
International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.5, August 2016

26

Novel method to reduce Inter Core Communication in a

Multi Core System

Jayanth H.
Robert Bosch Engineering and

Business Solutions Ltd
Bangalore. India

Umadevi V., PhD
Department of Computer
Science and Engineering,

BMS College of Engineering
Bangalore, India

Gurudath A. S.
Robert Bosch Engineering and

Business Solutions Ltd
Bangalore. India

ABSTRACT

The architectural advancements in desktop computing have

made embedded devices in real time applications to adopt

multi core architectures. The main challenge in multi core

programming is the process of communication between the

different executing cores. Effectiveness of parallel

programming in multi core architectures lies in method used

for communication. Communication using shared cache is one

of the popular approaches. This paper discusses in detail one

of the novel methods of inter core communication.

Correctness of the algorithm has been based on results

obtained on a hard real time system.

General Terms

Memory Locking, Embedded Hypervisor

Keywords

Multi core, data bank, memory lock, functional split

1. INTRODUCTION
Embedded systems with multi core architectures have been

dominating the electronic applications in this decade. Features

that are implemented in these embedded systems are

increasing exponentially [1]. Features which are inter

dependent and executed on different cores face a road block in

their execution if inter core communication is not managed in

a robust manner. Failure of a proper method for inter core

communication [2] has hindered the parallel programming

capacity of the multi core system. Communication between

different cores takes place through memory interactions.

Several ideas on inter core communication has been discussed

in [3]. A novel method of inter core communication has been

described in this paper. This method of communication is

applicable to those applications in which, the parameters

involved, are not changing rapidly. Results were quantified on

a real time automotive application.

1.1 Terminologies
 Task: It is a set of program instructions loaded to

memory.

 Data Bank: A section of memory where data is stored.

 Producer Task: The task which produces or updates the
information. It stores the information in transmission

data bank.

 Consumer task: The task which uses the produced

information for further processing. It utilizes the

information stored in receiving data bank. Same task can

produce and consume the information.

2. EXISTING COMMUNICATION

PATTERN

2.1 Single Core System
Let two tasks A and B execute in a single core processor.

Initially, task A is executed. Execution of task B depends on

the results produced by task A. After task A finishes its

execution, it writes the data to memory. Task B then fetches

the data and starts its execution. Task A which executes

initially is called as a producer task and task B which utilizes

the data produced by task A is called as a consumer task.

Problem of data synchronization and memory access does not

arise in single core communication. Authors of [4] have

provided comprehensive details of single core system. Figure

1 illustrates single core system.

Fig 1: Single Core System

2.2 Multi Core System
Consider the same tasks A and B executing in a dual core

system. Both the tasks are executing in different cores.

Advantage of a multi core system lies in the possibility of

tasks executing in parallel. With parallel execution, problem

of data consistency arises. Several methods for data

consistency have been defined in [5]. If the system under test

is a hard real time system, consistency methods have to be

performed in a very short time interval. An automobile system

with multi core architecture has been considered for our

analysis. In this system, synchronization is brought by

activating task B only after task A completes its execution.

After task A finishes, Task A_End is executed, context

switching occurs and Task B_Start begins executing. After

Task B_Start finishes execution, Task B starts its execution.

If task B is the only task in core 1 and if it is dependent on

task A, core 1 would be unused for a very long time. Figure 2

illustrates multi core system.

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.5, August 2016

27

Fig 2: Multi Core System

In any embedded system, certain quantities may not vary in

very fast intervals of time. Ex: temperature, altitude in an

automobile system. The functions containing these quantities

are executed in all cycles even though the values of the

quantities are same. Processor would be busy and its

executing capacity would be wasted as the results produced

by these functions remain the same. Runtime improvements

can be brought about by executing these quantities only when

its value changes.

3. PROPOSED MODEL: INTELLIGENT

COMMUNICATION
Transmission Data bank is the part of memory updated by the

producer task and receiving data bank is the part of memory

that provides the data to consumer task. Transmission data

bank would be initially locked. Producer task updates the

transmission data bank whenever it produces the data. Once

the data updating is over, the transmission data bank would be

released and the receiver data bank would be updated.

Problems of data synchronization between the different cores

would be solved in this approach. The core on which the

consumer task is supposed to run can execute other tasks

when the consumer task is busy waiting for data. Figure 3

illustrates the mechanism of intelligent communication.

