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ABSTRACT 

We present a survey of the different approaches that can be 

parallelized and also the parallel algorithms available today 

with special concern to Rectilinear steiner tree for VLSI 

Design and  their appropriateness for high-performance 

computing. Thus, we review the parallel algorithms for 

solving the Stiener tree problem as it is of great importance 

for very large scale integration routing and  wire length 

estimation. As the steiner problem in general is  NP-hard, it is 

difficult to develop a polynomial-time algorithm to solve the 

problem exactly. This is why the most of research has looked 

at finding efficient heuristic algorithms. Additionally, many 

authors focused their work on utilizing the ever-increasing 

computational power and developed many parallel  methods 

for solving the problem. Hence we are able to obtain better 

results in less time than ever before.The study shows that the 

accessibility of multi-core CPUs has given new impulse to the 

shared memory parallel programming approach., Hybrid 

parallel programming is the current way of harnessing the 

capabilities of computer clusters with multi-core nodes. On 

the other hand, high performance heterogeneous programming 

is found to be an increasingly well accepted paradigm, as a 

result of the availability of multi-core CPUs and GPUs 

systems. The use of open industry standards like OpenMP, 

MPI, or OpenCL, as opposed to proprietary solutions, seems 

to be the way to categorize and extend the use of parallel 

programming models. Here, we present a survey of the 

parallel methods for solving the stiener tree problem 

specifically for VLSI design  

General Terms 
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1. INTRODUCTION 
VLSI in Electronic design automation  is a process of placing 

hundreds of thousands of electronic components on one chip. 

The efficient algorithms for global routing process in VLSI is 

in demand  as the number of logic circuts and the  memory 

capacity increased  rapidly. Good positioning of the 

components  is essential, because this can gradually reduce 

the power and lower the heating of the chip, in turn making  

the chips smaller and  lower the production costs. The 

optimality criteria that must be examined include minimizing 

the total wire length, minimizing the total area, minimizing 

the cost of the chip. Most algorithms focus on minimizing the 

wire length. In the VLSI physical design global routing phase 

the appropriate locations for macro cells are determined. 

Macro cells are the logical units that perform the desired 

functions of  the chip.  Then the cells need to be assigned to a 

certain rectangular area and connected by wires which usually 

run rectilinearly on the chips. Hence,  rectilinear Steiner trees 

are perfectly suited for solving this problem.  

1.1 Rectilinear Steiner tree 
One of the important  purpose of Steiner tree in electronic 

design automation is in placement and routing stage of VLSI 

design process. The routing is categorized into two phases 

called global routing and detailed routing. In Global routing 

blocks are  connected but does not consider the details of each 

wire and pin, whereas in detailed routing point-to-point 

connections is made between pins on each block is completed. 

For  given  set of input points, the Steiner tree problem (STP) 

is to find a minimum-length tree that connects all the input 

points,  and new points are added to minimize the length of 

the tree. The new points that are added are called Steiner 

points. One of the types of Steiner tree problem is the 

Rectilinear Steiner tree that considers rectilinear or Manhattan 

distance between a pair of points. The rectilinear distance d 

between two points p1 and p2 is defined as: d (p1, p2)=|x1 – x2 | 

+ |y1 – y2 |, where (xi ,yi ) are the coordinates of pi. M.Hanan 

[1] is the first to have reduced the RST problem to the Graph 

Steiner Problem (GST) problem. Hanan’s theorem proves that 

for any instance, an optimal RST exists in which every Steiner 

point lies at the intersection of two rectilinear lines that 

contain terminals. Hanan’s theorem states that by depiction of 

a graph called Hanan Grid graph, an optimal RST may surely 

be obtained. F.K.Hwang[2] proves that the ratio of the cost of 

the rectilinear minimum spanning tree (RMST) to that of an 

optimum RST is no greater than 3/2. Therefore the rectilinear 

MST is a suitable starting point for deriving low cost RST. 

