
International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.5, September 2016

23

Behavior Driven Development: An Effective Technical

Practice to Develop Good Software

Harshad Naik
Computer & IT Dept.,

VJTI
Mumbai-19, India.

ABSTRACT

Behavior Driven Development (BDD) is the best way to

prevent communication gaps within a software development

team as well as communication gaps between software

developers and stakeholders. This paper talks about what

Behavior Driven Development is and why it should be

preferred over Test Driven Development. It comprehensively

reviews Behavior Driven Development against Test Driven

Development. It also talks about implementing Behavior

Driven Development using BDD tools such as Cucumber and

Selenium and the BDD life cycle.

General Terms

Behavior Driven Development, BDD, TDD, Cucumber,

Selenium

Keywords

BDD, TDD, Cucumber, Selenium, Agile.

1. INTRODUCTION
In software engineering, behavior-driven development (BDD)

is a software development process that emerged from test-

driven development (TDD). Behavior-driven development

combines the general techniques and principles of TDD with

ideas from domain-driven design and object-oriented analysis

and design to provide software development and management

teams with shared tools and a shared process to collaborate on

software development. In this paper, a review of TDD will be

presented first, followed by a comparison with TDD. BDD

will be explored in detail.

2. TDD
Test Driven Development requires a person, to write test cases

for only the new functionality that is needed, that is not to

write test cases for the entire software. Once the person is

done writing test cases, he runs the code. Surely all the newly

added test cases must fail. If they do fail, then the person

starts writing code that will satisfy the given test cases.

In this way test driven development provides a working

specification for the code that will be written. It is very widely

used by agile developers since it can be used to develop

software very quickly.

TDD‟s biggest advantage is that it assures a developer, that

whatever code he is writing will be meaningful, since

effectively the developer will write code to satisfy the test

cases that were written.

However the biggest drawback with TDD is that the test cases

are written in high level languages such as Java and VBScript

and there is no way that the stakeholder and Business

Analysts can analyze these test cases to see whether they are

meaningful. This is where BDD has an upper hand. Since,

BDD allows us to write test cases in the form of simple

Given, When and Then statements; these can be easily

verified by Business Stakeholders or Business Analysts.

3. TDD TOOLS
There are various tools available for Test Driven

Development. This paper will talk more about JUnit. JUnit is

a simple framework to write repeatable tests. It is an instance

of the xUnit architecture for unit testing frameworks. JUnit

allows us to write test cases in Java, and it can be very easily

installed and used in any IDE such as Eclipse or NetBeans.

Using JUnit, we write the test cases, run them (ideally they

should fail) and then code is written so as to satisfy these test

cases. Given below is a simple JUnit test case that was written

to test a food ordering application made by me:

package admin_business_logic;

import org.junit.After;

import org.junit.AfterClass;

import org.junit.Before;

import org.junit.BeforeClass;

import org.junit.Test;

import static org.junit.Assert.*;

/**

 *

 * @author harshad

 */

public class C_add_itemTest {

 public C_add_itemTest() {

 }

 @BeforeClass

 public static void setUpClass() {

 }

 @AfterClass

 public static void tearDownClass() {

 }

 @Before

 public void setUp() {

 }

 @After

 public void tearDown() {

 }

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.5, September 2016

24

 /**

 * Test of check_unique method, of class C_add_item.

 */

 @Test

 public void testCheck_unique() throws Exception {

 System.out.println("check_unique");

 String dishname = "brownie";

 C_add_item instance =new C_add_item();

 boolean expResult = true;

 boolean result = instance.check_unique(dishname);

 assertEquals(expResult, result);

 // TODO review the generated test code and remove the

default call to fail.

 //fail("The test case is a prototype.");

 }

 @Test

 public void testCheck_unique1() throws Exception {

 System.out.println("check_unique");

 String dishname = "butter chicken";

 C_add_item instance =new C_add_item();

 boolean expResult = false;

 boolean result = instance.check_unique(dishname);

 assertEquals(expResult, result);

 // TODO review the generated test code and remove the

default call to fail.

 //fail("The test case is a prototype.");

 }

}

As can be clearly seen, test cases written in JUnit cannot be

understood by a stakeholder or business analyst who may not

have knowledge about programming languages such as Java.

4. BDD
Behavior Driven Development concentrates on the Behavior

of whatever is being built. It is an evolution of Test Driven

Development and it allows for better collaboration between

the entire team that is developing and testing the software.

Feature files allow a stakeholder to write the expected

behavior of the software in the form of simple given, when

and then statements. This means that Behavior Driven

Development ensures that the correct product is being built.

That is its biggest advantage. Also being an agile technique, it

ensures shorter development times.

5. BDD V/S TDD
Test-Driven Development is a developer practice that

involves writing tests before writing the code being tested.

