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ABSTRACT 

The architectural advancements in desktop computing have 

made embedded devices in real time applications to adopt 

multi core architectures. The main challenge in multi core 

programming is the process of communication between the 

different executing cores. Effectiveness of parallel 

programming in multi core architectures lies in method used 

for communication. Communication using shared cache is one 

of the popular approaches. This paper discusses in detail one 

of the novel methods of inter core communication. 

Correctness of the algorithm has been based on results 

obtained on a hard real time system. 
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1. INTRODUCTION 
Embedded systems with multi core architectures have been 

dominating the electronic applications in this decade. Features 

that are implemented in these embedded systems are 

increasing exponentially [1]. Features which are inter 

dependent and executed on different cores face a road block in 

their execution if inter core communication is not managed in 

a robust manner. Failure of a proper method for inter core 

communication [2] has hindered the parallel programming 

capacity of the multi core system. Communication between 

different cores takes place through memory interactions. 

Several ideas on inter core communication has been discussed 

in [3]. A novel method of inter core communication has been 

described in this paper. This method of communication is 

applicable to those applications in which, the parameters 

involved, are not changing rapidly. Results were quantified on 

a real time automotive application. 

1.1 Terminologies 
 Task: It is a set of program instructions loaded to 

memory. 

 Data Bank:  A section of memory where data is stored. 

 Producer Task: The task which produces or updates the 
information. It stores the information in transmission 

data bank. 

 Consumer task: The task which uses the produced 

information for further processing. It utilizes the 

information stored in receiving data bank. Same task can 

produce and consume the information. 

 

2. EXISTING COMMUNICATION 

PATTERN 

2.1 Single Core System 
Let two tasks A and B execute in a single core processor. 

Initially, task A is executed. Execution of task B depends on 

the results produced by task A. After task A finishes its 

execution, it writes the data to memory. Task B then fetches 

the data and starts its execution. Task A which executes 

initially is called as a producer task and task B which utilizes 

the data produced by task A is called as a consumer task. 

Problem of data synchronization and memory access does not 

arise in single core communication. Authors of [4] have 

provided comprehensive details of single core system. Figure 

1 illustrates single core system. 

 

Fig 1: Single Core System 

2.2 Multi Core System 
Consider the same tasks A and B executing in a dual core 

system. Both the tasks are executing in different cores. 

Advantage of a multi core system lies in the possibility of 

tasks executing in parallel. With parallel execution, problem 

of data consistency arises. Several methods for data 

consistency have been defined in [5]. If the system under test 

is a hard real time system, consistency methods have to be 

performed in a very short time interval. An automobile system 

with multi core architecture has been considered for our 

analysis. In this system, synchronization is brought by 

activating task B only after task A completes its execution. 

After task A finishes, Task A_End is executed, context 

switching occurs and Task B_Start begins executing. After 

Task B_Start finishes execution, Task B starts its execution. 

If task B is the only task in core 1 and if it is dependent on 

task A, core 1 would be unused for a very long time. Figure 2 

illustrates multi core system. 
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Fig 2: Multi Core System 

In any embedded system, certain quantities may not vary in 

very fast intervals of time. Ex: temperature, altitude in an 

automobile system. The functions containing these quantities 

are executed in all cycles even though the values of the 

quantities are same. Processor would be busy and its 

executing capacity would be wasted as the results produced 

by these functions remain the same. Runtime improvements 

can be brought about by executing these quantities only when 

its value changes. 

3. PROPOSED MODEL: INTELLIGENT 

COMMUNICATION 
Transmission Data bank is the part of memory updated by the 

producer task and receiving data bank is the part of memory 

that provides the data to consumer task. Transmission data 

bank would be initially locked. Producer task updates the 

transmission data bank whenever it produces the data. Once 

the data updating is over, the transmission data bank would be 

released and the receiver data bank would be updated. 

Problems of data synchronization between the different cores 

would be solved in this approach. The core on which the 

consumer task is supposed to run can execute other tasks 

when the consumer task is busy waiting for data. Figure 3 

illustrates the mechanism of intelligent communication. 

 

Fig 3: Intelligent Communication 

3.1 State Diagrams 
When the producer task arrives, it would be in ready state. 

The transmitter data bank is free and hence the producer task 

would move to running state. After its execution, the producer 

task would stay in suspended state until further updating. 

When the consumer task arrives and if the receiver data bank 

is updated, consumer task would move to running state. After 

its execution, it would stay in suspended state. If the receiver 

data bank is not updated, the consumer task would move to 

suspend state and waits there until further updating. Figure 4 

and 5 illustrates the state transitions for consumer and 

producer tasks. 

