Abstract

Label Switching in Multi-Protocol Label Switching Networks is a most researched area in recent years. Many techniques have been proposed and implemented and their merits and demerits have been considered. Label Space Reduction is an issue which directly affects the quality of service of the MPLS network. The aim of the work is to design a network which optimizes the quality of service parameters like packet delivery ratio and throughput of the network. In many previous works tunnels are created which deals in only one label for the tunnel instead of swapping labels at each Label Switch Router (LSR). But the entry and exit points inside the tunnel are fixed which makes it difficult for the packets to enter and exit the tunnels. Also the packets entering will have to exit at fixed point and then it follows some other route to reach the destination which only increases the end to end delay and the packet drop in the network. In our proposed approach LCS algorithm is used to find the length of the tunnel according to the number of Label Switched Paths (LSPs) so that the packet can enter into the tunnel and exit at any point in the tunnel. Also each LSR maintains a table so that it tracks the labels which are assigned to the packets entering the tunnel and exiting at any point over the length of the
tunnel. This technique results in the reduced number of packets lost in the network and also
delay is reduced thus improving the throughput of the network. The results shown in the coming
sections also proves the approach and the labels are significantly reduced along with the
improvement of other performance parameters like throughput of the network, end to end delay
and the packet delivery ratio.

References

1. White Paper on “Multi-Protocol Label Switching” by The International Engineering
research.
for QoS”, June 2014, vol-6, 115-120.
Conventional Network over MPLS” 2010, IEEE.
Network”, 2012 IEEE.
8. V. Jain, R. Gupta “An Algorithm for the Stacking Problem of Asymmetric Merged
Tunneling”, 2013 IEEE.
How Much Can A Single Stacked Label Do” December 2008, IEEE.
10. X. Xiao, A. Hannan, B. Bailey, “Traffic engineering with MPLS in the Internet”
11. M. Bhandure, G. Deshmukh “Comparative Analysis of MPLS and Non -MPLS
Network” aug-2013, int journal of engg. & research.
Multiprotocol Label Switching and Open Flow Network Technologies for Transmission
Operations” Jun-2013, IEEE.
13. MPLS tutorial sessions, www.ciscolive.com
15. E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol label switching architecture,
journal.
17. Awduche, Rekhter “Multiprotocol lambda switching: combining MPLS traffic engineering
control with optical crossconnects” published in IEEE Communications Magazine (Volume: 39,
Issue: 3) 2001.
18. Faiz, Zaffar “Analysis of traffic engineering parameters while using multi-protocol label
switching (MPLS) and traditional IP networks”, published in Asian Transactions on Engineering
(ATE ISSN: 2221-4267) Volume 01 Issue 03, july 2011.
19. Banerjee, "Generalized Multiprotocol Label Switching: An Overview of Routing and
Improving Quality of Service by Label Space Reduction in Multi-Protocol Label Switching (MPLS) Networks

2. April 1999.

22. Anyanwu “multiprotocol label switching” Cyprus International University.

Index Terms

Computer Science Networks

Keywords

MPLS, LDP, LCS, Shim, LSR, QoS, Label.