
International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.7, August 2016

29

Graphical Representation of Optimistic Locking and

Concurrency Control for Temporal Database using

Oracle 12c Enterprise Manager

Jaypalsinh A. Gohil
Research Scholar,

Department of Computer Science
MK Bhavnagar University
Bhavnagar, Gujarat, India

Prashant M. Dolia, PhD
Associate Professor & Research Guide,

Department of Computer Science
MK Bhavnagar University
Bhavnagar, Gujarat, India

ABSTRACT

In a multiuser database environment, multiple simultaneous

transactions may update the same data. Transactions

executing simultaneously must produce meaningful and

consistent results. In multiuser database environment conflicts

are common. If conflicting situations are not dealt properly

then it can harm the database. To minimize the concurrency

problem the locking approach is used. Our study focus on

implementation of optimistic lock through trigger on data

objects of temporal database to resolve the conflicts among

multiple user sessions. Through step by step graphical

representation this study highlights how to acquire and release

an optimistic lock on data objects in case of conflict. This

experimental study shows each locking, unlocking situations

along with conflicting situations graphically through Oracle

12C enterprise manager.

General Terms

Concurrency, Concurrency Control, Consistency, Locking,

Temporal Database, Pessimistic Lock, Optimistic Lock.

Keywords

CC, PCC, OCC, RCN, Oracle 12c.

1. INTRODUCTION
Concurrency is conflicting situation where more than one

users or transactions tires to access the same database

resource at the same time. In such an environment each user

must be given the equal priority to perform their operation.

The situation must be avoided in which one user is updating

an object in the database, while other users are waiting [1].

The concurrency control approaches can be categorized as

either pessimistic or optimistic. Pessimistic concurrency

control approach [2,3], prevents execution of concurrent

transactions if any conflict is detected between the concurrent

transactions. One can also follow Optimistic concurrency

control approach which allows the concurrent transactions to

proceed at the time of conflict with a risk of having to restart

them in case of conflicts [4].

Pessimistic concurrency control mechanism avoids any

concurrent execution of transactions as soon as potential

conflicts between these transactions are detected. Alternately,

Optimistic concurrency control allows such transactions to

proceed at the risk of having to restart them in case this

suspected conflict actually occurs. In optimistic concurrency

mechanism the concentration is on the fact that the resource

should not be blocked for longer period of time [5].

The main aim of concurrency control method is to preserve

the consistency of database without any overhead. This can be

achieved through serializabillity and serial execution of

transactions. An execution is serializable if it is

computationally equivalent to a serial execution. A serial

execution of two or more transactions means that all

operations of one transaction are executed before any

operation from another transaction can execute. Since serial

executions preserve consistency by definition and every

serializable execution is equivalent to a serial one, every

serializable execution also preserves consistency. The

optimistic concurrency control method differs since; detection

of conflicts and their resolution are deferred until committed.

The underlying assumption here is that such conflicts are rare

[6].

Optimistic concurrency control method differ from the

pessimistic method in a way that here in contrast to

pessimistic concurrency control approach the assumption is

that very few transactions will conflict in normal operation, so

there is no prerequisite sequence, synchronization and

execution of transaction until transaction terminates.

A pessimistic locking technique suffers from two major

problems namely frequent lockouts and deadlocks. The

optimistic locking provides efficient solution to the problems.

Optimistic locking does not lock records when they are read,

and proceeds on the assumption that the data being updated

has not changed since the read. Since no locks are taken out

during the read, the deadlocks are eliminated since users

should never have to wait on each other‟s locks. The Oracle

database uses optimistic locking by default [5].

Temporal databases provide a uniform and systematic way of

dealing with historical data [7,8]. It provides mechanisms to

store and manipulate time-varying information... Temporal

databases encompass all database applications that require

some aspect of time when organizing their information. So

consistency in temporal database is a critical area needs to be

addressed by database administrator. Oracle introduced

Oracle Database 12c on June 25, 2013, which is considered to

be the important architectural transformation in the legacy of

the world's leading database in its 25 years with respect to

market presence and dominance [9]. Oracle 12c supports

temporal database consistency through efficient locking

mechanism.

2. CONCURRENCY CONTROL
The serial execution of a set of transaction achieves

consistency, if each single transaction is consistent. The

efficient concurrency control mechanism should ensure the

consistency of the database when transactions are executed

concurrently. Concurrency Control is an integral part of

database system.