Ho,Vijayan and CK Wong [3] presented a new approach to 

construct an RST of a given set of points in the plane starting 

from a Minimum Spanning tree. The total minimum wire 

length of a RST is referred as the cost of RST. A heuristic 

approach is proposed that finds layouts for the edges of the 

MST so as to maximize the overlaps between the layouts and 

thus minimizing the cost (i.e. wire length) of the Rectilinear 

Steiner Tree   

 

Fig 1. Rectilinear Steiner tree Construction 

The original RSMT problem assume  no obstacles in the 

routing region. In  today’ s VLSI design there can be many 

routing obstacles like macro cells, IP blocks and prerouted 

nets. Therefore, The RSMT problem with blockages, called 

OARSMT problem is widely studied. Let P={p1,p2,p3…pn} be 

the set of pins for m pin met. Let B={b1,b2,b3…bk} be a set of 

rectangular blockages. Let V={v1,v2,v3…vm}=P U {Corners 

in B} as the vertex set in the problem where each vi has 

coordinates (xi,yi). The blockages which are rectangular  has 4 

corners, we have n<=m+4k.The rectilinear distance between 
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vi & vj is given as |xi-xj|+|yi-yj|.  A OARSMT connects all pins 

through some extra points to achive a minimal total length, 

avoiding the intersection with any blockage in the design.  

1.2 Obstacle Avoiding Rectilinear Steiner 

Tree 
Most recent OARSMT heuristics use routing graphs to handle 

obstacles. Those routing graphs can be categorized into 

rectilinear graph and spanning graph. A rectilinear graph uses 

rectilinear edges to connect pin-vertices, obstacle corners, and 

other Steiner point candidates, while a spanning graph only 

contains pin vertices and obstacle corners. Compared with a 

spanning graph, a rectilinear graph usually contains better 

solutions, i.e., high effectiveness, but its space complexity is 

often (n2). Compared with a rectilinear graph, a spanning 

graph usually takes much smaller space, higher efficiency, 

while its solution quality is limited since it does not contain 

additional Steiner point candidates except obstacle corners.. 

To sum up, there exists a tradeoff between the effectiveness of  

rectilinear graphs and the efficiency of spanning graphs. For 

the OARSMT construction, it is desirable to balance the 

tradeoff, and to develop an excellent algorithm with the best 

practical performance in both the wirelength and the runtime.  

1.3 Introduction to Multicore and Parallel 

computing 

 

Fig 2 Obstacle Avoiding Rectilinear steiner tree 

With increase in computer technology General-purpose 

multicore processors are being broadly accepted in all areas  

of the industry, including signal processing and embedded 

space, as the need for more performance efficiency for 

general-purpose applications has increased. Parallel 

processing increases performance considerably by adding 

more parallel resources while maintaining manageable power 

characteristics. The implementations of multicore processors 

are plenty and diverse. Designs range from usual 

multiprocessor machines to designs that consist of a many 

programmable arithmetic logic units (ALUs). 

To develop efficient multicore algorithms, one must 

understand in depth multiple algorithmic and architectural 

aspects.  The list of characteristics to develop a parallel 

algorithm for multicore architecture  includes the following: 

1. identifying the available and required dimensions of 

parallelism, 

2. mapping parallel threads of activity to a potentially 

large pool of processing and functional units, 

3. using simple processing cores with limited 

functionalities, 

4. coping up  with the limited on-chip memory per 

core, 

5. coping up with the limited off-chip memory 

bandwidth (when compared to the rich resources 

available on chip) 

6. performance on multicore systems: 

In addition to the above features, according to [20] there is a  

need to consider other multicore issues which play very 

important role in parallel programming  

Number of processing cores: Many existing systems have 

two to eight cores integrated on a single chip. Cores typically 

support features such as simultaneous multithreading (SMT) 

or hardware multithreading, which allow for greater 

parallelism and throughput. In recent designs, we have up to 

hundred cores on a single chiplike GPGPU. 

Caching and memory bandwidth: Memory speeds have 

been increasing at a much slower rate than processor capacity. 

