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ABSTRACT 
Due to the late overpowering development rate of large scale 

data, the advancement of handling faster processing 

algorithms with optimal execution has turned into a critical 

need of the time. In this paper, parallel Map-Reduce algorithm 

is proposed, that encourages concurrent participation of 

various computing hubs to develop a classifier on SEER 

breast cancer data set. Our algorithm can prompt supported 

models whose speculation execution is near the respective 

baseline classifier. By exploiting their own parallel 

architecture the algorithm increases noteworthy speedup. In 

addition, the algorithm don't require singular processing hubs 

to communicate with each other, to share their data or to share 

the knowledge got from their data and consequently, they are 

powerful in safeguarding privacy of computation also. This 

paper utilized the Map-Reduce framework to implement the 

algorithms and experimented onSEER breast cancer data sets 

to exhibit the execution as far as classification accuracy and 

speedup. 
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1. INTRODUCTION 
Data evolution has been quickly moving from the Terabytes 

to the petabytes age as an aftereffect of the blast of data. The 

potential worth and bits of knowledge which could be derived 

from massive data sets have pulled in gigantic enthusiasm for 

an extensive variety of business and scientific applications [1–

3]. It is turning out to be increasingly critical to arrange and 

use the huge measures of data at present being created. 

However, with regards to massive data, it is troublesome for 

current data mining algorithms to build classification models 

with serial algorithm running on single machines, also exact 

models. In this way, the requirement for proficient and 

powerful models of parallel computing is obvious. 

Fortunately, with the assistance of the MapReduce [3–6] 

infrastructure, specialists now have a basic programming 

interface for parallel scaling up of numerous data mining 

algorithms on larger data sets. It was indicated [7] that 

algorithms which fit the Statistical Query model [8] can be 

composed in a specific “summation form”. They represented 

10 different algorithms that can be effectively parallelized on 

multi-core personal computers applying the MapReduce 

paradigm. 

Despite the fact that MapReduce handles extensive scale 

computation, it doesn't support iteration. Since there are no 

loop steps available in Hadoop, to execute loops, an outside 

driver is expected to repeatedly submit MapReduce jobs. 

Since each MapReduce jobs works independently, keeping in 

mind the end goal to reuse information between MapReduce 

jobs, the outcomes created by a previous MapReduce jobs are 

composed to the Hadoop Distributed File System (HDFS) and 

the following MapReduce job which needs this data as inputs 

peruses these messages from HDFS. Clearly, this operation 

doesn't have the advantages that the caching system can get 

for the in-memory computation. Additionally, attributable to 

data replication, disk I/O, and serialization, the methodology 

for making loops inside the original version of Hadoop causes 

enormous overheads. The time spent in this procedure may 

some of the time possess a noteworthy part in the aggregate 

execution time. 

Presently, there are some methodologies [9–14] which 

manage the issue of lacking iterations in MapReduce. To 

effectively handle such large scale data, faster processing and 

optimization is turning out to be more critical. Subsequently, 

it has become vital to develop new algorithms that are more 

reasonable for parallel models. One straightforward 

methodology could be to convey a single inherently 

parallelizable data mining program to multiple data (SPMD) 

on numerous personal computers. In any case, for algorithms 

that are not inherently parallelizable in nature, upgrading to 

accomplish parallelization is the option. 

In this paper, the proposed parallel algorithms, which 

accomplish parallelization in both time and space. 

Parallelization in space is additionally vital as a result of the 

restricting variable postured by the memory size. Large data 

sets that cannot fit into the main memory are regularly 

expected to swap between the main memory and the 

secondary storage, presenting latency cost which sometimes 

may even decrease the speedup picked up by parallelization in 

time. The proposed algorithms are intended to work in cloud 

environment where every hub in the computing cloud works 

just on a subset of the entire data. The joined impact of all the 

parallel working hubs is a supported classifier model 

prompted much speedier and with a fabulous speculation 

capacity. 

The demonstration of the algorithm keeps up a competitive 

test exactness, which accomplishes significant speedup 

contrasted with big data analytics using Map-Reduce 

(BDAM), which is equipped for being fitted in a parallel 

design; and demonstrated that Parallel Computing using Map-

Reduce (PCM) algorithm performs better both in terms of 

prediction accuracy and speedup. For the implementation, 

Map-Reduce [15] framework has been utilized, which a 

straightforward model for distributed cloud computing. 

