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ABSTRACT 
Normality assumption is important in univariate parametric 

statistical tests. Either the varibles or the error terms in the 

model have to be normally distributed before valid statistical 

conclusions could be made. Various tests of univariate 

normality including that of Pearson, Kolmogorov–Smirnov, 

Anderson-Darling, Shapiro–Wilk, Lilliefor, D’Agostino and 

Pearson, Jarque-Bera, Shapiro-Franca, Energy and Cramer-

von Mises tests have been developed. However, when applied 

in practice, they hardly give the same result. Thus, this 

research work aims at investigating the Type 1 error rate of 

these tests so as to identify the best one and suggest the same 

for statistics users. The tests were compared by conducting 

Monte Carlo experiments five thousand (5000) times with six 

sample sizes at three pre-selected levels of significance. A test 

was adjudged good at a particular level of significance if its 

empirical Type 1 error rate approximated the true error rates 

most often. It is best if its number of counts at which it was 

good over the sample sizes and levels of significance was the 

highest. Results reveal that Type 1 error rate of all the 

univariate tests are good except that of Kolmogorov–Smirnov, 

Pearson Unadjusted and Jarque-Bera. Moreover, those of 

Anderson-Darling, Shapiro-Wilk, Energy and Cramer-von 

Mises tests are relatively best. They are therefore 

recommended for testing the assumption of normality in any 

univariate data set. 

Keywords 
Parametric test statistics, Monte Carlo experiments, Type 1 

error rate, Inferencial statistics tests, Levels of signficance. 

1. INTRODUCTION 
Normality assumption is an underlying assumption in 

statistical parametric tests. It is used in many statistical 

procedures including Regression analysis, Discriminant 

analysis and Analysis of Variance (ANOVA) and in virtually 

all the parametric statistical tests. Assessing the assumption of 

normality is required before proceeding with any relevant 

statistical inferences because it is the formulation upon which 

the interpretation of the results hold. There are three common 

techniques for checking the normality status of independent 

observations. These are graphical, numerical and the formal 

normality tests. The graphical is the easiest and it requires the 

normal quantile-quantile (Q-Qplot) and Histogram plots. 

Genarally, graphical methods are informal approach. The 

Numerical methods include Skewness and Kurtosis indices 

which are generally refered to as standardized moments. The 

formal normality test is a scientific test in that tests methods 

are developed. The procedure involves testing whether a 

particular data set follows a normal distribution and 

computing the probablities of how likely underlying data set is 

normally distributed. In this study, attention is on univariate 

formal normality tests which are Unadjusted Pearson[1][2], 

Kolmogorov–Smirnov [3], Anderson-Darling [4], Shapiro–

Wilk [5], Lilliefor [6], D’Agostino Skewness and Kurtosis [7], 

Adjusted Pearson [8], Omnibus [8], Jarque-Bera [9], Shapiro-

Franca [10], Energy [11] and Cramer-von Mises [12] tests. 

This study focuses on evaluating their Type 1 error rates and 

comparatively distinguishes the best ones and suggests same 

for inferencial usefulness. 

2. REVIEW OF FORMAL UNIVARIATE 

TESTS OF NORMALITY 
These are discussed under four major sub-headings as follows: 

a. Moment Tests 

(1)  Skewness and Kurtosis Tests 

Let 
nxxx ,,, 21   be a random sample of n  observations, 

then, the sample skewness and kurtosis, 
1g and

2g , whose 

quantities consistently and respectively estimate the 

theoretical skewness and kurtosis of the distribution are 

defined as follows: 
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Where x is the sample mean, 2m , 3m  and 𝑚4 are the 

second, third and fourth sample moments about the mean 

respectively. Pearson [2] derived the asymptotic distributions 

of skewness and kurtosis defined as follows: 
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(2) Omnibus K
2
 Test 

The Statistics 1Z  and 2Z  were combined by D’Agostino 

and Pearson [8] to produce an omnibus test defined as: 
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The test was developed to detect departure from normality due 

to either skewness or kurtosis [8].  

(3) Jarque-Bera Test 

The Jarque-Bera [9] test is a goodness-of-fit test of deviation 

from normality based on the sample skewness and kurtosis. 

The test is given as: 
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B.   Chi-Squared Test of Goodness of Fit 

Pearson [1] tested a null hypothesis stating that the frequency 

distribution of certain events observed in a sample is 

consistent with a particular theoretical distribution.  

The test statistic is given as:   
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Where iO  and iE  are the observed and expected frequency 

respectively, k  is the number of cells in the table and p  is 

the number of parameters estimated.  