Memory bandwidth and latency are important performance 

criteria for several scientific and engineering applications. 

Caching severely affect the efficiency of algorithms even on 

single processor systems. In multicore systems, this will be 

even more important due to extra bandwidth constraints. 

Synchronization: Implementing algorithms using multiple 

processing cores will require synchronization between the 

cores from time to time, which is an expensive operation in 

shared memory architectures. 

Multi-core CPUs have become common, as they are widely 

used for high performance computations and also in consumer 

electronics. The idea of using the graphics processor for 

general purpose computation has also become popular, since 

this approach has yielded incredible performance when 

applied to suitable problems. Such increase of 

parallelism(multiple threads on a CPU or GPU) and 

heterogeneity (simultaneous use of a CPU and GPU) has 

succeeded in greatly improving the efficiency and 

performance of many traditional computation-intensive 

workloads, provided that their parallel or heterogeneous 

implementations are well analyzed. There are still some 

problems that demand fast computation but for whom 

efficient parallel or heterogeneous implementations have yet 

to be identified like RSMT or OARSMT construction VLSI 

design.Programming languages have been developed to utilize 

the cores available in multicore ot GPU. The CUDA language 

for programming GPGPU is designed to work with only 

NVIDIA’s GPUs, whereas OpenCL can be used with a 

different manufacturers of  multi-core CPU and GPU devices, 

including NVIDIA’s GPUs. Despite CUDA’s hardware 

restriction, OpenCL  share many similar syntax and other 

characteristics with CUDA.. The introduction of new parallel 

programming interfaces for general purpose computations, 

such as Computer Unified Device Architecture (CUDA), 

Stream SDK and OpenCL, have made GPUs powerful and 

attractive choice for developing high-performance numerical, 

scientific computation and solving practice engineering 

problems. However, programming on GPUs remains a 

challenging problem. The reason is that many contemporary 

GPUs exhibit complex memory organization with multiple 

low latency on-chip memories in addition to the off-chip 

memory. The access latencies and the optimal access patterns 

of each of the memories is  significantly different, posing a 

significant challenge to develop techniques that optimally 

utilize the various memories to tolerate the latency and 

improve the memory thoughtful. The memory hierarchy along 

with the highly parallel execution model make optimization of 

the application difficult. The challenges increase many-times 
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when the application to be optimized and parallelized are 

memory-intensive operations such as Sparse Matrix-Vector 

multiplication (SpMV), Graph algorithms or VLSI routing 

algorithms which are critical for most analysis and also 

simulation tasks for VLSI chip designs 

2. PARALLELISM IN STEINER TREE 

CONSTRUCTION 

2.1 The Iterated 1-Steiner (I1S) Approach 
One of the earliest work where the idea given in this work was 

for sequential implementation  but is suitable for parallel 

implementation is the Iterated 1-Steiner heuristic [5, 6], which 

repeatedly finds optimum single Steiner points for inclusion 

into the pointset. Given two pointsets A and B, we define the 

MST as:  MST(A, B) = cost(MST(A)) − cost(MST(A ∪  B)). 

Intersection points of all horizontal and vertical lines passing 

through points of P (as defined by Hanan’s theorem [1]) Let 

H(P) denote the Steiner candidate set. For any pointset P, a 1-

Steiner point with respect to P is a point x ∈  H(P) that 

maximizes ∆MST(P, {x}) > 0. the Iterated 1-Steiner (I1S) 

method  repeatedly finds a 1-Steiner point x for P ∪S and sets 

S ← S ∪  {x}, starting with a pointset P and a set S = ∅  of 

Steiner points,. The MST(P ∪  S)  cost will decrease with each 

added  point, and thewhen there no longer exists any point x 

with ∆MST(P ∪  S, {x}) > 0 the construction terminates 

For  the Manhattan plane, to find a 1-Steiner point  it suffices 

to construct an MST over |P∪S|+1 points for each of the O(n2 

) members of the Steiner candidate set (i.e., Hanan grid 

points), and then pick a candidate which minimizes the overall 

MST cost. Each MST computation can be performed in O(n 

log n) time, yielding an O(n3 log n) time method to find a 

single 1-Steiner point. Exploiting parallelism for this approach 

is simpler as each processor can independently construct the 

MST and add the steiner points in I1S method. Then there can 

be check on the length of each MST at every processor. 

