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ABSTRACT 

This paper seeks to improve the performance of the New 

Chinese Remainder Theorem (CRT) using the new moduli 

set {22𝑛+2 + 3, 22𝑛+1 + 1, 22𝑛 + 1,2}. This optimization is 

very important in order to minimize the cost of hardware 

implementation and to improve the reverse conversion speed. 

The major factor responsible for this high hardware cost and 

high reverse conversion time is the presence of multipliers in 

the hardware implementation of the reverse converters. This 

paper proposes the moduli set {22𝑛+2 + 3, 22𝑛+1 + 1, 22𝑛 +
1,2}, which is applicable for applications requiring larger 

dynamic range. The moduli set must be relatively prime 

integers.  The computation of multiplicative inverses can be 

eliminated. We employ the proposed moduli set to optimize 

the New CRT-I. This scheme can result in less memory and 

adder based reverse converters, which is shown to be better 

than known existing similar state of the art scheme. 
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1. INTRODUCTION 
Recent times have seen vigorous and continuous research into 

the improvement of computer performance. Researchers are 

making progress in improving the efficiency of computers 

with new ideas and technologies. Computing is the main task 

of a computer that is dealing with numbers all the time hence 

the number system. Some examples of number systems are 

binary number systems, decimal number systems, Residue 

Number System (RNS) and many more. Research has 

revealed that binary and decimal number systems intrinsically 

limit the performance of arithmetic units and processors built 

based on them. This is a limitation of the Weighted Number 

System (WNS) therefore making RNS more preferred in 

computing larger numbers in computers. A number in RNS is 

represented by the residues of all moduli, and arithmetic 

operations can be performed independently on each modulus. 

Thus, RNS offers the properties of parallelism, carry-free 

addition, borrow free subtraction, which are the major 

challenges of binary and decimal systems [10]. According to 

[9], the third-century Chinese scholar Sun Tzu invented the 

Residue Number System (RNS). Sun Tzu posed a 

mathematical riddle: 

We have things of which we do not know the number 

If we count them by threes, we have two left over 

If we count them by fives, we have three left over 

If we count them by sevens, we have two left over. Tzu [9] 

gave a rule, how many things are there? 

This riddle was later generalized by another Chinese and 

known as the Chinese remainder theorem which is the bases 

of RNS [10]. 

In the 1950s, RNS was rediscovered by some computer 

scientists who sought to put them to use in the implementation 

of fast arithmetic and fault-tolerant computing [10]. Their 

system also offered useful properties for error detection, error 

correction and fault tolerance in digital systems. These 

properties increase the efficient in carrying out arithmetic 

operations. The speed of arithmetic operations relies largely 

on the size of the numbers involved, smaller numbers result in 

faster operations. Smaller numbers were considered in their 

research and therefore known for faster implementation of 

arithmetic operations. This system is applied in the fields of 

Digital Signal Processing (DSP), Speech Processing, Image 

Processing, Computer Engineering and Computer Security. 

Sun Tzu [9] also proposed a general structure of a typical 

RNS processor as shown in Figure 1. Data that is represented 

in RNS is processed in parallel with no dependence or carry 

propagation between the processing units. The process of 

encoding the input data into RNS representation is called 

Forward Conversion. This data when processed is converted 

back to the conventional representation. Reverse conversion is 

the process of converting back the output data from RNS to 

conventional representation. 

 

Figure 1: General Structure of an RNS-Based processor 
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2. SIGNIFICANCE OF RNS 

REPRESENTATION  
Residue Number System is an integer system which is capable 

of supporting parallel, carry-free and high speed arithmetic 

operations [12], [3] and [5].  In addition, RNS offers some 

useful properties for error detection, error correction and fault 

tolerance in digital systems. It is very efficient in carrying out 

arithmetic operations like additions, subtractions and 

multiplications. The speed of the arithmetic operations relies 

on the size of the numbers involved.  

Omondi A and Premkumar B [10], proposed an algorithm 

using parallel distributed arithmetic with no dependence 

between the arithmetic blocks which simplifies the overall 

design and reduces the complexity of the individual building 

blocks. [10] Summarized the advantages of RNS 

representation as follows:  

High Speed: In conventional digital processors, the critical 

path is associated with the propagation of the carry signal to 

the last bit of the arithmetic unit. RNS encodes large words 

into small words minimizing the critical path. Also, the carry-

free property of RNS between the arithmetic blocks results in 

high speed processing.  

