi-pin maze routing algorithm which can

be efficiently executed on GPU. In depth study of the routing

algorithms which are implemented on Multicore or GPU has

also given rise to a hope where OARSMT can be constructed

using some of the routing algorithms on GPU or Multicore.

Table 4 The table presents the characteristics of the

algorithm

Authors Method Heuristics

Cost

Ref.

A B Kahng

and Robins

Barrera, T.,

Griffith,

repeatedly finds

optimum single

Steiner points for

inclusion into the

pointset

All processors send

their best candidate

to a master

processor,which

selects the best of

these candidates

for inclusion into

the pointset. This

procedure is

iterated

until no improving

candidates can be

found.

MST

computati

on can be

performed

in O(n log

n) time,

yielding

an O(n3

log n)

increases

with the

problem

size,

reaching

about 7.2

for n =
250 on 10

processors

.

[5,

6]

[19]

Jayaraman,

R., Rutenbar,

R.A

considers that every

net terminal is

alloted a unique

processor and uses

a vertical line

segment, called a

scanline that

sweeps and

connects the net

terminals in

lexicographic order

Efficient

for Data

parallel

Machines

[9,1

0]

Fobel and

Grewal

A single Steiner

tree is constructed

using a heuristic

called Shrubbery

the grows the tree

using Dijkstra’s

shortest-path

algorithm. A pool

of dissimilar, high-

quality tress is

created from it, by

 [11]

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.2, August 2016

11

running multiple

instances of a local

search in parallel

Totsukawa et

al.

The algorithm

replaces each edge

of the Euclidean

minimum spanning

tree by three

rectilinear segments

(bends)

Considera

ble

performan

ce

improvem

ent

[15]

Wing-Kai
Chowa,n,

parallel

implementation of

A maze router

efficiently by using

a heap data

structure and

propagating on the

simplified Hanan

grid

Efficient

for Large

Graphs

[16]

5. CONCLUSION
The steiner tree construction plays a significant role EDA

design. Many mathematicians devoted their attention to the

problem whose solution is now recognized as the Steiner tree

for three points in a plane. But as the problem is NP-hard,

finding a polynomialtime algorithm for solving the problem

exactly is difficult. This is why many non-exact solutions

have been proposed. But with today’s existing computing

power, many parallel algorithms are introduced. These

parallel concepts assist to obtain better results much faster

than ever before.

In this paper a survey is done to analyze what existing

sequential algorithms can be implemented in parallel and also

analysis of limited number of existing parallel algorithms for

constructing a steiner tree. combinatorial Also, many of the

The metaheuristic approaches proved to be among the most

successful in serial algorithms and have proved their value

once again in parallel computation.

Still, new generalizations are considered on a daily basis since

the STP can be easily adjusted to a broad range of real-life

problems. But, even after major accomplishments in serial

algorithms, not much research is being done exploiting the

parallel aspect other than the doing parallelism at the

hardware level using FPGA.

6. ACKNOWLEDGMENTS
The work reported in this paper is supported by the college

through the TECHNICAL EDUCATION QUALITY

IMPROVEMENT PROGRAMME [TEQIP-II] of the MHRD,

Government of India.

7. REFERENCES
[1] Hanan, Maurice. "On Steiner's problem with rectilinear

distance." SIAM Journal on Applied Mathematics 14.2

(1966): 255-265.

[2] Hwang, Frank K. "On Steiner minimal trees with

rectilinear distance." SIAM journal on Applied

Mathematics 30.1 (1976): 104- 114.

[3] Ho, J-M., Gopalakrishnan Vijayan, and C. K. Wong.

"New algorithms for the rectilinear Steiner tree

problem." ComputerAided Design of Integrated Circuits

and Systems, IEEE Transactions on 9.2 (1990): 185-193.

[4] J. L. Ganley and J. P. Cohoon, “Routing a multiterminal

critical net: Steiner tree construction in the presence of

obstacle,” in Proc. ISCAS, 1994, pp. 113–116.

[5] A. B. Kahng and G. Robins. A new class of iterative

steiner tree heuristics with good performance. IEEE

Transactions Computer-Aided Design, 11(7):893–902,

July 1992.

[6] A. B. Kahng and G. Robins. On Optimal

Interconnections for VLSI. Kluwer Academic Publishers,

Boston, MA, 1995.

[7] J. Griffith, G. Robins, J. S. Salowe, and T. Zhang.

Closing the gap: Near-optimal steiner trees in polynomial

time. IEEE Transactions Computer-Aided Design,

13(11):1351–1365, November 1994.

[8] G. Robins and J. S. Salowe. Low-degree minimum

spanning trees. Discrete and Computational Geometry,

14:151–165, September 1995.

[9] Jayaraman, R., Rutenbar, R.A.: A parallel Steiner

heuristic for wirelength estimation of large net

populations. In: 1991 IEEE International Conference on

Computer-Aided Design Digest of Technical Papers, pp.

344–347 (1991)

[10] Dunlop, A.E., Kernighan, B.W.: A procedure for

placement of standard-cell VLSI circuits. IEEE Trans.

Comput. Aided Des. Integr. Circuits Syst. 4, 92–98

(1985)

[11] Fobel, C.,Grewal, G.: A parallel Steiner tree heuristic for

macro cell routing.In: IEEE International Conference on

Computer Design, vol. 27–33 (2008)

[12] Martins, S.L., Ribeiro, C.C., Souza, M.C.: A parallel

GRASP for the Steiner problem in graphs. In:

IRREGULAR ’98: Proceedings of the 5th International

Symposium on Solving Irregularly Structured Problems

in Parallel, pp. 285–297 (1998)

[13] Kruskal Jr, J.B.: On the shortest spanning subtree of a

graph and the traveling salesman problem. Proc.

Am.Math. Soc. 7, 48–50 (1956)

[14] Martins, S.L., Resende,M.G.C., Ribeiro, C.C., Pardalos,

P.M.: A parallel GRASP for the Steiner tree problem in

graphs using a hybrid local search strategy. J. Global

Optim. 17(1), 267–283 (2000)

[15] Totsukawa, H., Senou, H., Ohmura, M.: A parallel

genetic algorithm for 3-D rectilinear Steiner tree with

bounded number of bends. In: 2008 51st Midwest

Symposium on Circuits and Systems, pp. 89–92 (2008)

[16] Wing-Kai Chowa,n, LiangLi a, Evangeline F.Y.Young a,

Chiu-WingSham b Obstacle-avoiding rectilinear Steiner

tree construction in sequential and parallel approach

[17] A Parallel Algorithm for Constructing Obstacle-

Avoiding Rectilinear Steiner Minimal Trees on Multi-

Core Systems Cheng-Yuan Chang and I-Lun Tseng,

Department of Computer Science and Engineering, Yuan

Ze University, Taiwan

[18] Takumi Watanabe, Hitoshi Kitazawa, and Yoshi

Sugiyama, “A Parallel Adaptable Routing Algorithm and

Its Implementation on a Two-Dimensional Array

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.2, August 2016

12

Processor,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 6, no. 2,

pp. 241-250, 1987

[19] McKee, S.A., Barrera, T., Griffith, J., Robins, G., Zhang,

T.: Toward a Steiner engine: enhanced serial and parallel

implementations of the iterated 1-Steiner MRST

algorithm. In: Proceedings of the Third Great Lakes

Symposium on VLSI-Design Automation of High

Performance VLSI Systems,vol. 2442, pp. 90–94 (1993)

[20] SWARM: A Parallel Programming Framework for

Multicore Processors David A. Bader, Varun Kanade and

Kamesh Madduri

IJCATM : www.ijcaonline.org