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.7, August 2016

30

However, two or more transactions can conflict in a variety of

ways: they can require common resources that must be

allocated exclusively, or they can access common data items

in incompatible modes. In such a case it will generally be

necessary to have some transactions wait, or backup, or restart

certain transactions, until the transactions they conflict with

have run to completion. If the probability of „conflict is high,

then only a few transactions can run concurrently so that all

run to completion. In such a case a limit to increased

transaction rates will soon be encountered, and this limit is

determined by the nature of the transactions [10, 11].

Generally, a conflict between two operations indicates that

their order of execution is important. Read operations do not

conflict with each other, hence the ordering of read operations

does not matter [13].

3. LOCKING

3.1 Locking Mechanism
Locking is one of the most important and complex topic in

oracle. In general explicit and implicit locking schemes are

used. Explicit locks can be implemented through LOCK

TABLE command, where as implicit locking uses DML

statements like insert, update, delete, select for update. The

implicit locking is considered to be more efficient.

Two or more transactions can be in deadlock situation. The

locking mechanism in Oracle is quite complex and it is hard

to find the answer of the question, why session is blocked.

Lock based concurrency control mechanism works on simple

lock mechanism to control the concurrent access to the data

item. If lock is acquired by the transaction then and then only

permission is given to access the data item.

In Lock Based Protocols the Lock mechanism is used for

concurrent access to a data item. Permission is given to access

a data item only if it is currently holding a lock on that item.

Data items can be locked in two modes; either write lock

(w) – also called exclusive lock which is denoted by (X) or

read lock (r) – also called shared lock which is denoted by (S)

[1]. The transaction which performs both read and write from

the data item X, exclusive-mode lock is given. The transaction

which is only reading the data item, but cannot write on data

item, shared-mode lock is given to data item. Transaction can

continue its operation only after request is granted [5].

3.2 Lock Types
Serialize access of conflicting resource can be possible

through lock. Using this locking scheme concurrent session

will wait for the resource, as in a queue, they are also called

enqueues, and this is the term used in wait events to measure

the time waited [12]. As focus is on data only, one should

target data locks which are also called DML locks because

they are used for Data Manipulation Language. The various

lock types in DML are as follows:

 Row level locks are called transaction locks (TX)

because, even if they are triggered by a concurrent DML

on a row, the locked resource is the transaction. TX

enqueues are not waiting for a row, but for the

completion of the transaction that has updated the row.

The TX lock is identified by the transaction id

v$transaction

 Table level locks are called table locks (TM) and the

locked resource is the database object (table, index,

partition…). In addition to DML or DDL, they can be

acquired explicitly with the LOCK TABLE statement.

The TM locks are identified by an object_id (as in

dba_objects).

 User defined locks (UL) resource is not an Oracle object

but just a number that has a meaning only for the

application. They are managed by the dbms_lock

package.

4. ACQUIRING OPTIMISTIC LOCK ON

TEMPORAL RELATION

4.1 Temporal Table Creation
As visible from the below figure 1, this experimental study

starts with designing three relations namely COURSE,

STUDENTS and third temporal relation

STUDENT_COURSE by using the PERIOD FOR clause at

the time of creation of relation STUDENT_COURSE suing

following query [13, 14].

CREATE TABLE COURSE

(

 COURSE_ID NUMBER(10) PRIMARY KEY,

 COURSE_NAME VARCHAR2(20) NOT NULL

);

CREATE TABLE STUDENTS

(

 STUDENT_ID NUMBER(10) PRIMARY KEY,

 STUDENT_NAME VARCHAR2(30) NOT NULL

);

CREATE TABLE STUDENT_COURSE

(

 ID NUMBER(10) PRIMARY KEY,

 STUDENT_ID NUMBER(10) REFERENCES

 STUDENTS(STUDENT_ID),

 COURSE_ID NUMBER(10) REFERENCES

 COURSE(COURSE_ID),

 START_DATE DATE,

 END_DATE DATE,

 PERIOD FOR student_course_period

 (START_DATE,END_DATE)

);

The structures of three tables along with its records are as

follows:

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.7, August 2016

31

Fig 1: Structure of three tables along with its data

4.2 Session view at the start of experiment
At the beginning of experiment as shown in the below figure

2, the experiment starts three distinct sessions for three

different users namely C##JAG1, C##JAG2 and C##JAG3.

Initially as visible for the below image the owner of the

STUDENT_COURSE table C##JAG1 grants ALL

permissions of STUDENT_COURSE table to other two users

namely C##JAG2 and C##JAG3 respectively. Initially all

three uses issues a select command on STUDENT_COURSE

table.