Reduced Power: RNS processors reduce the switching 

activities in each channel by using small arithmetic units 

resulting in a reduction of the dynamic power. This is because 

the dynamic power is directly proportional to switching 

activities.  

 Reduced Complexity: The property of RNS that makes it 

encode large numbers into smaller residues reduce the 

complexity of the arithmetic units in each modulo channel. 

This facilitates and simplifies the overall design. 

3. DRAWBACKS OF RNS 

REPRESENTATION  
[11] highlights the advantages of RNS architectures especially 

in areas of speed and power. These make it suitable to 

implement RNS in different applications. However, RNS 

processors are not widely use but remain as an interesting 

theoretical topic. There are two main reasons behind the 

limited use of RNS in applications;  

1. Although RNS representation simplifies and 

expedites addition and multiplication compared to 

the conventional binary system, other operations 

such as division, square-root, sign detection, and 

comparison are difficult and costly operations in the 

residue domain. Thus, this makes it difficult to build 

an RNS based ALU capable of performing the basic 

arithmetic operations.  

2. Conversion circuitry can be complex and can 

introduce latency that offsets the speed gained by 

the RNS processor. Hence, the design of efficient 

conversion circuits is considered the bottleneck of a 

successful RNS. 

4. APPLICATIONS  
RNS is suitable for applications in which addition and 

multiplication are the predominant arithmetic operations 

because of its carry-free property. RNS has good potential in 

applications where speed and/or power consumption is very 

critical. In addition, RNS facilitates error detection and 

correction due to the isolation between the modulo channels. 

Examples of these applications are digital signal processing 

(DSP), digital image processing, RSA algorithms, 

communication receivers, and fault tolerance. Intensive 

multiply-and-accumulate (MAC) operations are required in 

most of these applications.  

Sun Tzu [9] proposed the design of digital filters which is an 

RNS application in DSP. These digital filters have different 

uses such as interpolation, decimation, equalization, noise 

reduction, and band splitting. 

Later, [5] identified two basic types of digital filters: Finite 

Impulse Response (FIR) filters and Infinite Impulse Response 

(IIR) filters. These filters mostly use multiplication and 

addition operations. These two arithmetic operations in the 

residue domain increases system speed and lowers the power 

consumption.  

RNS could also be applied in the field of cryptography to 

secure information [14]. The research implements an efficient 

algorithm of RNS for RSA cryptography which enhances 

security and also decrease delay time complexity for encoding 

and decoding. The area of hardware requirement for 

implementation was reduced. 

Another possible application of RNS in DSP is the Discrete 

Fourier Transform (DFT), an engineering based application. 

In this application, multiplication and addition are equally the 

main operations of the DFT. Hence, faster operations due to 

the parallelism in the processing. In addition, the carry-free 

property of the RNS makes it potentially very useful in fault 

tolerant applications. Recent integrated circuits are very 

dense, and therefore full testing will no longer be possible. 

RNS has no weight information this implies an error in one of 

the residues does not affect the other modulo channels. 

Consequently, ordering is not important in RNS 

representation, therefore, faulty residues can be discarded and 

corrected separately.  

In summary, RNS seems to be good for many applications 

that are important in modern computing algorithms. 

5. CHOICE OF MODULI     
The choice of the moduli set is the major consideration in the 

design of RNS systems this is because the efficient choice of 

the moduli guarantees the most efficient outcome possible 

from an RNS system in terms of speed, hardware etc. 

Consequently, for RNS the moduli {𝑚1, 𝑚2, … , 𝑚𝑛} should 

satisfy the following properties: 

1. The moduli should be relatively prime i.e. no two 

moduli should have a greatest common divisor 

greater than 1. 

2. The moduli should be as small as possible, so that 

the modulo operations require less computational 

time. 

3. The moduli should be in such a form so as to offer 

simple forward (weighted to RNS) and reverse 

(RNS to weighted) conversion with simple residue 

arithmetic.  

4. The product of the moduli should be large enough 

so as to offer the required dynamic range for the 

particular system. 