Begin by writing a very small test for code that does not yet

exist. Run the test, and, naturally, it fails. Now write just

enough code to make that test pass. Once the test passes,

observe the resulting design, and refactor any duplication you

see. Rather than thinking of TDD as a testing practice, it is

seen as a technique used to deliver high-quality code to

testers, who are responsible for formal testing practices.

And this is where the Test in TDD becomes a problem.

Specifically, it is the idea of unit testing that often leads new

Test Driven Developers to verify things such as making sure

that a register() method stores a Registration in a Registry‟s

registrations collection and that collection is specifically an

Array. This sort of detail in a test creates a dependency in the

test on the internal structure of the object being tested. This

dependency means that if other requirements guide us to

change the Array to a Hash, this test will fail, even though the

behavior of the object hasn‟t changed. This brittleness can

make test suites much more expensive to maintain and is the

primary reason for test suites to become ignored and,

ultimately, discarded.

The problem with testing an object‟s internal structure is that

we‟re testing what an object is instead of what it does. What

an object does is significantly more important. The same is

true at the application level. Stakeholders don‟t usually care

that data is being persisted in an ANSI-compliant, relational

database. They care that it‟s in the database but even then,

they generally mean is that it‟s stored somewhere and they

can get it back [9].

BDD puts the focus on behavior instead of structure, and it

does so at every level of development

Once it is acknowledged, it changes the way to think about

driving out code. People begin to think more about

interactions between people and systems, or between objects,

than they do about the structure of the objects. [7]

It is believed that most of the problems that software

development teams face are communication problems. BDD

aims to help communication by simplifying the language used

to describe scenarios in which the software will be used:

Given some context, when some event occurs, then I expect

some outcome.

Given, When, Then are simple words that are used whether

we are talking about application behavior or object behavior.

They are easily understood by business analysts, testers, and

developers alike.

6. BDD TOOLS

6.1 Cucumber Introduction
Cucumber supports collaboration and communication

between stakeholders and the delivery team. It uses a simple

language for describing scenarios that can be written and read

with ease by both technical and nontechnical people.

These scenarios represent customer acceptance tests and are

used to automate the system we‟re developing [3].

For every cucumber project there is a single directory at the

root of the project named "features". This is where all of the

cucumber features will reside. In this directory one will find

additional directories, which is step definition and support

directories [4].

6.2 Cucumber Feature File
Feature File consist of following components -

Feature: A feature would describe the current test script which

has to be executed [6].

Scenario: Scenario describes the steps and expected outcome

for a particular test case.

Scenario Outline: Same scenario can be executed for multiple

sets of data using scenario outline. The data is provided by a

tabular structure separated by (I I).

Given: It specifies the context of the text to be executed. By

using data tables "Given", step can also be parameterized.

When: "When" specifies the test action that has to performed

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.5, September 2016

25

Then: The expected outcome of the test can be represented by

"Then".

Consider this sample feature file which is being used to test a

sample web page that I created.

Feature: Login Action

Scenario: Successful Login with Valid Credentials

Given User is on login Page

When User enters User Name and Password

Then User should be home page

Feature files form the crux of Behavior Driven Development

as it is here that stakeholders or business analysts can specify

their business requirements. Basically, Feature files allow us

to test the behavior of the software we are building. That is to

check whether the product is built correctly and also whether

the right product is built.

6.3 Cucumber Test Runner Class
Cucumber uses Junit framework to run. As Cucumber uses

Junit we need to have a Test Runner class. This class will use

the Junit annotation @RunWith(), which tells JUnit what is

the test runner class. It more like a starting point for Junit to

start executing your tests. In the src folder create a class called

TestRunner. Code sample is shown below:

@RunWith(Cucumber.class)

@CucumberOptions(

 features = "sample.feature"

)

public class TestRunner {

}

@RunWith annotation tells JUnit that tests should run using

Cucumber class present in „Cucumber.api.junit„ package.

@CucumberOptions annotation tells Cucumber a lot of things

like where to look for feature files, what reporting system to

use and some other things also. But as of now in the above

test we have just told it for the Feature file folder.

6.4 Cucumber Step Definition
To test or run the feature file and in order to test the feature

file, it is required to write the implementation or step

definition for each step in the feature file in java. When

Cucumber executes a Step in a Scenario it will look for a

matching Step Definition to execute.

A Step Definition is a small piece of code with a pattern

attached to it or in other words a Step Definition is a java

method in a class with an annotation above it. An annotation

followed by the pattern is used to link the Step Definition to

all the matching Steps, and the code is what Cucumber will

execute when it sees a Gherkin Step.

For example a few lines from the sample step definition file

would be:

@When("^User enters UserName and Password$")

public void user_enters_UserName_and_Password() throws

Throwable {

driver.findElement(By.id("username")).sendKeys("Harshad");

driver.findElement(By.id("password")).sendKeys("harshad");

driver.findElement(By.id("submit")).click();

}

This code fulfills the when statement written in feature file.