Fig 2: Session view at the start of experiment

4.3 Implementation of optimistic lock using

a trigger
By default the optimistic locking mechanism is used by

Oracle. To understand the concept of optimistic locking

through experiment we have designed and implemented a

trigger which allows the transactions to update the record

based on Record Change Number (RCN), which is generated

automatically by trigger and stored as a column value in a

table. The trigger uses an integer as a concurrency key, and it

is combined with the get_time function within the

dbms_utility package which allows lock resolutions to 100th

second.

Initially after implementing trigger the three users C#JAG1,

C##JAG2 and C##JAG3 tries to update a same row of

STUDENT_COURSE relation shown in the below figure 3.

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.7, August 2016

32

Fig 3: Three users trying to update the same row

Following figure 4 highlights that if all the users tries to

update the same row of same table with incorrect RCN

number i.e. row number does not match with RCN number

generated by trigger, then it shows concurrency control error

message as per trigger description.

Fig 4: Users are denied update operation based on incorrect RCN number

As a next step in experiment the C##JAG1 user get the access

of the table and updates the row successfully with correct

RCN number without committing itself and other two users

waiting in a queue i.e. C##JAG2 and C##JAG3 denies the

update operation on the same table showing concurrency

failure error message as per the concurrency rule described in

the trigger. The situation is shown in the following figure 5.

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.7, August 2016

33

Fig 5: View of three sessions after update operation of C##JAG1 with correct RCN number

The following image shows the view of oracle enterprise

manager of oracle 12c at the start of three distinct user

sessions. It is visible from the image that the C##JAG2 and

C##JAG3 are waiting for C##JAG1 to release the lock on

STUDENT_COURSE object, but not in deadlock state as it

was in pessimistic locking experiment [5]. They can continue

their normal operation which is not related to locked resource.

Fig 6: Two user sessions in waiting in a queue

4.4 Concurrency Situation
Concurrency control can be provided through optimistic

locking approach using a trigger. When more than one user

session tries to access the same resource at the same time in

our case STUDENT_COURSE table, the trigger allows one

user session to continue with correct RCN number and other

user sessions are just in waiting state but do not lock the

resource. So the problem of deadlock is resolved through

optimistic approach which is there in pessimistic locking

experiment [5]. So concurrent executions of update

transactions on the locked recourse are now permitted in

optimistic locking.

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.7, August 2016

34

Fig 7: Enterprise Manager showing concurrency and resource

The above image shows the concurrency environment for

proposed experiment. It shows the resource is not locked for

other users and other user sessions can continue their normal

operation. There will be no concurrency situation.

As per the mechanism of our study the trigger imposes a

pessimistic lock on the object. So optimistic lock is exists on

the object irrespective of the session or transaction which

holds the locks commits itself. Hence in our experiment the

optimistic lock is held by C##JAG1 user and other user‟s i.e.

C##JAG2 and C##JAG3 are waiting for their turn but not in

deadlock mode. So they can perform their normal operations

in normal manner until lock is acquired by them on locked

recourse. So one can say that C##JAG1 user‟s session is not

blocking C##JAG2 and C#JAG3 users respectively as is the

case in pessimistic locking experiment [5]. The following

figure shows the details about who is blocking whom.

Fig 8: Who is blocking whom

5. RELEASING OPTIMISTIC LOCK ON

TEMPORAL RELATION
The COMMIT command is used to release both pessimistic

and optimistic locks on an object. Through this experiment it

is quite evident that lock on the object acquired by one user

session does not prevent other user sessions to continue their

normal operation. In experiment the user C##JAG1 gets the

lock first in sequence but due to concurrency control

provisions implemented in trigger it allows other users

C##JAG2 and C##JAG3 to continue without waiting for a

long time for STUDENT_COURSE relation. So whenever

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.7, August 2016

35

lock is released through COMMIT command the next user

sessions waiting in a queue gets the access of

STUDENT_COURSE relation as per correct RCN number

according to the rules of a trigger.

6. SESSION OUTLINE VIEW
The following table shows session outline view of user

sessions shows the step by step sequence of events when three

different sessions of three distinct users tries to modify the

same resource roughly the same time.