This paper is organized as follows: section “Related work” 

introduces work that has previously been proposed for solving 

the problem in Hadoop MapReduce; section “Proposed 

Algorithm" presents a new parallel framework PCM 
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algorithm that accomplishes parallelization in both time and 

space; section “Experimental Result" demonstrate 

experimentally the predominance of the proposed algorithm 

over BDAM as far as prediction accuracy and speedup; 

section “Conclusion" concludes the paper. 

2. RELATED WORK 
ADABOOST is one of the most popular boosting algorithm 

proposed in the mid-1990s [16]. Its straightforward natural 

algorithmic flow joined with its sensational change in the 

speculation execution makes it a standout among the most 

intense ensemble techniques. A clear hypothetical 

clarification of its execution is all around portrayed in [17], 

where boosting in a two class setting is seen as an additive 

logistic regression model.  

LOGITBOOST is another generally utilized boosting 

algorithm which is proposed using additive modeling and is 

appeared to show more powerful execution particularly in the 

presence of noisy data. 

FILTERBOOST [18] is a recent algorithm of the same kind, 

based on a modification of ADABOOST intended to 

minimize the logistic loss. FILTERBOOST expect an oracle 

that can deliver boundless number of labeled samples and in 

each boosting iteration, the oracle creates sample points that 

the base learner can either accept or reject. A small subset are 

utilized to prepare the base learner. 

Escudero et al. [19] proposed LAZYBOOST for accelerating 

ADABOOST, which utilizes several feature selection and 

ranking techniques. In each boosting iteration, it picks a fixed-

size arbitrary subset of features and the base learner is 

prepared just on this subset. Another fast boosting algorithm 

in this category was proposed by Busa-Fekete and Ke´gl [20], 

which uses multiple-armed bandits (MAB). In the MAB-

based methodology, every arm speaks to a subset of the base 

classifier set. One of these subsets is chosen inevery iteration 

and after that the boosting algorithm seeks just this subset as 

opposed to optimizing the base classifier over the whole 

space.However, none of these works portrayed so far 

investigate accelerating boosting in a parallel or distributed 

setting and in this way their execution is restricted by the 

resources of a solitary machine. 

Wu et al. [21] proposed an ensemble of C4.5 classifiers taking 

into account MapReduce called MReC4.5. By giving a 

progression of serialization operations at the model level, the 

classifiers based on a cluster of computers or in a cloud 

environment could be utilized as a part of different situations. 

PLANET [22] is another as of late proposed system for 

learning classification and regression trees on enormous data 

sets utilizing MapReduce. These methodologies are particular 

to the weak learners, (for example, tree models) and 

consequently don't show up as a general system for ensemble 

techniques such as boosting. 

In spite of these endeavors, there has not been any huge 

examination to parallelize the boosting algorithm itself. Prior 

forms of parallelized boosting [23] were basically intended for 

tightly coupled shared memory frameworks and henceforth is 

not appropriate in a distributed cloud environment. Fan et al. 

[24] proposed boosting for adaptable also, distributed 

learning, where every classifier was prepared utilizing just a 

small portion of the training set. In this distributed adaptation, 

the classifiers were prepared either from irregular samples (r-

sampling) or from disjoint partitions of the data set (d-

sampling). This work fundamentally centered on 

parallelization in space however not in time. Henceforth, 

despite the fact that this methodology can deal with 

substantial data by distributing among the hubs, the objective 

of faster preparing time is not accomplished by this 

methodology. 

Gambs et al. [25] proposed MULTBOOST algorithm which 

permits participation of two or more working hubs to develop 

a boosting classifier in a security safeguarding setting. In spite 

of the fact that initially intended for saving protection of 

algorithm, MULTBOOST's algorithmic design can fit into a 

parallel setting. It can accomplish parallelism both in space 

and time by requiring the hubs to have separate data and by 

empowering the hubs to process without thinking about other 

specialists' data.  