Here using selenium WebDriver we are passing parameters to

the login form.

6.5 Selenium WebDriver
Selenium WebDriver is one of the most important

components of Selenium Releases. It is used heavily by the

Automation Testing Industry [8].It can be used along with

Tools such as Cucumber to carry out Behavior Driven

Development. As seen in section 3.4, Selenium WebDriver

has been used to fill out a login page.

6.6 Cucumber Selenium Framework
Cucumber and Selenium can together be used to create a

framework in which the Cucumber tool mainly serves to write

the feature file (Stakeholders requirements can be written

here) and Selenium will be used for testing whether the

stakeholders requirements were satisfied or not. Together they

can be used for Behavior Driven Development. Stakeholders

or business analyst will write his requirements in the gherkin

format using Cucumber Feature files, then the Developer will

develop the software and subsequently testers will test

whether the software meets the requirements in the feature

files by using Selenium.

7. BDD CYCLE
The BDD delivery cycle starts with a stakeholder discussing a

requirement with a business analyst. The requirement might

be a problem they want solved or an idea they‟ve had. The

analyst helps the stakeholder articulate the requirement in

terms of features that make sense to the stakeholder using

their own domain terms and maybe further into small,

verifiable chunks known as stories, which represent no more

than a few day‟s work. [2]

By identifying which scenarios are important to the story

before development starts, the stakeholder can specify exactly

how much they want the programmers to do or how much

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.5, September 2016

26

Fig 1: Selenium WebDriver automatically filling in parameters for login form

Fig 2: The Home page opened after entering correct login details.

Fig 3 The Java Console tells us that the scenario has run successfully.

International Journal of Computer Applications (0975 – 8887)

Volume 149 – No.5, September 2016

27

Development effort they want to invest in delivering the

feature [5]. The developers will only implement enough to

satisfy the agreed scenarios, and no more.

The final task before the programmers start implementing the

story is to automate the scenarios where it makes sense to do

so. In the same way, Test-Driven Development uses code

examples to drive the design; these automated scenarios will

drive the high-level direction of the development effort.

One of the most important characteristics of BDD is that the

scenarios are easy to automate yet are still easily

understandable to the stakeholder. Defining and automating

these scenarios is the realm of Cucumber. Developers write

code to get the scenarios working. Start by writing a code

example to describe the behavior needed, then implement the

code to make that example work, and then refactor.

Eventually end up with just enough software to make the

scenario work, and then iterate through the other scenarios

until done. This then brings us full circle, such that it can

demonstrate the working scenarios back to the stakeholder,

and the story is done.

8. CONCLUSION
In conclusion, BDD is an evolution of TDD, which allows

there to be a better collaboration between the members of the

software development team. BDD has all the elements of

TDD, but it tops it up with feature files which allow one to

write test cases in a language that can be understood by all.

Summarily BDD is based on three core principles, namely:

• Enough is enough. Work to achieve the

stakeholder‟s expectations but avoid doing more

than needed.

• Deliver stakeholder value. There are multiple

stakeholders both core and incidental and

everything that is done should be about delivering

demonstrable value to them.

• It‟s all behavior. Just as it can describe the

application‟s behavior from the perspective of the

stakeholders, it can describe low-level code

behavior from the perspective of other code that

uses it [1].

At the start of a project or a release, one can carry out some

sort of inception activities to understand the purpose of the

work one is doing and to create a shared vision. This is about

the deliberate discovery of risks and potential pitfalls along

the way.

The day-to-day rhythm of delivery involves decomposing

requirements into features and then into stories and scenarios,

which we automate to act as a guide to keep us, focused on

what we need to deliver. These automated scenarios become

acceptance tests to ensure the application does everything that

is expected. [7]

BDD stories and scenarios are specifically designed to support

this model of working and in particular to be both easy to

automate and clearly understandable by their stakeholders [1].

9. REFERENCES
[1] David Chelimsky „The Rsec Book Behaviour-Driven

Development with RSpec, Cucumber, and Friends”,

2010.

[2] “Specification by Example" by Gojko Adzic 2011.

[3] "The Cucumber Book" by Matt Wynne and Aslak

Hellesoy 2014.

[4] Dave Astels and Steven Baker on RSpec and Behavior-

Driven Development

[5] Gojko on BDD: Busting the Myths

[6] Official website of Cucumber https://cucumber.io/.

[7] Blog on BDD

https://www.thoughtworks.com/insights/blog/3-

misconceptions-about-bdd.

[8] Official website of Selenium

http://www.seleniumhq.org/docs/.

[9] Evaluation of Behavior Driven Development by John

Horn Lopez 2012.

IJCATM : www.ijcaonline.org