Whichever MST with steiner point has smaller length can be 

choosen the process can be repeated for all the points in the 

plain. 

Kahng and Robins [5, 6]  proposed the iterated 1-Steiner 

algorithm where  the best possible Steiner point is found   

iteratively and adds it to the solution set until no further 

improvement is possible. Barrera et al. [19] developed a 

straightforward and efficient implementation  method for the 

iterated 1-Steiner algorithm and provided a parallel version of 

the algorithm. They concluded that the algorithm is very 

suitable for parallelization and can be generalized to arbitrary 

weighted graphs (principles like obstacle avoiding and 

congestion can be easily implemented). 

2.2 The Batched 1-Steiner Variant 
Even though a single 1-Steiner point may be found with time 

complexity of O(n2), the required computational geometry 

techniques are complicated and not easy to implement. To 

address these issues, a variant of I1S called batched I1S was 

developed [5,6], which amortizes the computational cost of 

finding  1-Steiner points by adding as many “independent” 1-

Steiner points as possible in every round. The Batched 1-

Steiner (B1S) variant computes ∆MST(P,{x}) for each 

candidate Steiner point x ∈  H(P) (i.e., the Hanan grid 

candidate points). Two Steiner points x and y are independent 

candidates if: ∆MST(P, {x}) + ∆MST(P, {y}) ≤ ∆MST(P, {x, 

y}), where each of the two 1-Steiner points does not reduce 

the potential gain in MST cost relative of the other 1-Steiner 

point. Given pointset P and a set of  Steiner points S, each 

round of B1S greedily adds into S a maximal set of 

independent 1-Steiner points. When a round fails to add any 

new Steiner points termination occurs . The total time 

required for each round is O(n2logn). 

Since each processor can independently compute the MST 

savings of different candidate Steiner points the I1S and B1S 

algorithms are extremely parallelizable. The Iterated Steiner 

approach is therefore very agreeable to parallel 

implementation on grid computers [7, 6]. The time complexity 

and practical runtime of B1S can be further improved using 

incremental / dynamic MST update techniques for I1S. 

Moreover, by exploiting tighter bounds on the maximum 

MST degree in the rectilinear metric, further runtime 

improvements can be obtained [7, 6, 8] 

2.3 Parallel Scanline Heuristic  
Techniques for producing Steiner trees for a large population 

of nets in parallel were discussed by Jayaraman and Rutenbar 

[9]. A  scanline style heuristic [10]  is proposed that computes 

the Steiner trees for an random number of nets, each with an 

arbitrary number of terminals. Given sufficient data parallel 

machine resources and a even distribution of net sizes this is 

done in constant time. This algorithm considers that every net 

terminal is alloted a unique processor and uses a vertical line 

segment, called a scanline that sweeps and connects the net 

terminals in lexicographic order (left to right on the x axis, 

then bottom up on the y axis) and following certain 

preferences. Only local information is required which gives 

the advantage for this technique.  The terminals are processed 

in scanline order hence scanline heuristic is explicitly serial. 

However, parallelization can be easily achieved  by 

identifying and processing all the scanlines simultaneously on 

data-parallel machines. 

2.4 Parallel Heuristic for Macro Cell 

Routing  
A two-phase parallel heuristic algorithm for the STP with 

usage in the routing of multi-terminal nets is proposed by 

Fobel and Grewal [11]. A single Steiner tree is constructed 

using a heuristic called Shrubbery in the first phase. 