C. Empirical Distribution Function (EDF) Tests 

(1) Anderson-Darling Test  

The Anderson–Darling [4] proposed a test that is used to test 

whether or not a given sample of data is drawn from a given 

probability distribution. If the hypothesized distribution is F  

and empirical (sample) cumulative distribution function is nF

; then, the quadratic empirical distribution function (EDF) 

statistics measure the distance between F and nF .  

Anderson–Darling test is based on the distance given as: 
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Where iy is the 
thi  ordered observation from a distribution 

with cumulative distribution function CDF   

 

(2) Cramer Von Mises Test 

The Cramér–von Mises criterion is a criterion used for 

judging the goodness of fit of a cumulative distribution 

function *F compared to a given empirical distribution 

function nF  or for comparing two empirical distributions 

[13].  It is defined as 
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Let nxxx ,,, 21   be the observed values, in increasing 

order. Then the statistic is given as: 
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If this value is larger than the tabulated value, then the 

hypothesis that the data come from the distribution F can be 

rejected. 

(3) The Lilliefors Test 
Lilliefor [6] test is a normality test based on Kolmogrov test. 

It is a non-parametric test used to test the null hypothesis that 

data comes from a normal distributed population. The data 

consist of a random sample nxxx ,,, 21   size n  

associated with some unknow distribution, with unknown 

mean and unknow standard deviation.  

The Lilliefors(LF) test is given as: 

 )()(* xSxFSupLF               (13) 

Where )(* xF  is the standard normal distribution function 

and )(xS  is the emperical distribution function. 

D. Regression and Correlation Test 

Regression and Correlation tests are based on the ratio of two 

weighted least-square estimates of scale obtained from order 

statistics. The two estimates are the normally distributed 

weighted least squares estimates and the sample variance from 

other population. 

(1) Shapiro–Wilk test 

The Shapiro and Wilk [5] test is a tests for normality due to 

either skewness or kurtiosis or both [14]. 

The test  is: 
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Where )(ix is the 
thi  order statistic, x  is the sample mean, 

the constants ia  are given by [5] as: 
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Where  TnxxxEm )()2()1( ,,,  and 

  )()( .cov ji xxV   is the covariance matrix of those 

order statistics. Small value of W indicate normality. 

(2) Shapiro–Francia test 

Shapiro-Francia test [10] is simply the squared correlation 

between the ordered sample values and the (approximated) 

expected ordered quantiles from the standard normal 

distribution. 

(3) The D’Agostino D test 

D’Agostino [15] proposed the D test as an extension of the 

Shapiro–Wilk test. The D’Agostino proposed test eliminates 

the need to define the vector of weights a  of the Shapiro–

Wilk test and is obtained according to [16] as:  
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The normality hypothesis of the data is rejected for both small 

and large values of D using a two-sided test[16]. 

3. METHODOLOGY  
In order to emperically investigate the Type 1 error rate of the 

normality tests, Monte Carlo experiments were conducted by 

generating data from normally distributed population five 

thousand times, 5000,,2,1),1,0(~ iNX i
,for six sample 

sizes namely; 500250,100,50,30,20,10 andn  . The R-

Statistical software was used for the simulation study, and R-

codes were written for all the thirteen (13) tests normality. 

The tests were compared at three (3) pre-selected levels of 

significance namely 01.005.0,1.0 and . At a particular sample 

size, the number of times the true hypothesis is rejected is 

counted and the total is divided by the number of replication 

to estimate the Type 1 error rate of each test. The test whose 

error rate approximates the true error rate was considered 

good. That is test whose error rate fall into the preffered 

intervals as specified in Table 1 was considered good. Each 

peferred intervals are such that the values therein approximate 

the true level of significance.   

Table 1: The True Level of Significance and Their 

Preferred Interval 

True levels of significance Preferred interval 

0.01 0.005 - 0.014 

0.05 0.045 - 0.054 

0.1 0.095 - 0.14 

Source: [17] & [18]  

Furthermore, the number of times each test was considered 

good was counted over the sample sizes and levels of 

significance. Thus, a total number of eighteen (18) counts was 

expected. A test was considered best if it has the highest 

number of total counts.  

4. RESULTS AND DISCUSSION 

4.1 Results of Type 1 Error Rates of The 

Tests at 0.1 level of significance  
Table 2 shows the result of the Type 1 error rate at which each 

of the thirteen (13) tests of normality reject a true null 

hypothesis at 0.1 level of significance. In order to get a better 

view of their performance, the estimated Type 1 error rate 

closest to 0.1, using the preffered interval, are bolded, counted 

and presented. It is obvious from the results that all the tests 

generally have good Type 1 error rate except Kolmogorov–

Smirnov, Pearson Unadjusted and Jarque-Bera. It should be 

noted that the Jarque-Bera test under estimated the Type 1 

error rates. However, its error rate is not as bad as that of 

Pearson Unadjusted test. The Type 1 error rate of 

Kolmogorov–Smirnov test is relatively worst.  Moreover, the 

Ominibus, skewnwss and kurtosis tests are also good except 

when the sample size is small, n=20. At all sample sizes, the 

Type 1 error rates of Anderson-Darling, Shapiro–Wilk, 

Energy and Cramer-Von Mises tests are relatively good (see 

Figure 1). 

