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ABSTRACT  
The inverse shortest path problem occurs mostly in 

reconstruction type of problems where, minimum 

modifications of the edge weights of a network are made 

to make a predetermined path to be shortest. In this paper, 

initially the edge weights are taken as rough variables 

which, are based on the subjective estimation of the 

experts. Then these rough weights are approximated by 

normal uncertain variables and an uncertain programming 

model has been developed. Further, the uncertain 

programming model is transformed into a deterministic 

counterpart which can be solved by any standard method. 
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1. INTRODUCTION 
In inverse shortest path problem in a connected weighted 

graph, any pre-determined path from origin to destination 

is to be made a shortest path after modification of weights 

of the edges where the total modification shall be 

minimum. This problem has been studied by many 

researchers due to its different reconstruction problems. 

The traffic network improvement problem is a typical 

inverse shortest path problem. Considering the travel time 

between two localities of a city in a particular path, the 

number of public transportation system should be modified 

or width of the existing roads are to be increased to 

facilitate smooth traffic so as reduce the travel time. 

Burton and  Toint [1] formulated the inverse shortest path 

problem for the first time where they have used l2 norm to 

measure the modification of the weights. Xu and Zhang [2] 

discussed the general structure of the feasible set of 

weights in the inverse shortest path problem and showed 

the relation between inverse shortest path problem and the 

minimal cutset problem. Zhang and Liu [3] formulated an 

inverse shortest path problem as a special linear 

programming problem under l1 norm. Hu and Liu [4] also 

developed an algorithm to solve the inverse shortest path 

problem using l1 norm. 

In most of the cases, the edge weights are assumed to be 

deterministic which does not hold in practical applications. 

For example, the traveling time in a road network may be 

affected by weather conditions, number of vehicles in the 

road, heavy accidents, road block due to police checking 

etc which are uncertain and cannot be predicted before. In 

these cases, some researchers believed that the non-

deterministic nature can be handled with probability theory 

or fuzzy theory. However, when no samples are available 

to estimate a probability distribution in the non-

deterministic environment, the views of some domain 

experts are used to evaluate the belief degree that each 

event will occur. In order to deal with the belief degree 

rationally, the uncertainty theory was developed by Liu [5] 

in 2007 and subsequently applied the theory to model the 

shortest path problem.  

So far as inverse shortest path problem is concerned, the 

problem is not adequately investigated in uncertain 

environment.  Zhou et al. [6] in 2014 investigated the 

problem of inverse shortest path considering the edge 

weights as linear uncertain variables. They have showed 

that when the edge weights are independent uncertain 

variables with regular distribution, then the uncertain 

inverse shortest path problem can be formulated into a 

deterministic programming model. 

In this work, the edge weights are taken as rough variables 

initially and subsequently approximated by uncertain 

normal variables. The model so developed reduces to a 

deterministic linear programming problem model. 

The rest of the paper is organized as follows: In Section 2 

classical deterministic inverse shortest path problem is 

discussed and some basic concepts of uncertainty theory, 

uncertain variables, and rough variables are presented. In 

Section 3, uncertain inverse shortest path problem is 

formulated. The equivalent crisp model is discussed in 

Section 4. In Section 5, one numerical example is 

presented for illustration. Finally, the conclusion is given 

in Section 6. 

2. PRELIMINARIES 
In this section, the classical inverse shortest path problem 

is revived and some notions and results of uncertain 

variable are rough variable are given which shall be used 

to handle uncertain inverse shortest path. 

2.1 Classical  Inverse shortest path 

problem  
In the classical inverse shortest path problem, new weights 

are assigned to the edge of a graph such that a 

predetermined path is the shortest path from the origin to 

the destination with respect to the new edge weights and 

the modification is minimum. 

 Let G = ( V, E) be a connected graph with vertex set  V =          

{ v1,v2 ,v3, ... ,vn} and the edge set     E = {1, 2, 3, …., m} 

For each edge i ϵ E, there is an original weight ci as well as 

new weights  xi after a modification. P0 is the  pre-

determined path  from origin to destination which is 

required to be the shortest path with respect to the new 

weights. 