5. The moduli should create a balanced decomposition 

of the dynamic range which means the difference 

between the number of bits of different moduli 

should be as small as possible for achieving optimal 

parallel performance. 
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6. CONVERSIONS AND THEORIES 

6.1 Data Conversion  
Data conversion is one of the greatest challenges of RNS 

because the input operands are provided in either standard 

binary or decimal format and must be converted to RNS 

before the computation can be performed. Similarly, the final 

results must be represented in the same way as the input 

operands, thus RNS to binary/decimal conversion is very 

essential to a successful RNS design. This implies that RNS 

based processors make heavy use of data conversions, which 

are slow processes. For an RNS processor to compete 

favorable with a conventional processor efficient data 

converters must be developed so that the RNS speedup will 

not be nullified by the conversion overhead. Data conversion 

can be divided into two Categories, namely, forward and 

reverse conversion. Relatively, the reverse conversion is more 

complex but the forward conversion is not simple either. 

6.2 Forward Conversion 
The input operands to the RNS processor are either in the 

decimal or binary format, and therefore need to be converted 

into their respective residues before they are used for the 

computation. This work of converting from decimal to binary 

to residue is done by the forward conversion.  

6.3 Reverse conversion from RNS to 

binary representation 
Reverse conversion algorithms in the literature are all based 

on either Chinese Remainder Theorem (CRT) or Mixed-Radix 

Conversion (MRC). The MRC is an inherently sequential 

approach. On the other hand, the CRT can be implemented in 

parallel. The main drawback of the CRT based Residue to 

Binary reverse converter, is the need of a large modulo adder 

in the last stage. The reverse conversion is one of the most 

difficult RNS operations and has been a major, if not the 

major, limiting factor to a wider use of RNS. 

6.4 Mixed Radix Conversion (MRC) 
According to [9], given a set of pair-wise relatively prime 

moduli {𝑚1, 𝑚2, … , 𝑚𝑛}  and a residue representation   

{𝑥1, 𝑥2, … , 𝑥𝑛} in that system of some number 𝑋, where 

𝑥𝑖 = |𝑋|𝑚 𝑖
. The number 𝑋 can be represented uniquely in 

mixed-radix form as 𝑋 = {𝑧1, 𝑧2, … , 𝑧𝑛}  where 𝑋 = 𝑧1 +
𝑧2𝑚1 + 𝑧3𝑚2𝑚1 + ⋯ + 𝑧𝑛𝑚𝑛−1𝑧𝑛−2 …𝑚1   and 0 ≤ 𝑧𝑖 ≤ 𝑥𝑖                                             

The Mixed-Radix Conversion (MRC) establishes an 

association between the unweighted, non-positional RNS and 

a weighted, positional mixed-radix system. In order to 

perform a reverse conversion the 𝑧𝑖  values must be obtained. 

The 𝑧𝑖  values are obtained as follows: 

𝑧1 = 𝑥1,  𝑧2 =   𝑚1
−1 𝑚2

(𝑥2 − 𝑧1) 
𝑚2

 

   𝑧3 =   𝑚2
−1 𝑚3

  𝑚1
−1 𝑚3

 𝑥3 − 𝑧1 − 𝑧2  𝑚3
  

⋮              

𝑧𝑁 =

  𝑚𝑁
−1 𝑚𝑁

  𝑚𝑁−2
−1 𝑚𝑁

 …  𝑚2
−1 𝑚𝑁

  𝑚1
−1 𝑚𝑁

 𝑥𝑁 −

𝑧1 − 𝑧2 …  − 𝑧𝑁−1  𝑚𝑁
                                                         

Example 1: Suppose we wish to find the number, X, whose 

residue representation is 

 {1, 0, 4, 0} relative to the moduli set {2, 3, 5, 7} 

From the equations above, 

𝑧1 = 1,  

𝑧2 =   2−1 3 0 − 1  3 =  2 × −1 3  

= |2 × 2|3 (Additive inverse of −1 w.r.t 3 is 2) 