Table 1. Session outline view

Time
Session 1 for user

C##JAG1

Session 2 for user

C##JAG2

Session 3 for user

C##JAG3
Explanation

T1
GRANT ALL ON

STUDENT_COURSE

TO C#JAG2,C#JAG3;

The C##JAG1 user grants all the permission on

STUDENT_COURSE relation to two distinct users‟

C##JAG2 and C##JAG3.

T2
SELECT * FROM

STUDENT_COURSE;

SELECT * FROM

C##JAG1.STUDENT_

COURSE;

SELECT * FROM

C##JAG1.STUDENT_

COURSE;

The three user session C##JAG1, C##JAG2 and

C##JAG3 issues a select statement on

STUDENT_COURSE relation owned by C##JAG1 user.

T3

UPDATE

STUDENT_COURSE

SET COURSE_ID=1,

RCN=80389873

WHERE ID=13;

In session 1 the user C##JAG1 tries to update a row with

wrong RCN number and trigger denies the update

operation showing concurrency failure message

generated by a trigger.

T4

UPDATE

C##JAG1.STUDENT_

COURSE SET

COURSE_ID=2,

RCN=80161086

WHERE ID=13;

In session 2 the user C##JAG2 tries to update a row with

wrong RCN number and trigger denies the update

operation showing concurrency failure message

generated by a trigger.

T5

UPDATE

C##JAG1.STUDENT_

COURSE SET

COURSE_ID=3,

RCN=80161086

WHERE ID=13;

In session 3 the user C##JAG3 tries to update a row with

wrong RCN number and trigger denies the update

operation showing concurrency failure message

generated by a trigger.

T6

UPDATE

STUDENT_COURSE

SET COURSE_ID=1,

RCN=80389873

WHERE ID=13;

UPDATE

C##JAG1.STUDENT_

COURSE SET

COURSE_ID=2,

RCN=80161086

WHERE ID=13;

UPDATE

C##JAG1.STUDENT_

COURSE SET

COURSE_ID=2,

RCN=80161087

WHERE ID=13;

In the next step three different sessions of users‟

C##JAG1, C##JAG2 and C##JAG3 respectively again

tries to update the same row of STUDENT_COURSE

relation but this time with correct RCN number

sequence.

T7 1 row updated No wait… No wait….

At this point after the successful update operation of user

C##JAG1 the other two transactions of user C##JAG2

and C##JAG3 are not in waiting state, they can perform

other normal operations which are not related to common

row of STUDENT_COURSE relation.

T8 Commit; 1 row updated No wait….

At this point C##JAG1 user issues a commit command

which allows the C##JAG2 to successfully update the

row as per correct RCN number. Still at this point

C##JAG3 can perform its normal operations.

T9 Commit; 1 row updated

At this moment the C##JAG2 user issues a commit

statement so now lock which is being held by user

C##JAG2 is released and granted to next user C##JAG3

which is waiting in queue with correct RCN number. At

this point now lock is with user C##JAG3.

T10 Commit;
Finally the user C##JAG3 commits its operation and

releases the lock.

7. SESSION WAITING TIME

STATISTICS
The optimistic locking approach using a trigger allows other

users to continue their other non conflicting operations in

normal manner. So waiting time for the conflicting

transactions is in very negligible fractions, which is vast

improvement over pessimistic locking experiment [5]. As

visible from the chart the session waiting time for sessions 2

and sessions 3 of users C##JAG2 and C##JAG3 is around

0.02 sec. So from the below chart it is quite clear and evident

that in optimistic locking approach the sessions waiting time

is very less which is almost negligible, which is not the case

with pessimistic locking approach [5].

Fig 9: Session waiting time statistics

International Journal of Computer Applications (0975 – 8887)

Volume 148 – No.7, August 2016

36

8. SUMMARY
In optimistic concurrency control method detection of

conflicts and their resolution are deferred until committed.

The underlying assumption here is that such conflicts are rare.

The main disadvantage of pessimistic approach is deadlocks.

They may be a situation in which deadlock can arise in a

system through serial execution of transactions. An optimistic

concurrency control approach let the transaction to execute

itself without worry of conflict with other transactions. As the

name implies the optimistic concurrency control mechanism

is based on the assumption that conflicts between transactions

are not frequent and regular. Finally this experimental study

implements the optimistic locking through trigger which

allows other conflicting transactions to do their normal

operation without waiting for indefinite time. So there is a

vast decrease in average session waiting time, which is almost

at negligible level.

9. CONCLUSION
Locking is an efficient mechanism to provide concurrency

control in database system environment. Locking approaches

can be classified in either pessimistic or optimistic categories.