The inverse shortest path problem can be formulated as 

follows. 
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2.2 Uncertainty Theory 
B. Liu [5], [7] has developed uncertainty theory which is 

considered as a new approach to deal with indeterminacy 

factors when there is a lack of observed data. In this 

section, some basic concepts of uncertainty theory has 

been reviewed which shall be used in this paper. 

2.2.1 Uncertainty measure 

Let L be a  - algebra on a nonempty set . A set 

function M : L [0,1] is called an uncertain measure if it 

satisfies the following axioms. 

Axiom 1: (Normality axiom)   M ( ) = 1 for the universal 

set  

Axiom 2: (Duality axiom)      cM  M( ) 1     for 

every event   

Axiom 3: (sub additive axiom)    For every countable 

sequence of events 1 2, ,.....   we have       

 i i

1i=1
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The triplet   , ,  L   is called an uncertainty space. 

Axiom 4: (Product measure) Let    , ,  k k kL   be 

uncertainty spaces for k = 1, 2……The product uncertain 

measure is an uncertain measure satisfying  

 
 k k

1 1

M  M
k k



 

 
   

 
 

 

where, k  an arbitrary chosen events for kL   for   k = 

1,2……   respectively. 

2.2.2 Uncertain variable  

An uncertain variable   is essentially a measurable 

function from an uncertainty space to the set of real 

numbers. Let   be an uncertain variable. Then the 

uncertainty distribution of   is defined as  

   x M x     for any real number x. 

An uncertain variable  is called linear if it has linear 

uncertainty distribution L (a,b) 
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where,  a  and  b  are real numbers  with  a < b. 

An uncertain variable ξ is called normal if it has a normal 

uncertainty distribution  
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Normal uncertainty distribution is denoted by N(e , σ), 

where e and σ are real numbers with σ > 0 are mean and 

standard deviation respectively. 

An uncertain distribution    is said to be regular if its 

inverse function  1 
 exists and is unique for each

 0,1  .   

The linear uncertainty distribution L(a, b) is regular and its 

inverse uncertainty distribution is     

     1 1 a b      
 

The normal uncertainty distribution N(e, σ) is also regular 

and its inverse uncertainty distribution is  


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2.3.Rough variable 
The concept of rough variable is introduced by Liu [7] as 

uncertain variable. The following definitions are based on 

Liu [7].   

Definition 1 : Let    be a non empty set,  A be  - 

algebra of subsets of  ,  be an element  in A,  and   

be a non negative, real- valued, additive set function on A. 

The quadruple  , , ,A    is called a rough space. 

Definition 2:  A rough variable   on the rough space 

 , , ,A    is a measurable function from   to the 

set of real numbers   such that for every Borel set B of 

  , we have   |   B A     .  

Then the lower and upper approximation of the rough 

variable  are defined as follows  

        })({ 



 
 (Upper approximation)  

        })({ 


    (Lower approximation) 

Definition 3: ([a , b], [c , d]) with c ≤ a < b ≤ d is a rough 

variable, where ξ(λ) = λ from the rough space to the set of 

real numbers and  

}{}{ baanddc  

, A is the Borel algebra on  ,   is the Lebesgue 

measure. 

Definition 4:   Let  , , ,A    be a rough space. Then 

the upper and lower trust of event A is defined by 
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Definition 5:  Let  1 2 ,     be rough variables defined on 

the rough space  , , ,A   . Then their sum and 

product are defined as 

          

      

      

1 2 1 2

1 2 1 2
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      
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 
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Definition 6: Let     be rough variables defined on the 

rough space  , , ,A    and (0,1]  then      

       sup  sup r | Tr r                

is called  -optimistic value of  . 

    

    inf  inf r | Tr r     
  

is called  -pessimistic value of  . 

Definition 7: The trust distribution ϕ : [- , ] → [0 , 1] 

of a rough variable ξ is defined by 

Φ(x) = Tr { λ   ξ(λ) ≤ x} 

Definition 8: The trust density function 

:  R [0, )f    of a rough variable   is a function 

such that f(x) = 



dyy)(  holds for all x  ,  

, where   is trust distribution of . 