𝑧2 = 1  

𝑧3 =   3−1 5  2
−1 5 4 − 1 − 1  5 =  2 ×  3 × 3 × −1  5  

𝑧3 = 1  

𝑧4 =   5−1 7  3
−1 7  2

−1 7(0 − 1 − 1  7 = |27|7 = 6  

Therefore,  

𝑋 ≅ (1,1,1,6)  and for the conventional form, we translate this 

as 𝑋 = 6 × 2 × 3 × 5 + 1 × 2 × 3 + 1 = 189 

6.5 Chinese Remainder Theorem (CRT) 
The Chinese Remainder Theorem (CRT) may rightly be 

viewed as one of the most important fundamental results in 

the theory of residue number systems. CRT assures us that if 

the moduli of RNS are chosen appropriately then each number 

in the dynamic range will have a unique representation in 

RNS and that from such a representation we can determine the 

number represented. According to [9], [3] and [6], CRT is 

useful in reverse conversion as well as several other 

operations. Given a set of pair-wise relatively prime 

moduli, 𝑚1, 𝑚2 , 𝑚3 … , 𝑚𝑛 , and a residue representation 

(𝑥1 , 𝑥2 , … , 𝑥𝑛 ) in that system of some number 𝑋. 

That is 𝑥𝑖 =  x 𝑚 𝑖    , that number and its residues are related 

by the equation 𝑋 = |  𝑥𝑖   𝑀
−1𝑖 𝑚 𝑖

𝑛
𝑖=1 𝑀𝑖|𝑀                                                                 

The expression above is the Chinese Remainder Theorem 

Where  𝑀𝑖 = 𝑀
𝑚𝑖

                                                                                       

Example 2: Consider the moduli set {3, 5, 7}, and suppose we 

wish to find the X whose residue representation is {1, 2, 3}. 

Solution 

𝑀 = 3 × 5 × 7    𝑀1 = 𝑀
𝑚1

   𝑀1 = (3 × 5 × 7)/3 

 𝑀1 = 35  𝑀 = 3 × 5 × 7  

𝑀2 = 𝑀
𝑚2

   𝑀2 = (3 × 5 × 7)/5   𝑀2 = 21     𝑀3 = 𝑀
𝑚3

   

𝑀3 = (3 × 5 × 7)/7           𝑀3 = 15      

 Where  

│𝑀1  𝑀1
−1│3 = 1        │35 𝑀1

−1│3 = 1      𝑀1
−1 = 2 

│𝑀2  𝑀2
−1│5 = 1        │21 𝑀2

−1│5 = 1     𝑀2
−1 = 1 

│𝑀3 𝑀3
−1│7 = 1         │15 𝑀3

−1│7 = 1    𝑀3
−1 = 1 

Then by the CRT, we have (M = 3×5×7) = 105 

𝑋 = |  𝑥𝑖

3

𝑖=1

𝑋𝑖|105  

𝑋 = |1 × 35 × 2 + 2 × 21 × 1 + 3 × 15 × 1|105   

𝑋 = 52  

6.6 New Chinese Remainder Theorem I 

(CRT I)  
According to [8], the speed of the arithmetic operations is 

based on the numbers involved in the operations. The size of 

the numbers is directly proportional to the delay of the 
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operations, and therefore smaller numbers imply faster 

operations. However, the Chinese Remainder Theorem 

requires a slow large modulo operation while the Mixed 

Radix Conversion requires finding the mixed radix digits 

which is a slow process. New Chinese Remainder Theorems 

were designed to make the computations faster and efficient 

without any overheads. New Chinese Remainder theorem I 

(CRT I) is a modified version of the traditional Chinese 

Remainder Theorem. In this conversion process, the weighted 

number can be retrieved faster because the operations are 

done in parallel, without depending on other results.  

Some propositions proposed are necessary for this new 

conversion and are as follows,  

Proposition 1: 

𝑎 = 1𝑚𝑜𝑑(𝑚1 𝑚2) implies 𝑎 = 1𝑚𝑜𝑑𝑚1 and 𝑎 = 1𝑚𝑜𝑑 𝑚2 

The above proposition is obtained from the corollary,  

𝑎 = 1𝑚𝑜𝑑(𝑚1 𝑚2 …𝑚k) implies 𝑎 = 1𝑚𝑜𝑑𝑚1, 𝑎 =
1𝑚𝑜𝑑𝑚2,  …, 𝑎 = 1𝑚𝑜𝑑𝑚𝑘   

Proposition 2:  

 𝑎𝑚1 𝑚𝑜𝑑 𝑚1 𝑚2 =  𝑎 𝑚𝑜𝑑 𝑚2 ∗ 𝑚1  

Proposition 3 

For any 𝑦 belonging to  0, 𝑀 − 1 , where 𝑀 = 𝑚1 ∗
𝑚2, …𝑚𝑛−1 ∗ 𝑚𝑛 , there is unique mixed radix representation 

as follows, where 𝑦i  satisfies the condition  

 0 ≤ yi ≤ mi+1 

𝑦 = y0 + y1m1 + y2m1m2 + yn−1m1m2 … . mn−1  

Given the residue numbers (x1, x2,x3, … xn), the corresponding 

weighted number X can be computed using the following 

equation.  