However, the primary issue of these aforementioned 

methodologies is that they are reasonable for low latency 

intercomputer communication environments, for example, 

conventional shared memory architecture or single machine 

multiple processors frameworks and are not appropriate for a 

distributed cloud environment where for the most part the 

correspondence expense is higher. A huge part of the time is 

used for imparting data between the registering hubs instead 

of the real computation. In this proposed methodology, the 

constraint by making the hubs computation independent from 

each other thus minimizing these communications has been 

overcome. 

3. PROPOSED ALGORITHM 
In this section, the proposed PCM algorithm has been 

described. Before that, big data analytics using MapReduce 

framework has been described, in brief. The pseudocode for 

big data analytics using Map-Reduce (BDAM) is described in 

Algorithm-1. Let the data set Dn={(x1, y1), (x2, y2), ..... ,(xm, 

ym)} with label classification yi ∈ {Recurrence (R), Non-

Recurrence (NR)}; xi ∈ X is the object or instance; The 

algorithm initialize all the records with weight, so that𝐷1 𝑖 =
 1

𝑚
for all the examples in Dm, where t ∈[1, T] and T is the total 

number of iterations. Before starting the first iteration these 

weights are uniformly initialized (line 1) and they are updated 

in every consecutive iteration. At each iteration, a weak 

learner function is applied to the weighted version of the data 

which then returns an optimal weak hypothesis ht (line 5). 

This weak hypothesis minimizes the weighted error. At each 

iteration, a weight is assigned to the weak classifier (line 7). 

At the end of T iterations, the algorithm returns the final 

classifier H which is a weighted average of all the weak 

classifiers. The sign of H is used for the final prediction.  

Algorithm-1: BDAM (𝑫𝒏, T) 

Input: Consider SEER dataset of n records (x1,y1), ……, (xn, 

yn)  with label classifications yi∈ Y = {Recurrence (R), Non-

Recurrence (NR)}; xi ∈ X is the object or instance;  Base 

learner B; and Number of iterations T 

Output: The final classifier Hfinal(x) 

1.    Initialize all the records with weight, so that 𝐷1 𝑖 =  
1

𝑛
 

2.for t ← 1 to T do 

3.Create distribution 𝐷𝑡  on {1,…..,n} from the selected 

training subset 𝑆𝑡  

4.        Call base learner B, train B with 𝑆𝑡  

5.         Select weak classifier with smallest error rate (𝜀𝑡) on 

𝐷𝑡  

 𝜀𝑡 = 𝑃𝑟𝐷𝑡
[ℎ𝑡(𝑥𝑖) ≠ 𝑦𝑖] 

 ℎ𝑡 : 𝑥 → {𝑅, 𝑁𝑅} 
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6.         if  𝜀𝑡 > 0.5, then set T = t – 1 and exit from loop. 

7. Update distribution 𝐷𝑡+1(𝑖) =
𝐷𝑡(𝑖)

𝑍𝑡
 𝐶(𝑥) 

 C(x) = 

𝜀𝑡

1−𝜀𝑡

1

: 𝑦𝑖 = ℎ𝑡 𝑥𝑖 

: 𝑦𝑖 ≠ ℎ𝑡 𝑥𝑖 
 

 αt = log1−𝜀𝑡
𝜀𝑡

> 0 

 𝑍𝑡  → Normalization constant ≤ 1 

8. Output: The final classifier Hfinal(x) = 

𝑎𝑟𝑔𝑚𝑎𝑥𝑦𝑖∈ Y  αt𝑡:ℎ𝑡 𝑥 =𝑦  

Computational Complexity of BDAM depends on the weak 

learner algorithm in line 4. Rest of the operations can be 

performed in Θ(n). Let’s consider decision trees with only two 

leaf nodes as weak learners. Then the cost is Θ(dn) if the data 

examples are sorted in each attribute. Sorting all the attributes 

will take Θ(dn log n) time and this has to be done only once 

before starting the first iteration. So, the overall cost of the T 

iterations is Θ(dn(T + log n)). 