Optimistic concurrency control requires transactions to

operate in a private workspace, so their modifications are not

visible to other until they commit. When a transaction is ready

to commit, a validation is performed on all the data items to

see whether the data conflicts with operations of other

transactions. If the validation fails, then the transaction will

have to be aborted and restarted later. Optimistic control is

clearly overcomes the problem of deadlock. Optimistic

approach is deadlock free and avoids any time consuming

node-locked scenarios. This approach is generic in the sense if

the transactions become query dominant; the concurrency

control overhead becomes almost negligible. In this approach

reading operations are completely unrestricted whereas write

operations of transactions are severely restricted. The

optimistic concurrency control can be implemented to real

time database system where time dependant distributed

transactions are frequent. The inherent nature of distributed

transactions for temporal database systems can be blend

together with optimistic concurrency control mechanism

which is more reliable and suitable for temporal database

environment as compared to optimistic approach where

session waiting time is more and deadlocks are common.

10. REFERENCES
[1] P.A. Bernstein and N. Goodman, “Concurrency Control

in Distributed Database Systems", ACM Computing

Surveys, Vol. 13(2), June 1981, pp. 186 - 221.

[2] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger

“The notions of consistency and predicate locks in a

database system", Communications of the ACM,

19(11):624-633, November 1976.

[3] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L. Traiger

“Granularity of locks and degrees of consistensy in a

shared data base", In G. M. Nijssen, editor, Modeling in

Data Base Management Systems, pages 365{395. North-

Holland, Amsterdam, The Netherlands, 1976.

[4] J.A.Gohil, Dr.P.M.Dolia “Comparative Study and

Performance Analysis of Optimistic and Pessimistic

Approaches for Concurrency Control Suitable for

Temporal Database Environment”, National Conference

on Emerging Trends in Information & Communication

Technology (NCETICT), 2013

[5] Jaypalsinh A. Gohil, Dr. Prashant M. Dolia, “Graphical

Representation of Pessimistic Locking and Concurrency

Control for Temporal Database using Oracle 12c

Enterprise Manager”, International Journal of

Innovations in Engineering and Technology (IJIET),

Volume 6, Issue 4, April 2016

[6] Jaypalsinh A. Gohil, Dr. Prashant M. Dolia “Study and

Comparative Analysis of Basic Pessimistic and

Optimistic Concurrency Control Methods for Database

Management System”, International Journal of Advanced

Research in Computer and Communication Engineering

Vol. 5, Issue 1, January 2016

[7] Kung H. T. and Robinson J. T. "On Optimistic Methods

for Concurrency Control", ACM Trans. on Database

Systems, V. 6. No. 2, 1981.

[8] Richard T. Snodgrass and Ilsoo Ahn, "Temporal

Databases", IEEE Computer 19(9), pp. 35–42,

September, 1986

[9] Oracle DBA “Tips and Techniques Gavin Soorma Oracle

12c New Feature - Temporal Validity”

http://gavinsoorma.com/2013/08/oracle-12c-new-feature-

emporal-validity/.

[10] Franaszek, P. and J. Robinson “Limitation of

concurrency in transaction processing”, ACM Trans.

Database Syst., 10: 1-28, 1985.

[11] Amer Abu Ali “On Optimistic Concurrency Control for

Real-Time Database Systems”, American Journal of

Applied Sciences 3 (2): 1706-1710, 2006

[12] Franck Pachot “All about locks: DML, DDL, foreign

key, online operations, dbi services”, Switzerland

[13] J. A. Gohil, P.M.Dolia, “Testing Temporal Data Validity

in Oracle 12c using Valid Time Temporal Dimension

and Queries”, Journal of Engineering Computers &

Applied Sciences(JECAS), Volume 4, No.4, April 2015.

[14] Jaypalsinh A. Gohil, Dr. Prashant M. Dolia “Checking

and Verifying Temporal Data Validity using Valid Time

Temporal Dimension and Queries In Oracle 12c”,

International Journal of Database Management Systems

(IJDMS), Vol.7, No.4, August 2015.

[15] Yongdong Wang, Lawrence A. Rowe “Cache

Consistency and Concurrency Control in Client/Server

DBMS Architecture”.

IJCATM : www.ijcaonline.org

http://gavinsoorma.com/
http://gavinsoorma.com/2013/08/oracle-12c-new-feature-emporal-validity/
http://gavinsoorma.com/2013/08/oracle-12c-new-feature-emporal-validity/