Fig 3: Intelligent Communication

3.1 State Diagrams
When the producer task arrives, it would be in ready state.

The transmitter data bank is free and hence the producer task

would move to running state. After its execution, the producer

task would stay in suspended state until further updating.

When the consumer task arrives and if the receiver data bank

is updated, consumer task would move to running state. After

its execution, it would stay in suspended state. If the receiver

data bank is not updated, the consumer task would move to

suspend state and waits there until further updating. Figure 4

and 5 illustrates the state transitions for consumer and

producer tasks.

Fig 4: Consumer Task

Fig 5: Producer Task

3.2 Memory Locking
One of the major contributors for success of any real time

system is its ability to handle the problem of data consistency

[6]. Data inconsistency due to memory related operations

could occur when a particular portion of memory which is

written by a particular core is interrupted by other core for

reading or writing to/from the same location of memory. An

operating system should always have the ability to restrict

access to a particular section of memory. Excessive paging

and swapping of memory can also cause consistency related

issues. To solve the problem of data consistency, memory

locking is implemented. Specific regions of physical memory

are identified. Virtual pages are created and each page has a

locking variable. Locking and unlocking the pages depend

upon the value of the locking variable [7]. Each page can be

locked by a task and can be unlocked only by the locking task.

Each producer task has an exclusive privilege to lock a

specific portion of the virtual address space into the physical

memory. Pages locked in such manner are exempted from

further paging until the producer task finishes its execution

and unlocks the portion of memory. The consumer task

checks for the value of the locking variable. If the value of the

locking variable is not reset, the consumer tasks keeps polling

at regular intervals of time. If the value is reset, then the data

required for its execution is ready. It copies the values of

transmission data bank to the receiver data bank.

Databanks are also allocated priorities. If the same task is the

producer task for more than one information, data bank

corresponding to the most important information would have

the highest priority. Then the producer task would have to

write data to the data bank of the highest priority. To unlock a

particular page, the producer task resets the unlocking

variable. Receiver data bank is generally unlocked. If the

receiver data bank is the transmission data bank for some

other task, the concept of locking and unlocking would be

applied to it. Both the data banks would be locked during data

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.5, August 2016

28

transfer. The common locking variable would be stored in a

location know to both the tasks.

3.3 Data transfer between memory banks
The address of the transmission data bank and receiving data

bank are known in prior. Copying data from the transmission

data bank to the receiver data bank is carried out with the help

of linked lists. Authors of [8] have described the concept of

linked list and the various methods of memory transfer. The

transmission data bank pushes the data into the list and the

receiver data bank pops the data from the list. Multiple pop

operations are carried out simultaneously across the cores.

3.4 Functional Split
Functionalities across the system are identified. These

functionalities contain several tasks executing inside them.

Dependencies which could exist between the functions are

removed and they are scheduled across the cores. This process

of identifying and splitting it across the cores is called as

functional split.

The concept of functional split has been described by the

authors of [9]. Advantages have also been described there.

Figure 6 illustrates the concept of functional split. An

automotive project is considered for analysis. Some of the

common functions present in any automotive project are

torque system, temperature system, fuel system etc. Currently

all of them are combined and scheduled based on their time

locality. In the method described, every function is isolated

and executed separately. A data bank is created for each

function. This section is called a data bank. If this function is

a producer, it updates the transmission bank and if it is a

consumer, it copies the data to the receiver data bank. Data

transfer between a transmission data bank on a particular core

and a receiving data bank on other core is handled by the

arbitration of the communication busses that are present

between the cores.

Fig 6: Functional Split

3.5 Embedded Hypervisor
Embedded hypervisors allow different components to share a

common hardware host [10]. They grant the control of

memory to different cores in our intelligent approach [11].

Consider the scenario where function 1 is a producer task and

is executing on core 1. It updates the transmission data bank.

Function 2 and 3 are consumer tasks on core 2 and 3

respectively. Both require data from the same producer task.

Priority based round robin scheduling is introduced. Since

functional split is carried out and their priority is already

known, embedded hypervisor allows only the core with

highest priority to arbitrate for the buss. General arbitration

technique is considered when priority of all cores is same.

Each newly introduced core corresponds to a new

functionality added. The embedded hypervisor previously

used would still be the same but with more arbitration for

memory.