The pseudocode for PCM is depicted as a part of Algorithm-2, 

let 𝑫𝒑
𝒏is the data set for the pth hub. The hubs compute 

classifier Hp by finishing all the T iteration of Algorithm-1 on 

their particular data sets (line 2).   Hp is defined as follows:  

{(hp
1 , αp(1)), (hp

2 , αp(2)), . . . (hp
T , αp(T))}  

where hp
t is the weak classifier of pth hub at tth iteration and 

αp(t) is the corresponding weight of that weak classifier. The 

worker than reorders the weak classifier, hp
t, with increasing 

order of αp(t) (line 3). Thus, reordering Hp
* communicated as 

follows:  

{(hp
*1 , αp

*
 (1)), (hp

*2 , αp
*
 (2)), . . . (hp

*T , αp
*
 (T))}.  

If,   αp(k) = min { αp(t)) | t ∈ {1, 2, . . . , T}} then αp
*
 (1) = αp(k) 

and  hp
*1 = hp

k. Now, the reordered hp
*t s are considered for 

converging in the T number of iterations for the final 

classifier. ℎ𝑡 𝑥  is formed by converging {(ℎ1(𝑡), ..., ℎ𝑀(𝑡)} 

(line 6) where, these weak classifiers does not necessarily  

come from the tthiteration of the hubs. This converged 

classifier, ℎ𝑡 𝑥  is a ternary classifier, a variant of weak 

classifier proposed by Schapire and Singer [26] which 

alongside "+1" and "−1" may likewise return "0" as a method 

for going without replying. It takes a straightforward 

dominant part vote among the worker’s weak classifiers. The 

ternary classifier will reply "0" if equal number of positive 

and negative expectations is made by the worker’s weak 

classifiers. Else, it will answer the majority expectation. In 

line 7, the weights of the comparing classifiers are averaged to 

get the weight of the ternary classifier. After all the ternary 

classifiers for T rounds are created, the algorithm gives back 

their weighted combination as the final classifier. 

Algorithm-2: PCM (𝑫𝟏
𝒏, … , 𝑫𝑴

𝒏 , T) 

Input: The training set of M hubs 𝑫𝟏
𝒏, … , 𝑫𝑴

𝒏 and 

Number of iterations T 

Output: The final classifier {Hfinal(x) =  𝛼𝑡ℎ𝑡(𝑥))𝑡  

 

1.for p ← 1 to M do 

2. Hubs compute classifier Hp by completing all the T 

iteration of Algorithm_1 (𝑫𝒑
𝒏, T) 

3.         Hp
*← Select weak classifiers of pth hub sorted 

corresponding to αp(t) of tth iteration. 

4.     end for 

5. for t ← 1 to T do 

6. Hypothesis h(t) is formed by converging {(ℎ1(𝑡), ..., 

ℎ𝑀(𝑡)} 

7.  αt= 


M

p

p
M 1

(t) 
1

  

8.     end for 

9.    Output: The final classifier {Hfinal(x) =  𝛼𝑡ℎ𝑡(𝑥))𝑡  

In an parallel computing environment, where M hubs 

participates parallelly and the data is distributed uniformly 

among the hubs, the Computational Complexity of Algorithm-

2 is Θ(𝑑𝑛
𝑀

𝑙𝑜𝑔 𝑛
𝑀

 + 
𝑇𝑑𝑛
𝑀

) which relies on upon the number of 

iterations T, the number of instances n, the number of 

attributes D and number of hubs M. The sorting of the T weak 

classifiers (line 3) will have an additional cost of Θ(T log T) 

time, which becomes a constant term if T is fixed. 

4. EXPERIMENTAL RESULT 
In this segment, the proposed algorithms exhibit in terms of 

certain performance metrics, for example, classification 

accuracy and speedup. The algorithm outcomes contrasted 

with big data analytics using MapReduce framework. All the 

tests were performed on Amazon EC2 distributed computing 

environment and the computing hubs used were of type M3 

instance designed with Latest Intel Xeon Processor and SSD-

backed instance storage that conveys higher I/O execution. 

The algorithm applied stratified examining on SEER breast 

cancer dataset keeping in mind the end goal to form training, 

validation and test segments. The accuracy results are 10-fold 

cross validation results. In the analyses, the quantity of 

mappers in the training procedure is dictated by the quantity 

of splits of the training data. To uniformly appropriate the 

classes, the training data is split equally among the mappers 

utilizing the stratification method. The base learning 

algorithm is utilized as a part of Algoritm-1 is decision trees 

with standout non-leaf node as weak learners. 