 

Fig 4: Consumer Task 

 

Fig 5: Producer Task 

3.2 Memory Locking 
One of the major contributors for success of any real time 

system is its ability to handle the problem of data consistency 

[6]. Data inconsistency due to memory related operations 

could occur when a particular portion of memory which is 

written by a particular core is interrupted by other core for 

reading or writing to/from the same location of memory. An 

operating system should always have the ability to restrict 

access to a particular section of memory. Excessive paging 

and swapping of memory can also cause consistency related 

issues. To solve the problem of data consistency, memory 

locking is implemented. Specific regions of physical memory 

are identified. Virtual pages are created and each page has a 

locking variable. Locking and unlocking the pages depend 

upon the value of the locking variable [7]. Each page can be 

locked by a task and can be unlocked only by the locking task. 

Each producer task has an exclusive privilege to lock a 

specific portion of the virtual address space into the physical 

memory. Pages locked in such manner are exempted from 

further paging until the producer task finishes its execution 

and unlocks the portion of memory. The consumer task 

checks for the value of the locking variable. If the value of the 

locking variable is not reset, the consumer tasks keeps polling 

at regular intervals of time. If the value is reset, then the data 

required for its execution is ready. It copies the values of 

transmission data bank to the receiver data bank.  

Databanks are also allocated priorities. If the same task is the 

producer task for more than one information, data bank 

corresponding to the most important information would have 

the highest priority. Then the producer task would have to 

write data to the data bank of the highest priority. To unlock a 

particular page, the producer task resets the unlocking 

variable. Receiver data bank is generally unlocked. If the 

receiver data bank is the transmission data bank for some 

other task, the concept of locking and unlocking would be 

applied to it. Both the data banks would be locked during data 
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transfer. The common locking variable would be stored in a 

location know to both the tasks. 

3.3 Data transfer between memory banks 
The address of the transmission data bank and receiving data 

bank are known in prior. Copying data from the transmission 

data bank to the receiver data bank is carried out with the help 

of linked lists. Authors of [8] have described the concept of 

linked list and the various methods of memory transfer. The 

transmission data bank pushes the data into the list and the 

receiver data bank pops the data from the list. Multiple pop 

operations are carried out simultaneously across the cores.  

3.4 Functional Split 
Functionalities across the system are identified. These 

functionalities contain several tasks executing inside them. 

Dependencies which could exist between the functions are 

removed and they are scheduled across the cores. This process 

of identifying and splitting it across the cores is called as 

functional split.  

The concept of functional split has been described by the 

authors of [9]. Advantages have also been described there. 

Figure 6 illustrates the concept of functional split. An 

automotive project is considered for analysis. Some of the 

common functions present in any automotive project are 

torque system, temperature system, fuel system etc. Currently 

all of them are combined and scheduled based on their time 

locality. In the method described, every function is isolated 

and executed separately. A data bank is created for each 

function. This section is called a data bank. If this function is 

a producer, it updates the transmission bank and if it is a 

consumer, it copies the data to the receiver data bank. Data 

transfer between a transmission data bank on a particular core 

and a receiving data bank on other core is handled by the 

arbitration of the communication busses that are present 

between the cores. 

 

Fig 6: Functional Split  

3.5 Embedded Hypervisor 
Embedded hypervisors allow different components to share a 

common hardware host [10]. They grant the control of 

memory to different cores in our intelligent approach [11]. 

Consider the scenario where function 1 is a producer task and 

is executing on core 1. It updates the transmission data bank. 

Function 2 and 3 are consumer tasks on core 2 and 3 

respectively. Both require data from the same producer task. 

Priority based round robin scheduling is introduced. Since 

functional split is carried out and their priority is already 

known, embedded hypervisor allows only the core with 

highest priority to arbitrate for the buss. General arbitration 

technique is considered when priority of all cores is same. 

Each newly introduced core corresponds to a new 

functionality added.  The embedded hypervisor previously 

used would still be the same but with more arbitration for 

memory.  

   

Fig 7: Embedded hypervisor 

 

Fig 8: Data Format for Transmission 

Concept of embedded hypervisor and information propagated 

across the different cores by the embedded hypervisor is 

depicted in figure 7 and 8. The field ‘core’, gives the details of 

the core in which the current function is being executed. 

‘Priority’ field gives the details of the function and its 

associated priority. The address where the transmission data 

bank is stored is provided by ‘address’ field. The approximate 

time by which the transmission data bank could change is 

given by ‘time to live’. Data corruption during transmission is 

recognized by cyclic redundancy check (‘crc’) field. 