Fig 7: Embedded hypervisor

Fig 8: Data Format for Transmission

Concept of embedded hypervisor and information propagated

across the different cores by the embedded hypervisor is

depicted in figure 7 and 8. The field ‘core’, gives the details of

the core in which the current function is being executed.

‘Priority’ field gives the details of the function and its

associated priority. The address where the transmission data

bank is stored is provided by ‘address’ field. The approximate

time by which the transmission data bank could change is

given by ‘time to live’. Data corruption during transmission is

recognized by cyclic redundancy check (‘crc’) field.

4. ALGORITHM
The below mentioned algorithm has been used for

implementation.

INPUT

 ‘m’ cores

 ‘n’ tasks

PROCESS

Step 1: Initialize the embedded hypervisor. Each core acts as a

virtual processor.

Step 2: Propagate function information across all cores. Each

function is considered a task.

Step 3: Identify all the slow varying quantities in all task.

Step 4: Based on data utilization and updating, categorize the

tasks as producer and consumer.

Step 5: Create transmission and receiver data banks and

assign priorities. Begin the execution.

Step 6: Producer task locks the transmission data bank.

Step 7: Producer task performs the required operations and

stores data in the transmission data bank.

Step 8: Data in transmission data bank is copied to receiver

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.5, August 2016

29

data bank using linked lists.

Step 9: Transmission data bank is cleared.

OUTPUT

Consumer task utilizes the copied data for its execution. If the

Receiver data bank is not the transmission data bank of some

other task, clear the receiver data bank.

5. IMPLEMENTATION AND RESULTS
Use case from an automotive application was considered to

demonstrate the correctness of the communication method

described in this paper. The algorithm described in section 4

was implemented and the results obtained are discussed in this

section. The details of the automotive application are not

discussed because of legal bindings. In the automotive

application under test, tasks are classified based on the time at

which they are called by the processor for execution. The

runtime of each task is shown in table 1.

Table 1. Runtime of Individual Tasks

 Task Runtime

 20ms 6236.44µs

 50ms 1122.96µs

 100ms 6314.12µs

 200ms 68.76µs

 1000ms 269.72µs

These tasks have several parameters whose value change,

after execution of a particular condition. This condition occurs

only after a specific period of time. These parameters are

classified as slow varying quantities. Such quantities were

identified and runtime improvements due to their non-

execution and intelligent communication, at various intervals

were recorded.

The total runtime improvement for Interval 1 is 2.584%, for

interval 2 it is 5.172% and for interval 3 it is 10.338%. A

significant improvement in runtime is observed by application

of the method described in this paper. Figure 9 and 10

illustrates the runtime improvements for individual tasks and

the entire system.

Fig 9: Runtime Improvement of individual tasks

Fig 10: Total Runtime Improvement

Following inferences were drawn from the obtained results:

Let‘t’ be the total cycle time of the system under

consideration. Let ‘R’ be the set of all possible runtime

values. The runtime of all the tasks is given by ‘f’, which is a

function of total cycle time. Let dt be the change in runtime

due to errors in the system. The total runtime is given by

Runtime total = ∫f (t) dt, dt! = 0 and f(t) € R . (1)

Let ‘a’ and ‘b’ be the time interval where runtime has to be

found out. [a, b] are mapped into [x(i-1),x(i)] for runtime

measurements.

a = x0<= t1 <= x1 <= ……<= xn = b. (2)

Therefore the final runtime between the interval [a, b] is given

by

r = ∑f (T (i))∆I . (3)

where T(i) is a recognizable point between [x(i-1),x(i)] and

∆I = x(i) - x(i-1)

This system comprised of several tasks. Let task ‘a’ be one of

them. Let, the total runtime of the system be = ‘p’. The

runtime of the task ‘a’ before optimization be = ‘m’. The

runtime of the task ‘a’ after optimization be = ‘n’. The total

runtime of the system after optimization of task ‘a’ be ‘q’. The

difference in runtime of task ‘a’ before and after optimization

= ‘o’ = ‘m’ – ‘n’. Improved Runtime ‘R’ is given by

‘R’ = (‘p’ – ‘q’)* ‘o . (4)

6. FUTURE
The data stored in receiver banks could be transferred to the

private cache of the core using direct memory access (DMA)

[12].DMA allows memory transfers to take place without the

usage of central processing unit (CPU) or the core. The

address of the memory banks and the cache are known in

prior. The processor initializes the direct message access

controller. Cycle stealing mode of direct memory access

would be chosen.