 
Table 2: Type 1 Error Rate of The Tests at 0.1 Level of Significance 

Tests 

Sample Size 
 

 

Total Count 
20 30 50 100 250 500 

Anderson 0.0986 0.102 0.1058 0.1036 0.1056 0.0982 
6 

Kolmogorov 0.0002 0.0012 0.001 0.0006 0.0008 0.0006 
0 

Shapiro-Wilk 0.0986 0.1016 0.1034 0.1036 0.1002 0.1054 6 

Cramer-vonMises 0.0994 0.1048 0.1018 0.1012 0.1072 0.0972 
6 

Shapiro-Franca 0.099 0.1022 0.1018 0.1044 0.1016 0.1054 
6 

Jarque-Bera 0.08 0.0908 0.081 0.0826 0.088 0.0886 
0 

Lilliefors 0.0954 0.0972 0.1064 0.104 0.1004 0.1038 
6 

Omnibus 0.0916 0.0976 0.1002 0.0984 0.1018 0.1016 
5 

Energy 0.0984 0.1036 0.1032 0.1036 0.1072 0.1008 
6 

Skewness 0.0934 0.103 0.1014 0.1034 0.1076 0.1064 
5 

Kurtosis 0.0928 0.0952 0.0962 0.1008 0.1034 0.0976 
5 

Pearson 0.1218 0.122 0.1066 0.1052 0.1052 0.1002 
6 

UnPearson 0.0336 0.0402 0.05 0.0558 0.057 0.065 0 
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Source: Simulation Results 

 

Figure 1: Type1 error rate of the Tests at 0.1 level of significance 

4.2 Results of Type 1 Error Rates of the 

Tests at 0.05 Level of Significance 
Table 3 displays the result of the Type 1 error rates of the tests 

of normality at 0.05 level of significance. Results show that all 

the tests generally have good Type 1 error rate except 

Kolmogorov–Smirnov, Pearson adjusted and Unadjusted, 

Ominibus and Jarque-Bera.  Result further show that Jarque-

Bera test over estimated the Type 1 error rates except when 

the sample size is large, 250n . Its error rate is also not as 

bad as that of Pearson’s Unadjusted test. The error rate of 

Skewness and Kurtosis tests are relatively better than that of 

Ominibus. Furthermore, the Type 1 error rate of Anderson-

Darling, Shapiro–Wilk, Energy and Cramer-Von Mises tests 

are genearally good at all the sample sizes (see Figure 2).

 
Table 3: Type 1 error rate of the Tests at 0.05 Level of Significance 

Tests 

Sample Size  

Total Count 
20 30 50 100 250 500 

Anderson 0.0476 0.0508 0.0516 0.0522 0.0498 0.0506 6 

Kolmogorov 0 0.0002 0 0 0 0 0 

Shapiro-Wilk 0.049 0.0502 0.0518 0.0504 0.0504 0.052 6 

Cramer-vonMises 0.0488 0.0518 0.0516 0.051 0.05 0.0508 6 

Shapiro-Franca 0.052 0.0546 0.0502 0.0522 0.0522 0.0554 5 

Jarque-Bera 0.0614 0.0668 0.058 0.0586 0.0536 0.0478 2 

Lilliefors 0.0488 0.0492 0.0546 0.0476 0.0448 0.0474 5 

Omnibus 0.0558 0.0592 0.0544 0.0556 0.0534 0.056 2 

Energy 0.0468 0.0498 0.052 0.052 0.051 0.0508 6 

Skewness 0.0486 0.0508 0.0482 0.0496 0.054 0.0574 5 

Kurtosis 0.0464 0.0478 0.0518 0.057 0.0488 0.0516 5 

Pearson 0.044 0.0524 0.056 0.0558 0.0518 0.0554 2 

UnPearson 0.0136 0.0178 0.022 0.0252 0.0234 0.0286 0 

Source: Simulation Results 
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Figure 2: Type1 error rate of the Tests at 0.05 Level of Significance 

4.3 Results of Type 1 Error Rates of the 

Statistics at 0.01 level of significance  
A summary of the results of the empirical Type 1 error rate at 

0.01 level of significance is presented in Table 4. In order to 

get a clearer understanding of the performance of the tests of 

normality at this level of significance, the value of the test 

whose Type 1 error rate is closest to 0.01, as a result of the   

preffered interval, are bolded and counted. The results 

revealed that the tests as a whole have good Type 1 error rate 

except Kolmogorov–Smirnov, Pearson Unadjusted Ominibus 

and Jarque-Bera.  Additionally, Jarque-Bera and Ominibus 

tests over estimate the Type 1 error rates while the Pearson 

Unadjusted test under estimate the error rate. However, 

Kolmogorov–Smirnov test is comparatively not good. This is 

further shown in Figure 3. 