𝑋 = [x1 + k1m1 x2 − x1 + k2m1m2  x3 − x2 … +
kn−1m1m2 … mn−1 xn − xn−1 ]𝑚𝑜𝑑m1m2 … mn−1mn   

Where k1 = (m1)-1modm2...mn  , k2= (m1m2)-1 modm3m4  

…mnand similarly  

 k(𝑛−1) =  m1m2 … mn−1 
−1𝑚𝑜𝑑mn . It is to be noted that, 

the above equation is different from the traditional CRT and 

MRC equations.  [8], Considered a four moduli set with the 

algorithm shown below: For a four moduli set, the equation is  

𝑋 = [x1 + k1m1 x2 − x1 + k2m1m2  x3 − x2 +
k3m1m2m3 x4 − x3 ]𝑚𝑜𝑑(m1m2 m3m4)  

Where  

k1 =  m1 
−1𝑚𝑜𝑑 m2m3m4      

k2 =  m1m2 
−1𝑚𝑜𝑑 m3m4   

k3 =  m1m2m3 
−1𝑚𝑜𝑑 m4   

 [1], in a paper stated that Amanda Mohan suggested the New 

Chinese Remainder Theorem introduced by Wang et al [13] 

can be derived from the constructive proof of the well-known 

Chinese Remainder Theorem (CRT) 

According to, Wang et al [13] the New Chinese Remainder 

Theorem 1 (CRT 1) is a fast conversion algorithm 

substantially different from the CRT approach. According to 

[2], a new RNS output converters based on the CRT require 

the computation of a sum of products modulo a large number. 

The new converter presented in this paper uses the fractional 

representation for the output and eliminates the requirement 

for multiplications, thereby reducing area and delay. Further 

area improvements are possible by exploiting the period of 

terms to be added. An algorithmic approach is used to obtain 

full adder-based architectures that are optimized for area and 

delay. 

 

Figure 2: Hardware assembly for the calculation of X 

using CRT 

7. ADDER 
An adder or summer is a digital circuit that performs addition 

of numbers. In many computers and other kinds of processors, 

adders are used not only in the arithmetic logic unit(s), but 

also in other parts of the processor, where they are used to 

calculate addresses, table indices, and similar operations.  

The figure 3 below is the hardware assembly of 𝑋 without 

optimization. 

8. OPTIMIZED HARDWARE 

IMPLEMENTATION OF NEW 

CHINESE REMAINDER THEOREM I 
The new Chinese Remainder theorem one (CRT1) was 

optimized by removing inverse modulo operations which 

reduced the overhead of using big size summation terms in the 

equations. But, the equation carried multiplication terms 

which requires additional full and half adders, and this is a 

barrier for hardware implementation. This section further 

attempt to remove those multiplication terms which means the 

usage of additional full and half adders can be eliminated. The 

optimization is carried out by using carry save adders, which 

reduces the time delay in carrying out the multiplication 

operations.  

Optimized Hardware Implementation of the Base Theorem for 

New Chinese Remainder Theorem one (CRT1) 

Using the moduli set proposed,   𝑀 = {22𝑛+2 + 3, 22𝑛+1 +
1, 22𝑛 + 1,2}  where 𝑛 = 1,2,3, … and the optimized equation 

from the previous section, we get 

𝑋 =
[x1 + m1

2 x2 − x1 + m1m2  x3 − x2 + m1m2m3 x4 −
x3 ]𝑚𝑜𝑑(m1m2 m3m4)  

Putting the above moduli set values in the equation, we get, 

𝑋 = x1 + |Q1 + Q2 + Q3|]𝑚𝑜𝑑(m1m2 m3m4) …… . . (1)  
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Where 

𝑄1 =  24𝑛+4 + 22𝑛+4 + 22𝑛+3 + 23 + 1 × (𝑥2 − 𝑥1)  

𝑄2 =  24𝑛+3 + 22𝑛+3 + 22𝑛+1 + 21 + 1 × (𝑥3 − 𝑥2)  

𝑄3 = [ 24𝑛+3 + 22𝑛+3 + 22𝑛+1 + 21 + 1 ×  22𝑛 + 1 ]
× (𝑥4 − 𝑥3) 

𝑄3 =  22𝑛𝑎 + 𝑎 (𝑥4 − 𝑥3)   

Where 

𝑎 = 24𝑛+3 + 22𝑛+3 + 22𝑛+1 + 21 + 1  

The hardware optimization using carry save adders reduces 

the number of steps needed for the implementation. This 

intends helps to reduce the area and delay for implementation. 