For the accuracy experiments, 2,20,811 instances and 17 

attributes of the SEER breast cancer data set are utilized. The 

details of the 17 attributes can be found in Table 1.  The error 

rate of parallel computing utilizing MapReduce (PCM) 

framework when the number of computing hubs changes from 

1 to 20 are shown in Table 2 andgraphical representation in 

Figure 1. It can be seen from this table contrasted with the one 

mapper case the PCM calculation has lower or equal error 

rates. 

Table 1: Variables Used For Breast Cancer Recurrance 

Modeling 

Sl. No. Variable Name 

1. Race 

2. Marital Status 

3. Primary site code 

4. Histological type 

5. Behavior code 

6. Grade 

7. Extension of Tumor 

8. Lymph node involvement 

9. Site specific surgery code 

10. Radiation 

11. Stage of cancer 

12. Age 
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13. Tumor size 

14. Number of positive nodes 

15. Number of nodes 

16. Number of primaries 

17. Menopause 

 

Table 2: Pcm Error Rates For Different Number Of Hubs 

 
Number of Computing Hubs for SEER 

dataset in PCM 

No. of Hubs 1 5 10 15 20 

Error rates 0.1140 0.1102 0.1016 0.0976 0.0860 

 

Figure 1: Graphical Representation Of Pcm Error Rates 

For Different Number Of Hubs 

Further, we compared the error rates acquired by theparallel 

computing utilizing MapReduce with Big data analytics 

utilizing MapReduce framework algorithm. The correlation 

results are appeared in Table 3 and graphical representation in 

Figure 2. It can be seen that the PCM algorithm has the most 

reduced error rates in SEER breast cancer datasets. 

Table 3: Error Rates Comparison Between Pcm And Data 

Analytics Using Mapreduce Framework Algorithm  

BDAM PCM (10 hubs) PCM (20 hubs) 

0.1146 0.1016 0.086 

 

 

Figure 2: Graphical Representation Of Error Rates 

Comparison Between Pcm And Data Analytics Using 

Mapreduce Framework Algorithm 

To show the adequacy speedup execution of the PCM with 

Big data analytics utilizing MapReduce framework algorithm, 

we ascertain speedup as the proportion of the training time for 

a single computing node over that of a number of computing 

hubs handling in parallel (we vary this number from 5, 10, 15 

to 20). The itemized aftereffects of speedup are appeared in 

Table 4 and graphical representation in Figure 3. As can be 

seen from this table, the number of computing hubs increases, 

the higher speed up the algorithm accomplishes. 

Table 4: Speedup Results For Different Computing Hubs 

 
Number of Computing Hubs for SEER 

dataset in PCM 

No. of Hubs 5 10 15 20 

Speedup 4.9508 8.4430 11.8850 13.2450 

 

Figure 3: Graphical Representation Of Speedup Results 

For Different Computing Hubs 

5. CONCLUSION AND FUTURE WORK 
We proposed our parallel algorithms executed with 

MapReduce that have fantastic speculation execution. 

Because of the algorithms’ parallel structure, the models can 

be prompted much quicker. We contrasted the execution of 

our algorithm with the big data analytics utilizing MapReduce 

framework as a part of a parallel distributed setting. The tests 

were performed with the Map-Reduce framework. Our 

outcomes show that the prediction accuracy of our algorithm 

is aggressive to the respective baseline and is far and away 

superior sometimes. We gain significant speedup while 

building exact models in a parallel domain. The scale up 

execution of our algorithms demonstrates that they can 

proficiently use extraresources when the problem size is 

scaled up. 

For the PCM algorithm, since the base learners which handle 

part of the original datasets work in one single machine 

successively, in the following step, we plan to parallelize this 

progression and distribute the computation to additional 

computing hubs for expanding the computational efficiency. 

Also, we utilized the same algorithm: BDAM for all the 

computing hubs in this work. We plan to utilize distinctive 

algorithms on various computing hubs to build the accuracy 

further. The reason is that PCM algorithm belongs to the 

ensemble learning paradigm of machine learning and the more 

various the base learners are, the higher accuracy could be 

expected. Further, for the trails, our present adaptation of the 

algorithms isolates the data using random stratification. We 

plan to investigate other data partitioning algorithms that can 

enhance the classification execution significantly further. 
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