Definition 9: Let     be rough variables defined on the 

rough space  , , ,A   . The expected value of   is 

defined  by                

     
0

0

E Tr  Tr  r dr r dr  




    
 

If      = a,b , ,c d  be a rough variable such that c 

  a < b   d, then the trust distribution    x 

 Tr x   is 

 
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And the trust density function is defined as 
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Definition 9: Expected value of a rough variable 

Let the trust distribution φ of a rough variable ξ exists, 

Then the expected value or mean of ξ is defined as 





 dxxxE )(][  , provided the integral exists. 

Definition 10: Variance of a rough variable 

If ξ is a rough variable with finite expected value E[ξ], 

then the variance of ξ is defined as 

V[ξ] = E [(ξ – E[ξ])2] 

3. UNCERTAIN INVERSE 

SHORTEST PATH PROBLEM 
Let  G = (V, E) be a connected graph with  vertex set V ={ 

v1,v2 ,v3, …., vn} and the edge set     E = {1,2,3,….,m}. Let 

for each edge i ϵ E, there is  a  weight ξi which is an 

uncertain variable.  

Suppose that P0 is the predetermined path from origin to 

the destination which is required to be the shortest path 

after modification of the weights.  

Then the length of any path P is defined as 





pi

ipT  )( , which is also an uncertain variable 

being the sum of uncertain variables. 

Let ψp be the uncertain distribution of the path length Tp. 

In order to formulate the inverse shortest path problem on 

an uncertain graph, uncertain α-shortest path is defined as 

follows. 

A path P0 is called an uncertain α-shortest path from the 

origin to the destination if 

0
min{ / { ( ) } }

min{ / { ( ) } }

p

p

T m T T

T m T T

 

 

 

              (2)
 

for all paths p from origin to destination, where α is the 

pre-determined confidence level.  
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The condition (2) can be rewritten as  

)()( 11

0
   pp                                     (3) 

Where, )()( 11

0
 

pp and  are the inverse 

uncertainty distributions of path lengths TPo and TP 

respectively. 

For the purpose of defining the inverse shortest path 

problem on an uncertain graph with uncertain edge 

weights ξi , i ϵ E, we assume that there is a parameter  ci on 

each edge i ϵ E, which shall be modified to xi after  

adjustment. The edge weights ξi are assumed to be related 

to this parameter. Thus, for each edge i ϵ E , there is an 

original weight ξi(ci) as well as a new weight ξi(xi) . 

Given a path P0 from the origin to the destination, the 

uncertain inverse shortest path problem is to find a new 

parameters xi such that P0 becomes an uncertain α-shortest 

path with respect to the new weights ξ i (xi), i ϵ E and total 

change in the parameter  



n

i

ii cx
1   

is minimum. 

Hence, the uncertain inverse shortest path problem can be 

formulated as follows. 
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     (4) 

where, α is the predetermined confidence level and Ω is 

the set of all paths from origin to the destination. 

4. CRISP EQUIVALENT MODEL 
Considering the edge weights ξi as independent uncertain 

variables with regular distribution φi,   i ϵ E, for any path P 

ϵ Ω, the inverse uncertainty distribution of the path length  

Tp(ξ) is  




 
pi

ip )()( 11 

 

Hence, the crisp equivalent model of (3) can be formulated 

as  
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In this work, we have used the uncertain variable as rough 

variable of the form  

( [xi – d, xi + d], [xi –2d, xi +2d]                       (6) 

Further, we purpose the following theorem to reformulate 

the problem. 

Theorem 1 For the rough variable ([a , b],[c , d]), the 

mean is (a + b + c + d)/4 and  

variance = (a2+b2+c2+d2+ab+cd – 6e2)/6, where e is the 

mean 

Proof: The trust distribution of  ξ is  
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The trust density function f(x) of  ξ  is φ'(x). 
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From the above  theorem, considering the rough variable 

as ([xi - d, xi + di], [xi - 2di, xi + di]), the mean = ei = xi and 

SD = σi = √5di .