Table 4: Type 1 Error Rate of The Tests at 0.01 Level of Significance 

Tests 

Sample Size  

Total Count 20 30 50 100 250 500 

Anderson 0.0084 0.0094 0.0114 0.0104 0.009 0.0108 6 

Kolmogorov 0 0 0 0 0 0 0 

Shapiro-Wilk 0.0096 0.01 0.0084 0.01 0.0114 0.012 6 

Cramer-vonMises 0.0088 0.0098 0.0108 0.0088 0.0088 0.0108 6 

Shapiro-Franca 0.0106 0.0118 0.009 0.0122 0.0126 0.0124 6 

Jarque-Bera 0.0364 0.04 0.0304 0.0288 0.0232 0.0162 0 

Lilliefors 0.01 0.01 0.0128 0.01 0.0106 0.0088 6 

Omnibus 0.0202 0.019 0.0154 0.018 0.0178 0.0138 0 

Energy 0.009 0.0098 0.012 0.0108 0.0096 0.011 6 

Skewness 0.0104 0.0106 0.008 0.0108 0.0122 0.01 6 

Kurtosis 0.0084 0.0112 0.0122 0.0152 0.0132 0.0118 5 

Pearson 0.0098 0.0134 0.011 0.011 0.0086 0.009 6 

UnPearson 0.0024 0.0034 0.004 0.0034 0.0034 0.004 0 

Source: Simulation Results 
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Figure 3: Type 1 Error Rate of the Tests at 0.01 Level of Significance 

4.4 Overall performance of the Normality 

Test Statistics 
In order to see the performance of the statistics clearly, the 

number of times the Type 1 error rate falls into the preferred 

interval (good performance) is counted over the three levels of 

significance and the sample sizes. This is summarized in 

Table 5. Generally, the Type 1 error rate of Anderson-Darling, 

Shapiro-Wilk, Energy, Cramer-von Mises are best since they 

have the highest number of times the estimated Type 1 error 

rate fall into the preferred intervals. These are followed by 

those of Shapiro-Franca and Lilliefor tests (see Figure 4). 

Consequently, Anderson-Darling, Shapiro–Wilk, Energy and 

Cramer-Von Mises tests are recommended for  use in test of 

normality of a data set.  

 
Table 5:  Number of good performance of the Normality Test 

 

Tests 

Sample Size  

Total counts 20 30 50 100 250 500 

Anderson 3 3 3 3 3 3 18 

Kolmogorov 0 0 0 0 0 0 0 

Shapiro-Wilk 3 3 3 3 3 3 18 

Cramer-von Mises 3 3 3 3 3 3 18 

Shapiro-Francia 3 3 3 3 3 2 17 

Jarque-Bera 0 0 0 0 1 1 2 

Lilliefors 3 3 3 3 2 3 17 

Omnibus 0 1 2 1 2 1 7 

Energy 3 3 3 3 3 3 18 

Skewness 2 3 3 3 3 2 16 

Kurtosis 2 3 3 1 3 3 15 

Pearson 2 3 2 2 2 3 14 

UnPearson 0 0 0 0 0 0 0 

Source: Table 2, 3 and 4. 
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Figure 4: Bar chart showing Total Number of good performance of the Normality Test Statistics 

5. CONCLUSION 
In this study, the Type 1 error rates of  the univariate tests of 

normality have been empirically examined. Results have 

revealed that Type 1 error rate of Anderson-Darling, Shapiro-

Wilk, Energy, Cramer-von Mises tests are relatively best. 

These are followed by those of Shapiro-Franca and Lilliefor 

tests. But that of Skewness, Kurtosis, Pearson and Omnibus 

tests, in this order are fairly good. The performance of Jarque-

Bera test is comparatively not good while that of Unadjusted 

Pearson and Kolmogorov–Smirnov are the least. Findings 

have shown that graphical methods (Q-Q plot, Histogram, 

Stem and Leaf plot and box plot) usually provide information 

about the shape of the distribution of the data but do not 

assure that the set of data is normal. Consequently, Anderson-

Darling, Shapiro–Wilk, Energy and Cramer-Von Mises formal 

tests of normality are therefore recommended for 

practitioners. 
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