4. ALGORITHM 
The below mentioned algorithm has been used for 

implementation. 

INPUT 

            ‘m’ cores 

            ‘n’ tasks 

PROCESS 

Step 1: Initialize the embedded hypervisor. Each core acts as a 

virtual processor.  

Step 2: Propagate function information across all cores. Each 

function is considered a task. 

Step 3: Identify all the slow varying quantities in all task. 

Step 4: Based on data utilization and updating, categorize the 

tasks as producer and consumer. 

Step 5: Create transmission and receiver data banks and 

assign priorities. Begin the execution. 

Step 6: Producer task locks the transmission data bank. 

Step 7: Producer task performs the required operations and 

stores data in the transmission data bank. 

Step 8: Data in transmission data bank is copied to receiver 
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data bank using linked lists. 

Step 9: Transmission data bank is cleared. 

OUTPUT 

Consumer task utilizes the copied data for its execution. If the 

Receiver data bank is not the transmission data bank of some 

other task, clear the receiver data bank. 

5. IMPLEMENTATION AND RESULTS 
Use case from an automotive application was considered to 

demonstrate the correctness of the communication method 

described in this paper. The algorithm described in section 4 

was implemented and the results obtained are discussed in this 

section. The details of the automotive application are not 

discussed because of legal bindings. In the automotive 

application under test, tasks are classified based on the time at 

which they are called by the processor for execution. The 

runtime of each task is shown in table 1. 

Table 1. Runtime of Individual Tasks 

          Task            Runtime 

          20ms             6236.44µs 

          50ms             1122.96µs 

          100ms             6314.12µs 

          200ms             68.76µs 

          1000ms             269.72µs 

These tasks have several parameters whose value change, 

after execution of a particular condition. This condition occurs 

only after a specific period of time. These parameters are 

classified as slow varying quantities. Such quantities were 

identified and runtime improvements due to their non-

execution and intelligent communication, at various intervals 

were recorded.    

The total runtime improvement for Interval 1 is 2.584%, for 

interval 2 it is 5.172% and for interval 3 it is 10.338%. A 

significant improvement in runtime is observed by application 

of the method described in this paper. Figure 9 and 10 

illustrates the runtime improvements for individual tasks and 

the entire system. 

 

Fig 9: Runtime Improvement of individual tasks 

 

Fig 10: Total Runtime Improvement 

Following inferences were drawn from the obtained results:   

Let‘t’ be the total cycle time of the system under 

consideration. Let ‘R’ be the set of all possible runtime 

values.  The runtime of all the tasks is given by ‘f’, which is a 

function of total cycle time. Let dt be the change in runtime 

due to errors in the system. The total runtime is given by  

Runtime total = ∫f (t) dt, dt! = 0 and f(t) € R .                (1) 

Let ‘a’ and ‘b’ be the time interval where runtime has to be 

found out. [a, b] are mapped into [x(i-1),x(i)] for runtime 

measurements. 

a = x0<= t1 <= x1 <= ……<= xn = b.                      (2) 

Therefore the final runtime between the interval [a, b] is given 

by  

r = ∑f (T (i) )∆I .                                                      (3) 

where T(i) is a recognizable point between [x(i-1),x(i)] and  

∆I = x(i) - x(i-1) 

This system comprised of several tasks. Let task ‘a’ be one of 

them.  Let, the total runtime of the system be = ‘p’. The 

runtime of the task ‘a’ before optimization be = ‘m’. The 

runtime of the task ‘a’ after optimization be = ‘n’. The total 

runtime of the system after optimization of task ‘a’ be ‘q’. The 

difference in runtime of task ‘a’ before and after optimization 

= ‘o’ = ‘m’ – ‘n’. Improved Runtime ‘R’ is given by  

‘R’ = (‘p’ – ‘q’)* ‘o .                                 (4) 

6. FUTURE 
The data stored in receiver banks could be transferred to the 

private cache of the core using direct memory access (DMA) 

[12].DMA allows memory transfers to take place without the 

usage of central processing unit (CPU) or the core. The 

address of the memory banks and the cache are known in 

prior. The processor initializes the direct message access 

controller. Cycle stealing mode of direct memory access 

would be chosen.  

DMA controller carries on the activities of memory transfer 

and the CPU can be used for other purposes. This would 

minimize the arbitration for the main system bus. Shadow 

tables would be used to maintain consistency between the 

receiver data bank and the private cache. Since slow varying 

data is being considered, private cache would be cleared after 

fixed interval of time. 
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