DMA controller carries on the activities of memory transfer

and the CPU can be used for other purposes. This would

minimize the arbitration for the main system bus. Shadow

tables would be used to maintain consistency between the

receiver data bank and the private cache. Since slow varying

data is being considered, private cache would be cleared after

fixed interval of time.

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.5, August 2016

30

7. ACKNOWLEDGEMENTS
We would like to thank Dr. S.R.Krishnamurthy, former

principal and HOD of Computer Science and Engineering

Department, BMS College of Engineering for his support and

guidance. We also express our indebted gratitude towards

Robert Bosch Engineering and Business Solutions Ltd for

providing all the necessary support.

8. REFERENCES
[1]. Future of Embedded Systems,

http://www.techonline.com/ electrical-

engineers/education-training/webinars/4429820/The-

Future-of-Embedded-Systems,Wind River Systems, May

1, 2014

[2]. Shin’ichi Miura, Toshihiro Hanawa, TaisukeBoku,

Mitsuhisa Sato: XMCAPI: Inter-Core Communication

Interface on Multi-chip Embedded Systems, Ninth

IEEE/IFIP International Conference on Embedded and

Ubiquitous Computing, pp. 397-402, 2011.

[3]. HengQuan, Ruijing Xiao, Kaidi You, Bei Huang,

Xiaoyang Zeng, Zhiyi Yu.: A Simple High-Efficient

Inter-Core Communication Mechanism for Multi-Core

Systems, State Key Laboratory of ASIC and System,

Fudan University, Shanghai.

[4]. VilmaTomço, AnetaDeliu, IgliTafa: A Trade-off

between Complexity and Performance over Multi-core

Systems,International Conference on Advances in

Computing,Communications and Informatics (ICACCI),

pp. 1509-1514, 2014.

[5]. Haibo Zeng, Marco Di Natale: Mechanisms for

Guaranteeing Data Consistency and Flow Preservation in

AUTOSAR Software on Multi-core Platforms, pp. 140-

149, 2011.

[6]. Embedded Control Systems Design and Learning,

https://en.wikibooks.org/wiki/Embedded_Control_Syste

ms_Design/Learning_from_failure.

[7]. Hongwei Zhou, Rangyu Deng, Zefu Dai, Xiaobo Yan,

Ying Zhang and Caixia Sun: The virtual open page

buffer for multi-core andmulti-thread processors, 2014

IEEE International Conference on High Performance

Computing and Communications (HPCC), 2014 IEEE

6th InternationalSymposium on Cyberspace Safety and

Security (CSS) and 2014 IEEE 11th International

Conference on Embedded Softwareand Systems

(ICESS), pp. 290-297,2014.

[8]. Longfei Tan , Zhao Han,Chunguang Chen,Yinghua He ;

Kunlong Zhang : A Non-blocking Self-Organizing

Linked List Algorithm, Parallel and Distributed

Computing, Applications and Technologies (PDCAT),

2012 13th International Conference, pp. 71-76, 2012

[9]. Jayanth.H, Umadevi.V, Gurudath A.S : Intelligent task

allocation in multi core environment, International

Journal of Computer applications, pp. 34-39, 2015.

[10]. Crespo A. , Ripoll, I , MasmanoM: Partitioned

Embedded Architecture Based on Hypervisor: The

XtratuM Approach, Dependable Computing Conference

(EDCC), 67 – 72, 2010.

[11]. Embedded Hypervisors, https://en.wikipedia.org/ wiki/

Embedded_hypervisor.

[12]. DMAhttps://www.techopedia.com/definition/2770/dyna

mic-random-access-memory-dram.

IJCATM : www.ijcaonline.org

http://www.techonline/
https://en.wikibooks.org/wiki/Embedded_Control_Systems_Design/Learning_from_failure
https://en.wikibooks.org/wiki/Embedded_Control_Systems_Design/Learning_from_failure
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Longfei%20Tan.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhao%20Han.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Chunguang%20Chen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Yinghua%20He.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Kunlong%20Zhang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Crespo,%20A..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ripoll,%20I..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Masmano,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5473904
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5473904
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5473904
https://en.wikipedia.org/%20wiki/%20Embedded_hypervisor
https://en.wikipedia.org/%20wiki/%20Embedded_hypervisor
https://en.wikipedia.org/%20wiki/%20Embedded_hypervisor
https://www.techopedia.com/definition/2770/