Shrubbery grows the tree using a customized version of 

Dijkstra’s shortest-path algorithm. After the initial solution is 

obtained a pool of dissimilar, high-quality tress is created 

from it, by running multiple instances of a local search in 

parallel. Their experimental results show a almost linear 

speedup in relation to the number of processors compared to 

the serial case. In addition, the formed trees are of  high 

quality and dissimilar, allowing for numerous routing 

possibilities for each net. 

2.5 Parallel GRASP  
The parallel GRASP algorithm of Martins et al. [12] uses a 

randomized version of Kruskal’s [13] algorithm for the 

Minimum spanning Tree in the construction phase of the 

algorithm. A local search method is used which is based on 

insertions and eliminations of the nodes to/from the current 

solution. A faster estimation for insertion and deletion moves 

was achieved by maintaining a list of promising moves of 

each type, which is periodically updated. This results in a 

faster execution of the local search. In order to improve the 

load balancing, the parallelization was made through the 

distribution of the GRASP iterations among the processors on 

a demand-driven basis. The local search proved to be the 

bottleneck of the algorithm and strategies for  its improvement 

are mentioned. The authors continued their work by 

implementing some of those strategies in a parallel GRASP 

algorithm using a hybrid local search [14]. The iterations were 
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equally distributed among the available processors. Increasing 

the number of processors improves the execution times in 

general. However, for some instances the speedup was linear, 

while for others the parallelization does not contribute much. 

The authors conclude that the largest speedups are achieved 

for the hardest instances, since very few repetitions of the 

constructed solutions occur. 

3.  PARALLELISM IN OARSMT 

CONSTRUCTION 
Totsukawa et al. [15] devised a parallel algorithm that accepts 

a set of points S, the Euclidean MST and a set of obstacles in 

the space and returns a three-dimensional, rectilinear Steiner 

tree that avoids obstacles, has a minimum cost and has a 

bounded number of bends. The algorithm replaces each edge 

of the Euclidean minimum spanning tree by three rectilinear 

segments (bends). In order to avoid the obstacles more 

flexibly, one of the three segments is divided into two 

segments. The permutations of  these segments are the genes 

that change during the execution of the algorithm. The 

parallelization was made by dividing the population into 

subpopulations. 

[17] This article presents a parallel algorithm for constructing 

OARSMTs. The algorithm is based on Watanabe’s Steiner 

tree construction algorithm [18], but there are differences 

between these two approaches. The algorithm is suitable for 

use on a shared-memory multi-core computer system, whereas 

Watanabe’s algorithm is suitable for use on a computer 

system containing a two-dimensional array processor. 

Specifically, an array processor can have as many as tens of 

thousands of processing elements, while a shared-memory 

multi-core computer may have less than ten processor cores. 

Algorithm adopts two parallelized procedures, namely 

PARALLELCONNECT() and  PARALLEL-CLEANUP(), 

and these two procedures can efficiently reduce the program 

execution time. Experimental results show that the 

implemented parallel program performs efficiently on a 

shared-memory multi-core workstation.  

[16] In this paper, maze routing based approach is used which 

can also handle large scale OARSMT problems effectively. In 

this algorithm, in order to handle multi-pin nets, multiple 

candidates of the shortest path between the pins are kept until 

all the pins are reached. A graph that is composed of all 

candidates of the shortest path is formed and the MST of the 

graph is constructed to create an OARSMT. A post-

processing step is then performed to further reduce the total 

wire-length. A maze router is implemented efficiently by 

using a heap data structure and propagating on the simplified 

Hanan grid. This simplified Hanan grid is formed by the 

original Hanan grid with all the intersection points lying 

inside an obstacle deleted. In addition, the obstacle-avoiding 

escape graph is created into a regular array-based data 

structure. A parallel approach is proposed with applying the 

multi-pin maze routing algorithm which can be efficiently 

executed on GPU. Although applying GPU in various 

computing applications has shown exciting speedup, the use 

of GPU in EDA is not as popular as the other computational  

fields. 