The figures 3,4,5 and 6 below show the optimized 

implementation of equation using carry save adders and carry 

propagate adders. 

Hardware implementation of Q𝟏, Q𝟐, Q𝟑 𝑎𝑛𝑑 X as shown in 

Figures 3, 4, 5 and 6 respectively. 

 

Figure 3: Hardware implementation of Q1 

  

Figure 4: Hardware implementation of Q2 

 

Figure 5: Hardware implementation of Q3 

  

Figure 6: Hardware implementation of X 

9. ANALYSES OF RESULTS 
Area and Delay of Implementation 

The tables below shows the area and delay of implementation 

of the optimized equation with the proposed moduli 

set {22𝑛+2 + 3, 22𝑛+1 + 1, 22𝑛 + 1,2}. 

Area and Delay of 𝐐𝟏 

In the implementation of Q1 as shown in Fig 3, we have 3 

carry save adders, 1 carry propagate adder and 1 sub-tractor. 

The proposed moduli set is a 6𝑛 + 5 moduli set. The delay of 

a  𝐶𝑆𝐴 = 1 and the area is 6𝑛 + 5. The table below shows the 

calculations of the area and delay. 

Table 1 Area and Delay of 𝐐𝟏 

 Area Delay 

𝐶𝑆𝐴 = 3 18𝑛 + 15 3 

𝐶𝑃𝐴 = 1 6𝑛 + 5 12𝑛 + 10 

Sub-tractor 2𝑛 + 3 2𝑛 + 3 

Total 26𝑛 + 23 14𝑛 + 16 

Area and Delay of Q2 
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The implementation of Fig 4 shows that, we have 3 carry save 

adders, 1 carry propagate adder and 1 sub-tractor. This is 

shown below. 

Table 2 Area and Delay of Q2 

 Area Delay 

𝐶𝑆𝐴 = 3 18𝑛 + 15 3 

𝐶𝑃𝐴 = 1 6𝑛 + 5 12𝑛 + 10 

Sub-tractor 2𝑛 + 1 2𝑛 + 1 

Total 26𝑛 + 21 14𝑛 + 14 

Area and Delay of Q3 

The implementation of Fig 5 shows that, we have 3 carry save 

adders, 2 carry propagate adder and 1 sub-tractor. This is 

shown below. 

Table 3 Area and Delay of Q3 

 Area Delay 

𝐶𝑆𝐴 = 3 18𝑛 + 15 3 

𝐶𝑃𝐴 = 2 12𝑛 + 10 24𝑛 + 20 

Sub-tractor 2𝑛 2𝑛 

Total 32𝑛 + 25 26𝑛 + 23 

Area and Delay of X 

The implementation of Fig 6 shows that, we have 2 carry save 

adders and 1 carry propagate adder. This is shown below. 

Table 4 Area and Delay of X 

 Area Delay 

𝐶𝑆𝐴 = 2 12𝑛 + 10 2 

𝐶𝑃𝐴 = 1 6𝑛 + 5 12𝑛 + 10 

Total 18𝑛 + 15 12𝑛 + 12 

 

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎 = Area Q1  + Area Q2  + Area Q3  + Area X 

=  102n +  84  

For the total delay involved in the implementation, we add the 

delay of Q3  to the delay of X. We take the delay of Q3  
because it has the largest delay. 