 

Now, the rough variable is approximated by the uncertain 

normal variable ξi with mean xi and SD is √5di 

Hence, 
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So, the model (5) can be reformulated as  
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Further, by introducing two auxiliary variables xi
+ and xi

- , 

the model can further be simplified, where 
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       iiii cxxx  
 

        xi
+  ≥ 0 and    0 ≤ xi

- ≤ ci . 

So, the model (7) can be transformed to 
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(9) 

The model (9) is a deterministic linear programming 

problem which can be solved using any standard method.

 

5. NUMERICAL EXAMPLE 
In this section, one numerical example is taken to 

implement the proposed model. In the following figure 

(Fig-1), one connected graph is considered having six 

vertices and ten edges. The path a – b – e - f is taken as the 

required path to be converted to be the shortest path after 

modification of the weights. The level of confidence α is 

taken as 0.9. The table-1 gives the uncertain edge weights 

of the edges. The mean, SD and inverse uncertain normal 

distribution are given in the table-2. 

 

Fig-1(Network) 

Table-1 (Rough edge weights) 

Edge Edge 

No 

Original 

parameter 

     (ci) 

Uncertain edge weight(ξi(xi)) 

 

(a,b) 1 30 ([x1-10 , x1+10] , [x1-20 , x1+20]) 

(b,d) 2 50 ([x2-10 , x2+10] , [x2-20 , x2+20]) 

(b,c) 3 40 ([x3-10 , x3+10] , [x3-20 , x3+20]) 

(c,e) 4 80 ([x4-10 , x4+10] , [x4-20 , x4+20]) 

(c,f) 5 50 ([x5-10 , x5+10] , [x5-20 , x5+20]) 

(a,d) 6 40 ([x6-10 , x6+10] , [x6-20 , x6+20]) 

(d,e) 7 90 ([x7-10 , x7+10] , [x7-20 , x7+20]) 

(d,c) 8 60 ([x8-10 , x8+10] , [x8-20 , x8+20]) 

(b,e) 9 70 ([x9-10 , x9+10] , [x9-20 , x9+20]) 

(e,f) 10 40 ([x10-10 , x10+10] , [x10-20 , x10+20]) 

Table-2 (Normal approximation of edge weights) 

Edge No. mean SD Φ-1(xi ,α) 

1 x1 
10 5  

x1 +27.1 

2 x2 
10 5  

x2 +27.1 

3 x3 
10 5  

x3 +27.1 

4 x4 
10 5  

x4 +27.1 

5 x5 
10 5  

x5 +27.1 

6 x6 
10 5  

x6 +27.1 

7 x7 
10 5  

x7 +27.1 

8 x8 
10 5  

x8 +27.1 

9 x9 
10 5  

x9 +27.1 

10 x10 
10 5  

x10 +27.1 

 

So, the model (9) is transformed to 

 

 
0

1

) 27.1

( 27.1),

m

i i

i

i i i

i P

j j j

j P

Min x x

subject to

i x x c

x x c P

 



 



 





  

    







 

) 0, 1, 2, ..., 10

) 0 , 1, 2, ...,10

i

i i

ii x i

iii x c i





 

  
 

This becomes deterministic linear programming model 

which gives the optimal solution as 
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xi
+ = {0, 0, 20, 0, 0, 0, 0, 0, 0, 0} 

xi
- = {0, 0, 0, 0, 0, 0 ,0 ,0 ,0, 0} 

x* = {30, 50, 60, 80, 50, 40, 90, 60, 70, 40} 

The total modification is 20 which is minimum. 

6. CONCLUSION 
In this problem, the uncertain variables are taken as rough 

variables. The mean and standard deviation of each rough 

variable are obtained. Then the rough variables are 

approximated by the normal uncertain variables with the 

mean and standard deviation of the rough variables. The 

uncertain inverse shortest path problem is reduced to a 

deterministic linear programming model which can be 

solved by any standard method. In this case, in the rough 

variables deviations from xi are symmetrical. In case of 

non-symmetrical deviation, the variance of the rough 

variable shall not be independent of xi, rather a linear 

expression of xi. So the standard deviation of the rough 

variable shall be of the form BAxi   for some 

constant A and B. So, the model can be transformed to 

non-linear programming problem which needs further 

investigation. 
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