4. ANALYSIS 
Application of parallelism is observed to be very limited in 

OARSMT as the work carried out is very restricted. The 

Study of Steiner tree algorithms w.r.t RSMT and OARSMT 

algorithms have shown that only some of the techniques can 

be efficiently parallelized. Some techniques provide good 

results with out parallelizing them. Maze routing approach is 

the most commonly used for parallelism as it has the inbuilt 

capability of incorporating parallel implementation of A maze 

router efficiently by using a heap data structure and 

propagating on the simplified Hanan grid. This simplified 

hanan grid is formed by the original hanan grid with all the 

intersection points lying inside an obstacle deleted. In addition 

we facilitate the obstacle-avoiding escape graph into a regular 

array-based data structure. A parallel approach is proposed 

with applying the multi-pin maze routing algorithm which can 

be efficiently executed on GPU. In depth study of the routing 

algorithms which are implemented on Multicore or GPU has 

also given rise to a hope where OARSMT can be constructed 

using some of the routing algorithms on GPU or Multicore.  

Table 4 The table presents the characteristics of the 

algorithm 

Authors Method  Heuristics 

Cost  

Ref. 

A B Kahng 

and Robins 

 

 

 

 

Barrera, T., 

Griffith, 

repeatedly finds 

optimum single 

Steiner points for 

inclusion into the 

pointset 

 

 

 

 

All processors send 

their best candidate 

to a master                    

processor,which 

selects the best of 

these candidates 

for inclusion into 

the pointset. This 

procedure is 

iterated 

until no improving 

candidates can be 

found. 

MST 

computati

on can be 

performed 

in O(n log 

n) time, 

yielding 

an O(n3 

log n) 

increases 

with the 

problem 

size, 

reaching 

about 7.2 

for n = 
250 on 10 

processors

. 

 

[5, 

6] 

 

 

 

 

[19] 

 

 

 

Jayaraman, 

R., Rutenbar, 

R.A 

considers that every 

net terminal is 

alloted a unique 

processor and uses 

a vertical line 

segment, called a 

scanline that 

sweeps and 

connects the net 

terminals in 

lexicographic order 

Efficient 

for Data 

parallel 

Machines 

[9,1

0] 

Fobel and 

Grewal 

A single Steiner 

tree is constructed 

using a heuristic 

called Shrubbery 

the grows the tree 

using  Dijkstra’s 

shortest-path 

algorithm. A pool 

of dissimilar, high-

quality tress is 

created from it, by 

 [11] 
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running multiple 

instances of a local 

search in parallel 

Totsukawa et 

al. 

The algorithm 

replaces each edge 

of the Euclidean 

minimum spanning 

tree by three 

rectilinear segments 

(bends) 

Considera

ble 

performan

ce 

improvem

ent 

[15] 

Wing-Kai 
Chowa,n, 

parallel 

implementation of 

A maze router 

efficiently by using 

a heap data 

structure and 

propagating on the 

simplified Hanan 

grid 

Efficient 

for Large 

Graphs 

[16] 

 

5. CONCLUSION 
The steiner tree construction  plays a significant role EDA 

design. Many mathematicians devoted their attention to the 

problem  whose solution is now recognized as the Steiner tree 

for three points in a plane. But as the problem is NP-hard, 

finding a polynomialtime algorithm for solving the problem 

exactly is difficult. This is why many non-exact solutions 

have been proposed. But with today’s existing computing 

power, many parallel algorithms are introduced. These 

parallel concepts assist to  obtain better results much faster 

than ever before. 

In this paper a  survey is done to analyze what existing 

sequential algorithms can be implemented in parallel and also 

analysis of limited number of existing parallel algorithms for 

constructing a steiner tree. combinatorial Also, many of the 

The metaheuristic approaches proved to be among the most 

successful in serial algorithms and have proved their value 

once again in parallel computation.   

Still, new generalizations are considered on a daily basis since 

the STP can be easily adjusted to a broad range of real-life 

problems. But, even after major accomplishments in serial 

algorithms, not much research is being done exploiting the 

parallel aspect other than the doing parallelism at the 

hardware level using FPGA. 
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