𝑇𝑜𝑡𝑎𝑙 𝐴𝑟𝑒𝑎 = Q3  + Delay X = 38n + 35  

Comparison between the proposed moduli set  {22𝑛+2 +
3, 22𝑛+1 + 1, 22𝑛 + 1,2}  and the previous one  {22𝑛+2 +
3, 22𝑛+1 + 1, 2𝑛 + 1,2} 

Table 4.5 Comparison of Area and Delay 

Moduli set Area Dela

y 

{22𝑛+2 + 3, 22𝑛+1 + 1, 2𝑛 + 1,2}  

 (Narayanaswamy,2010) 

54𝑛 + 91 

 

43𝑛 + 71 

{22𝑛+2 + 3, 22𝑛+1 + 1, 22𝑛 +
1,2} (proposed) 

102𝑛 + 84 

 

38𝑛 + 35 

The table above shows the comparison between the two 

moduli set. The proposed one is a 6𝑛 + 5 bits moduli set 

whiles the one being compared with is a  3𝑛 + 5 bits moduli 

set. In terms of area, the proposed moduli set have a larger 

area than the previous one. 

In terms of time delay, the proposed moduli set has a smaller 

delay. We can therefore conclude that, the proposed moduli 

set is more efficient in terms of time. 

Illustration 

Consider a weighted number 𝑋 = 100 and the moduli set of 

the form {22𝑛+2 + 3, 22𝑛+1 + 1, 22𝑛 + 1,2}, and taking 𝑛 =
2, we get the moduli set 𝑚 =  𝑚1 , 𝑚2 , 𝑚3, 𝑚4 =
{67,33,17,2}  

The dynamic range is 𝑀 = 75174 RNS representation of X is 

shown below:  

𝑋 =  𝑥1, 𝑥2 , 𝑥3, 𝑥4 =
 𝑋𝑚𝑜𝑑𝑚1, 𝑋𝑚𝑜𝑑𝑚2 , 𝑋𝑚𝑜𝑑𝑚3, 𝑋𝑚𝑜𝑑𝑚4     

= (33,11,15,0)  

𝑋1 = 33, 𝑋2 = 1, 𝑋3 = 15, 𝑋4 = 0  

From the above implementation, 

𝑄1 =  24𝑛+2 + 22𝑛+4 + 22𝑛+3 + 23 + 1 ∗ (𝑥2 − 𝑥1)  

When 𝑛 = 2 

𝑄1 =  212 + 28 + 27 + 23 + 1 ∗ (1 − 33)  

𝑄1 =  212 + 28 + 27 + 23 + 1 ∗ (−33)  

𝑄1 = 4489 ∗ 75142  

𝑄1 = 337312438  

𝑄2 =  24𝑛+3 + 22𝑛+3 + 22𝑛+1 + 21 + 1 ∗ (𝑥3 − 𝑥2)  

When 𝑛 = 2 

𝑄2 =  211 + 27 + 25 + 21 + 1 ∗ (15 − 1)  

𝑄2 =  211 + 27 + 25 + 21 + 1 ∗ (14)  

𝑄2 = 2211 ∗ 14  

𝑄2 = 30954  

𝑄3 =  24𝑛+3 + 22𝑛+3 + 22𝑛+1 + 21 + 1 ∗ (22𝑛 + 1) ∗
(𝑥4 − 𝑥3) When 𝑛 = 2 

𝑄3 =  211 + 27 + 25 + 21 + 1 ∗ (24 + 1) ∗ (0 − 15)  

𝑄3 =  211 + 27 + 25 + 21 + 1 ∗ (24 + 1) ∗ (−15)  

𝑄3 = 2211 ∗ 17 ∗ 75159  

𝑄3 = 2825001333  

𝑋1 = 33  

𝑋 = 𝑋1 + 𝑄1 + 𝑄2 + 𝑄3  

𝑋 =
 33 + 337312438 + 30954 + 2825001333 𝑚𝑜𝑑75174  

𝑋 = 3162344758 𝑚𝑜𝑑75174 = 100  

10. CONCLUSION 
In this paper, we address the problems identified with the 

New CRT 1 which includes the presence of an inverse modulo 

and multipliers which makes implementation difficult and 

expensive in terms of speed, area and cost. Our scheme 
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optimizes the New Chinese Remainder Theorem one (CRT 1) 

by eliminating the inverse modulo operators and also reduce 

the number of multipliers using four moduli set to implement 

the hardware optimization using carry save adders therefore 

reduces the delay. Our proposed scheme’s implementation 

shows clearly that the proposed moduli set is better than the 

other ones stated in the work with regards to time.  

The future direction of this work is to extend the number of 

moduli set to 5 or more to increase the dynamic range.  

Further efforts could be made to completely reduce the final 

modulo and this could improve the operations. Exploring 

other implementation methods could also be looked at.   
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